References
Boehmke, Brad, and Brandon Greenwell. 2019. Hands-on Machine Learning with r. Chapman; Hall/CRC. https://doi.org/10.1201/9780367816377.
Breiman, L., J. Friedman, C. J. Stone, and R. A. Olshen. 1984. Classification and Regression Trees. Taylor & Francis.
Breiman, Leo. 1996. “Bagging Predictors.” Machine Learning 24 (2): 123–40. https://doi.org/10.1007/bf00058655.
———. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. https://doi.org/10.1023/a:1010933404324.
Charpentier, Arthur. 2020. “Act6100 Analyse Des Données En Actuariat.” https://github.com/freakonometrics/ACT6100.
Chollet, François, and J. J. Allaire. 2018. Deep Learning with R. Manning Publications.
Debeer, Dries, and Carolin Strobl. 2020. “Conditional Permutation Importance Revisited.” BMC Bioinformatics 21 (1). https://doi.org/10.1186/s12859-020-03622-2.
Demšar, Blaž, Janez AND Zupan. 2021. “Hands-on Training about Overfitting.” PLOS Computational Biology 17 (3): 1–19. https://doi.org/10.1371/journal.pcbi.1008671.
Goodfellow, Ian, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep Learning. Vol. 1. MIT press Cambridge.
Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989. “Multilayer Feedforward Networks Are Universal Approximators.” Neural Networks 2 (5): 359–66. https://doi.org/10.1016/0893-6080(89)90020-8.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2021. An Introduction to Statistical Learning. 2nd ed. Springer.
Karatzoglou, Alexandros, David Meyer, and Kurt Hornik. 2006. “Support Vector Machines inR.” Journal of Statistical Software 15 (9). https://doi.org/10.18637/jss.v015.i09.
Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. “Gradient-Based Learning Applied to Document Recognition.” Proceedings of the IEEE 86 (11): 2278–2324. https://doi.org/10.1109/5.726791.
Ng, Andrew, and Kian Katanforoosh. 2018. “Deep Learning.” http://cs229.stanford.edu/notes/cs229-notes-deep_learning.pdf.
Nutini, Julie. 2015. “Coordinate Descent and Ascent Methods.” https://www.cs.ubc.ca/labs/lci/mlrg/slides/mlrg_CD.pdf.
Sathishkumar, V. E., Park Jangwoo, and Cho Yongyun. 2020. “Using Data Mining Techniques for Bike Sharing Demand Prediction in Metropolitan City.” Computer Communications 153 (March): 353–66. https://doi.org/10.1016/j.comcom.2020.02.007.
Sathishkumar, V. E., and Cho Yongyun. 2020. “A Rule-Based Model for Seoul Bike Sharing Demand Prediction Using Weather Data.” European Journal of Remote Sensing 53 (sup1): 166–83. https://doi.org/10.1080/22797254.2020.1725789.
Tibshirani, Ryan. 2019. “Convex Optimization Course.” https://www.stat.cmu.edu/~ryantibs/convexopt/.
Yeh, I-Cheng, and Che-hui Lien. 2009. “The Comparisons of Data Mining Techniques for the Predictive Accuracy of Probability of Default of Credit Card Clients.” Expert Systems with Applications 36 (2): 2473–80. https://doi.org/10.1016/j.eswa.2007.12.020.