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Abstract

This paper proposes a new methodological approach using high-frequency data and
local projections to assess the impact of weather on agricultural production. Local pro-
jections capture both immediate and delayed effects across crop types and growth stages,
while providing early warnings for food shortages. Adverse weather shocks, such as ex-
cess heat or rain, consistently lead to delayed downturns in production, with heteroge-
neous effects across time, crops, and seasons. We build a new index of aggregate weather
shocks that accounts for the typical delay between event occurrence and economic recog-
nition, finding that these shocks are recessionary at the macroeconomic level, reducing
inflation, production, exports and exchange rates.
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1 Introduction

Weather shocks, or abnormal weather events, can have serious economic consequences,
particularly for vulnerable sectors like agriculture. Given these vulnerabilities, the objec-
tive of this study is to quantitatively measure the dynamic effects of abnormal weather on
the supply of agricultural products over time. Assessing the consequences of an unexpected
weather event observed today on future crop production is essential for anticipating adverse
outcomes. This is particularly crucial in the context of climate change, where certain coun-
tries, especially in the tropics, face significant increases in temperature and precipitation vari-
ability (Castellanos et al., 2022). At the farmer level, such a quantitative analysis can aid in
making better-informed decisions to adapt to climate change. At the macroeconomic level,
these assessments are important for policymakers to anticipate potential food shortages and
income losses, enabling them to implement effective mitigation policies.

Our empirical approach examines the impact of weather fluctuations on agricultural pro-
duction in Peru, using monthly regional and crop-specific data. The analysis employs a lin-
ear panel model with local projections to leverage exogenous within-regional variations in
weather fluctuations to assess how random changes in the weather affect agricultural pro-
duction across months, regions, and crops. Our measures of weather shocks are based on
precipitation and temperature. We extract the unexpected component of the weather by tak-
ing the deviation of the weather variable from its historical average.1

The literature examining how the weather affects agricultural production typically bases
its quantitative analysis on annual data (see, e.g., Deschênes and Greenstone, 2007; D'Agostino
and Schlenker, 2016; Burke and Emerick, 2016; Jagnani et al., 2021). The standard approach in
the field to measuring the effects of the weather on economic outcome is through the panel
fixed effects framework. Studies with panel fixed effects typically use weather data frequen-
cies ranging from annual to daily, with annual economic data being most common.2 This
methodology has been extensively applied in the literature, including the analysis of weather
impacts on agriculture and broader economic indicators.

With respect to the baseline panel fixed effects framework, we propose a complemen-
tary methodological approach that comprises two core ingredients: high-frequency agricul-

1We compute the average monthly maximum regional extreme daytime temperature and total rainfall and
express each as a weather anomaly by taking the deviation of the weather variable from its historical average.
Intergovernmental Panel on Climate Change (IPCC) studies, such as Parry et al. (2007), have documented a large
negative sensitivity of crop production to extreme daytime temperatures and precipitation. We build on this
observation to construct the weather variables.

2Most studies using the panel fixed effects framework focus on crops with highly seasonal production, such
as corn and soybeans in the U.S. context, while this paper investigates tropical agriculture, where some crops
are produced year-round. This introduces a different dynamic, as tropical crops face continuous exposure to
weather shocks throughout the year.

2



tural production data combined with local projections (LPs).3 The panel fixed effects standard
in agricultural economics typically maps current economic variables (yt) to current and past
weather variables (wt, wt−1, . . .) through a function f : yt = f(wt, wt−1, . . .). Local projec-
tions, on the other hand, reverse this approach by forecasting the response of an economic
variable over multiple horizons (h) conditional on a weather shock, yt+h = f(wt, wt−1, ...)

with h = 0, 1, . . ., thereby providing a dynamic view of the impact over time. We exploit
the plausibly exogenous variations in temperature and precipitation at the Peruvian regional
level to study the delayed effects of weather shocks on agricultural production over multi-
ple months after the realization of the shock. We control for regional fixed effects, dynamic
macroeconomic characteristics, and temporal dependence. By leveraging the cross-sectional
dimension at the regional level, we use impulse response analysis to identify the propagation
of a regional weather shock on agricultural production. Why are local projections particularly
well-suited for measuring the effects of weather shocks on intra-annual data? The biological
growing process of crops introduces a natural time lag between the month of the realization
of a weather shock and the month of its economic impact at harvest time. Impulse response
functions directly coincide with the life-cycle of a weather shock from its realization up to its
disappearance in economic terms.

Our methodology, based on LP in high frequency, provides four main additional ad-
vantages with respect to the current panel fixed effects standard in agricultural economics.
First, this methodology provides a straightforward mapping of economic costs with random
weather variations, avoiding possible ambiguities present in aggregate annual data. These
ambiguities may concern both agricultural,4 and weather data.5 Aggregation can affect the
estimated impacts of weather shocks; we find that the impact of a shock is smaller when using
aggregate data.

A second advantage of high-frequency local projections is their ability to assess the time-
varying vulnerability of crops across different growth stages, as crops are generally more
vulnerable during the early stages of growth than at the harvesting stage. To capture these

3Local projections pioneered by Jordà (2005) are an econometric framework that has become widely used for
measuring impulse response functions in various fields of applied economics. LPs are not only relatively more
robust to misspecification but are also easy to estimate (via linear regression) and accommodate in panel data.

4If the harvesting season spans two calendar years, it could potentially complicate the mapping of weather
events to their true realization, depending on how the statistical service conducts surveys or data gathering. In
some cases, data may be collected based on the crop year rather than the calendar year, whichwouldmitigate this
issue. However, in Peru, where the harvesting peak for maize, for example, occurs in December, the production
from one growing season spreads across two calendar years. This makes it more challenging to align economic
impacts with weather events. Additionally, in tropical agriculture, where crops can be produced year-round,
defining distinct growing seasons is often more complex.

5The annualization of weather data can also omit relevant information regarding the effects of weather on
agriculture (Cui et al., 2024). Specifically, the mean-wise aggregation of extreme weather events throughout
the year can average out the impact of both positive and negative events (Colacito et al., 2019), potentially
underestimating the true damages caused by weather shocks on agriculture. A typical approach to address this
aggregation masking effect is to consider sub-annual (e.g., season-dependent anomalies) and non-linear (e.g.,
temperature bins or degree-days) weather metrics.
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heterogeneous effects of weather shocks over time, the literature employs various techniques
to disaggregate weather metrics. Some studies distinguish between different seasons (e.g.,
Tack et al., 2017; Schmitt et al., 2022), growing seasons (e.g., Ortiz-Bobea and Just, 2012; Chen
et al., 2016; D'Agostino and Schlenker, 2016; Gammans et al., 2017; Taraz, 2018; Jagnani et al.,
2021), or fine stages of the growth process such as vegetative, ripening, andmaturation phases
(e.g., Ortiz-Bobea et al., 2019; Welch et al., 2010). Other approaches use more granular metrics,
such as monthly data (e.g., Miao et al., 2016; Yu and Goh, 2019; Li, 2023) or weekly observa-
tions (e.g., Powell and Reinhard, 2016).6 In most of these studies, the variable of interest often
remains annual, which does not allow for the identification of the intra-year dynamics of
shocks within the season. In contrast, local projections at a monthly frequency naturally cap-
ture the time-varying vulnerability of crops across different growth stages: impulse response
functions (IRFs) at shorter horizons isolate the effects on crops that are already mature, while
IRFs at longer horizons capture the delayed effects on crops that were affected in their early
stages of growth. By comparing the size of the IRF at different horizons, one can directly
measure the heterogeneous effects of weather shocks across the growing to harvesting stages
and identify when crops are most vulnerable.

A third advantage of our methodology, related to the horizon of the IRF, is the ability to
identify permanent effect of weather shocks. By leveraging the granularity of our monthly
data, one can compute the average duration in months of a crop cycle from planting to har-
vesting. Hysteresis is identified from any impulse response function that persists beyond the
typical crop cycle duration.

A last advantage of high-frequency LPs on agricultural production is their capacity to
provide early warnings for policymakers to anticipate food security. By collecting and mon-
itoring daily weather data, policymakers can predict regional food shortages several months
in advance when an abnormally large weather shock occurs.

While our analytical framework offers distinct advantages, it also presents limitations
compared to more widely used methods in the literature. The use of monthly production
data, as opposed to annual data, emphasizes the short-term effects of weather fluctuations.
This higher frequency of data complicates the identification of long-term effects. Although
our framework can highlight certain adaptation mechanisms, longer-term changes are better
captured using the traditional methods in the literature that rely on annual data.

From our empirical analysis, we derive three main findings. First, while it is well-known
that weather shocks are overall detrimental to agriculture, we corroborate this finding by
distinguishing heterogeneous effects on agricultural production. This heterogeneity depends

6Interestingly, the Peruvian context differs from previous studies. In addition to the crops typically studied in
the USA (such as maize), our database includes tropical crops such as cassava. The longer and more spread-out
growing process of the crops makes the use of conventional tools (ie. distinction between growing periods) more
complicated, while local projections remain suitable.
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on the type of crop, the type of weather shock, and the season (growing season versus har-
vesting season). Specifically, a weather shock, defined here as an abnormally high monthly
realization compared to the regional average, can cause a significant 5% to 15% monthly de-
cline in agricultural production for any crop type in our sample, with temperature shocks
being more detrimental than precipitation shocks. Weather shocks during the growing sea-
son have a more substantial impact than those occurring during the harvest season, indicating
the critical timing of these events.

Our second key finding reveals the presence of hysteresis effects from weather shocks,
which can be attributed to several factors. These include lost income, loss of inputs (e.g., seeds),
delays in reallocating land or other resources, and changes in the composition of farmers in a
given region. One possible explanation is a learning mechanism, where farmers adjust their
crop mix in subsequent growing seasons. This decline may reflect a strategic response, with
farmers choosing not to plant the same crops in consecutive seasons, resulting in scarring
effects from weather shocks.7

Finally, our third main takeaway addresses the aggregate implications of weather shocks.
Instead of focusing on the channel of impact directly on aggregate outcomes, as in the litera-
ture,8 we aggregate in-sample responses of regional crop production to weather shocks from
LPs and net the contributions of all current and past weather shocks on current agricultural
production to develop a national macroeconomic index of weather shock losses. When fed
into a Vector Autoregression (VAR) model alongside other core macro variables, we find that
a representative weather shock leads to a 0.4% decline in agricultural production, a 1.5% de-
cline in exports, an immediate decline in the real domestic currency, and a modest reduction
in inflation. These results highlight that the implications are not only local but can also cause
fluctuations at the country level that can affect the conduct of stabilization policies. In par-
ticular, the VAR predicts that monetary policy reduces interest rate in response to a weather
shock to revive the economy.

Our study is connected to two complementary branches of literature. The first strand
of the literature examines the nexus between economic growth and climate based on yearly
data. Dell et al. (2012) demonstrate that higher temperatures reduce economic growth and
agricultural production in a large panel of countries. Building on this study, the research
question has been extended in several directions.9 Colacito et al. (2019) conduct a similar
exercise for the US economy and find that rising summer temperatures have a pervasive effect

7Note that this article does not aim to directly address the adaptation strategies implemented by farmers in
response to weather fluctuations, as explored by Sesmero et al. (2018); Jagnani et al. (2021); Blakeslee et al. (2020)
or Bareille and Chakir (2024), among others. However, our findings suggest that production can remain affected
even after harvest, implicitly indicating some degree of farmer adaptation.

8See, for example, Acevedo et al. (2020), who identify negative impacts of weather shocks on agricultural and
aggregate output in developing countries.

9While most of the literature examines the effects of weather variables on quantities, Faccia et al. (2021)
explore the effects on prices and identify deflationary effects.
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on the entire cross-section of industries. Ortiz-Bobea et al. (2021) employ a country-level panel
regression and yearly data from 1961 to 2015 to investigate the impact of climate change on
agricultural Total Factor Productivity (TFP). The authors conclude that, on average, in Latin
America, climate change had a negative impact on agricultural TFP, reducing it by more than
25% over the sample period, attributable to variations in average temperature and total rainfall.

The second strand of literature focuses on estimating the effects of weather and climate
change on agriculture, employing agronomic models and statistical models (see D'Agostino
and Schlenker 2016 for a review). The latter, which is predominant in the economic liter-
ature, has shifted from cross-sectional (Mendelsohn et al., 1994) to panel data analysis (see
Blanc and Schlenker 2017, or Kolstad and Moore 2020). These models, which assess variables,
such as crop yield (Schlenker and Roberts 2009), production (Lesk et al. 2016), and profit (De-
schênes and Greenstone 2007) over space and time, account for both group- and time-specific
effects. The former captures constants such as soil quality, while the latter considers factors
affecting all regions in a given year. Panel regressions, treating weather variations as exoge-
nous, offer insights into short-term effects, although caution is needed in long-term studies,
as rapid farmer adaptation can skew the results (Kolstad and Moore, 2020).10 Our study relies
on panel data such as this second strand of literature, and focuses on short-term effects. How-
ever, we adopt a distinct framework that not only links year-to-year variations in agricultural
production with changing weather conditions but also facilitates the exploration of dynamic
propagation effects.

The remainder of this article is organized as follows. Section 2 describes the data and the
variables used in the empirical analysis. Section 3 details the estimation strategy and discusses
the panel estimation results. Section 4 examines the differentiated effects of weather shocks
across production stages, distinguishing between a growth regime and a harvest regime.
Section 5 shifts the focus from agricultural production and investigates the transmission of
weather shocks to the rest of the nation’s economy. Section 6 provides a conclusion.

2 Data

This section presents the data, outlines the transformations applied for quantitative anal-
ysis, and provides descriptive statistics for the agricultural data.

2.1 Data Sources and Transformations

Regional Agricultural Data. Our primary source of agricultural data is derived from
monthly agricultural reports, El Agro en Cifras, produced by the Ministry of Agriculture and

10To study long-term effects, Burke and Emerick (2016) suggest a framework in which they model the change
in average yields at two different points in time for a given location as a function of changes in average temper-
ature.
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Irrigation of Peru (MINAGRI) spanning from 2001 to 2019. We extracted data on production
(measured in tons) and on the planted and harvested areas (measured in hectares) for each
of the primary crops cultivated in Peru across 25 administrative regions, covering the period
from January 2001 to December 2015. Four main crops are analyzed in this study: potato
(papa), cassava (yuca), rice (arroz cáscara), and maize (maíz amarillo duro). The selected crops
in this study collectively represent a substantial share of agricultural production, comprising
53% of the cultivated surface and 37% of the total production in Peru. To deal with seasonality,
we express agricultural production as its normalized value, where normalization consists of
dividing the production value by the historical regional monthly average. Normalizing allows
to correct for the size effect stemming from regional heterogeneity in production. We refer to
Online Appendix A.1 for more details.

Regional Weather Data. Gridded monthly temperature data are sourced from PISCOt
V1.1, and precipitation data from PISCOp V2.0, both provided by SENAMHI (the National
Service of Meteorology and Hydrology of Peru). The data processing begins by aggregating
daily grid-level temperature and precipitation to a monthly basis. Given crops’ sensitivity to
extreme daytime conditions (Parry et al., 2007), we use average monthly maximum tempera-
ture as a key predictor, alongside a precipitation amount indicator. Following D'Agostino and
Schlenker (2016), weather data are first processed at the grid cell level and then aggregated
to a monthly regional scale. The next step is to calculate weather shocks as deviations of
temperature and precipitation from their 30-year historical averages, therefore constructing
weather anomalies, following standard practices (Deschênes and Greenstone, 2007; Auffham-
mer et al., 2013). More specifically, as in Barrios et al. (2010) we demean grid-level weather
data using monthly historical values. The resulting anomalies are then averaged across grid
cells within each region, weighted by the region’s area and agricultural production. This
process yields region-specific temperature and precipitation anomalies, which represent de-
viations from long-term normals. The detailed aggregation process is described in the Online
Appendix.

ENSO Oscillations. To explore the cause-and-effect relationship, local projections are
typically built under the assumption that weather shocks are unexpected. However, our sam-
ple also includes El Niño and La Niña events. These climate phenomena are characterized
by their predictable occurrence, diverging from the typical unexpected nature of weather
shocks.11 To overcome this issue, we use ENSO variations as a control variable to account for
the expectational effect that ENSO may have on the projection. These ENSO fluctuations are
classified using the Oceanic Niño Index. We collect this index from the Golden Gate Weather
Service.

11Even though farmers are still surprised by the magnitude of the weather shocks during ENSO events, they
can adapt by adjusting their crop mix before the weather shock materializes, introducing a potential bias in the
quantitative analysis.
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Macroeconomic Data. To isolate the pure effect of weather shocks,12 we control for
macroeconomic conditions using the datawarehouse of the Banco Central de Reserva del Peru.13

The following series are included: the Peruvian Consumer Price Index (CPI), Food Price In-
dex (FPI), PEN/USD Exchange rate, national interest rate, GDP index and a sectoral index for
industrial production. Note that all the control variables are national aggregates given on a
monthly basis. Nominal variables (e.g., exchange rate, FPI, and CPI) are detrended by calculat-
ing their growth rate. GDP, industrial production indices and interest rate data are detrended
via Hodrick-Prescott filter. In addition, we control for international variations that may affect
the production of each culture by including their respective commodity prices using IMF data.

2.2 Summary Statistics of Agricultural Data

Table 1 presents descriptive statistics for the monthly production of the selected crops
averaged over the regions. Significant variations in production are observed, and these vari-
ations are highly crop-specific. It displays the mean, median, standard deviation, minimum,
andmaximum production values in tons, along with the mean andmaximum growth duration
(in months) for each crop. The table also includes the number of regions where each crop is
grown and the total number of observations.

Regional Production (tons) Growth Duration

Culture Mean Median Std Dev. Min. Max. Mean Max. No.
regions No. obs.

Cassava 4,531 1,799 7,110 0 57,135 9 14 20 3,600
Maize 4,291 983 7,255 0 74,624 5.17 12 23 4,140
Potato 16,393 5,049 29,575 0 360,070 5.79 8 19 3,420
Rice 13,458 1,654 28,313 0 318,706 4.44 6 16 2,880

Notes: Each region contains 180 observations, from January 2001 to December 2016. Duration is expressed in months. ‘Std Dev.’ stands
for standard deviation. Source: MINAGRI. Author’s estimate

Table 1. Descriptive Statistics for Monthly Production (in Tons) per Type of Crop.

In terms of production quantity, potato and rice stand out as the largest crops, with av-
erage monthly regional outputs of 16,393 and 13,458 tons, respectively, far exceeding those of

12Because the data-generating process of our agricultural data is driven by alternative sources of randomness,
such as economic shocks unrelated to the weather, we include macroeconomic data as control variables. The
goal of these control variables is to isolate the effect of weather variables on agricultural production from any
other sources of fluctuation. By holding constant values for the control variables, any changes in the outcome
can be attributed solely to the variable of interest, rather than the combined effects of multiple variables. This
makes it possible to draw more accurate conclusions regarding the causal relationship between weather shocks
and agricultural output.

13Data are taken from the Central Bank of Peru, where the Real Exchange Rate token is PN01259PM, Exports
is PN01461BM, Food CPI is PN01336PM, CPI is PN01270PM, industrial GDP is PN02079AM, GDP PN01773AM, and
interest rate is PN07819NM. All seasonal components are removed from the time series, excluding the interest
rates.
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cassava and maize. Potato and rice exhibit much higher relative volatility, as reflected in their
larger standard deviations relative to their means. For example, rice has a standard deviation
of 28,313 tons compared to a mean of 13,458, indicating significant production fluctuations.
Similarly, potato, with the largest standard deviation of 29,575 tons, shows greater variability
in production compared to cassava and maize, whose standard deviations are relatively lower
in proportion to their means. This suggests that potato and rice face greater production risks
and variability, possibly due to differences in growing conditions or susceptibility to weather
shocks.

3 The Dynamic Effects of Weather Shocks

How do weather shocks dynamically affect agricultural production? This section dis-
cusses the econometric approach and the main results obtained from the impulse response
function analysis.

3.1 Empirical Approach

We base our empirical framework on a conceptual framework similar to that developed
by Dell et al. (2012). To fix ideas, consider the following simple economy characterized by a
Cobb-Douglas technology in the agricultural sector in region i for crop c:

Yc,i,t = Ac,iNc,i,tHc,i,t, (1)

where the agricultural output for crop type c planted in region i at time t is denoted by Y ,
crop-regional total factor productivity is denoted by A, labor demand is denoted by N and
harvested area is denoted by H . Note that in this expression, Ac,i captures how regional
conditions, such as local labor productivity, shape the productivity of labor for crops planted
in this region. By contrast,Nc,i,t encapsulatesmacroeconomic fluctuations stemming from the
labor market (e.g., all aggregate shocks realized in t determine the country-wide real wage).
Finally, Hc,i,t represents the surface harvested with N units of labor.

How does the weather interfere within the production process of agricultural goods?
Consider that each period, farmers in region i plant crop c on land surface L. A typical crop
growth cycle implies a lag between planting and harvesting, referred to as the growing season.
During the growing season, crops are vulnerable to weather shocks such as droughts and
floods, leading to reduced growth and yield. In addition to these direct effects, weather shocks
lead to increased stress in plants, making them more vulnerable to diseases. In severe cases,
droughts can cause complete crop failure.

To capture these delayed effects of the weather on agricultural yields, let Tc denote
the monthly duration of the crop-specific growing season between planting (h = 0) and
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harvesting (h = Tc). Therefore, it is assumed that Lc,i,t units of planted land yield
Lc,i,t exp(

∑Tc

h=0
αc,hWi,t−h) effective units of productive land, where a weather shockWi,t−h

realized in t− h affects crop production harvested in t with elasticity αc,h.14 Weather shocks
are considered from the farmer’s perspective as exogenous variables that affect land produc-
tivity during the growing season. Weather variables, stacked inW , are formally connected to
agricultural output as follows:

Hc,i,t ≤ Lc,i,t exp
(

Tc∑
h=0

αc,hWi,t−h

)
. (2)

In this expression, it is assumed that the land surface planted Li,c,t exhibits both seasonal
and trend components stemming from soil quality across time and space. Assuming that all
planted surfaces are harvested, Equation 2 holds with equality. However, in the presence of
severe weather shocks, if the marginal cost of harvesting exceeds the marginal profits of the
land, it might be optimal for farmers to partially harvest the planted surface.

Combining Equation 1 and Equation 2, and applying logs yields the following expression:

ln
(
Yc,i,t

Lc,i,t

)
= ln (Ac,i) +

Tc∑
h=0

αc,hWi,t−h + ln (Nc,i,t) . (3)

The left-hand side of this equation represents the percentage deviation of agricultural produc-
tion from its potential value, measured by Lc,i,t. Note that one can express the logarithm into
a percentage deviation of Yc,i,t from Lc,i,t as follows: yc,i,t = ln(Yc,i,t/Lc,i,t) to be consistent
with the local projection.

A natural question at this stage is to gauge the importance of the elasticity of agricultural
production to changes in weather conditions, namely, to infer the value of αc,h. We use local
projections based on Jordà (2005) to estimate the impact of weather shocks on agricultural
output during the crop growing season. LPs are an econometric technique used to estimate
the dynamic response of an outcome variable to an exogenous shock.15 In this study, the two
main exogenous variables are precipitation and temperature anomalies described in the data
section.

LPs are easy to implement, requiring a series of regressions—one for each forecast hori-
14Note that we do not include a squared value for the weather variables. Squared terms are typically intro-

duced to capture low-frequency effects of climate change. In this study, the time-frequency is monthly. The
use of a squared term does not change the sign or significance of the results, as can be observed in the online
replication materials.

15Unlike traditional VARs, LPs do not require the estimation of the entire autoregressive structure of the
data. Instead, LPs estimate the response of the dependent variable directly for each forecast horizon using linear
estimation techniques. Impulse response functions are obtained without imposing a specific parametric form
on the entire time series process and can accommodate various types of shock specifications and controlling
variables.
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zon. For each horizon h, the dependent variable is regressed on the shock variable and other
controls, capturing the direct impact at that specific horizon. Compared to VAR, LPs are robust
to model misspecifications. Since each horizon is estimated separately, errors in one horizon
do not propagate to others. Additionally, LPs do not require strong exogeneity assumptions,
which are often needed in VAR models.

To estimate these effects, for each crop c, we run a local projection for h = {0, 1, ..., Tc}
of the form:

yc,i,t+h =αT
c,hTi,t + αP

c,hPi,t + βc,i,hXt

+ γc,i,hTrendt ×Montht + δc,i,hTrend2t ×Montht + εc,i,h, (4)

where h is the time horizon. Agricultural production yc,i,t+h, is normalized with respect to
the long-term average (see Equation OA.2 in the Online Appendix). To account for a possible
trend in the potential production of crops measured by Lc,i,t in Equation 3, a month- and
region-specific quadratic trend is included in the equation, in the same spirit as Gammans
et al. (2017).16 The associated coefficients, γc,i,h and δc,i,h need to be estimated. The terms Ti,t

and Pi,t represent the two distinctive weather variables that are considered in the inference
exercise, namely, the temperature and precipitation anomaly variables (as detailed in Online
Appendix A.2).17 The two sequences of coefficients associated with the weather variables,
αT
c,h and αP

c,h, are of first-order interest as they indicate how sensitive agricultural output is to
exogenous changes in the weather variables.

In addition, Xt = [RERt, rt, πt, y
ind
t , ENSOt, πc,t] is the set of control variables that

captures the contributions from aggregate fluctuations, as stacked in the labor demand term
in Equation 3. The control variables include the Real Exchange Rate (RERt) and the nominal
interest rate (rt), both expressed as the deviation from the trend calculated by the Hodrick-
Prescott filter, the inflation rate (πt), the seasonally adjusted industrial production index (yind

t )
expressed as a percentage deviation from the trend calculated by the Hodrick-Prescott filter,
the Oceanic Niño Index (ENSOt), and the monthly international price variation of each crop
(πc,t). The set of coefficients βc,i,h is unknown and must be estimated in the inference exercise.
Finally, εc,i,t+h is an error term assumed to be normally distributed with zero mean.

3.2 Impulse Response Functions Results

The estimated coefficients αT
c,h and αP

c,t in Equation 4 are multiplied by the standard de-
viation of the weather variable to obtain the impulse response of agricultural production to
a standard weather shock. The responses are reported in Figure 1 for a fourteen-months
horizon, contrasting the four different crops considered. The horizon is chosen based on the

16The Montht term is a matrix of monthly dummy variables.
17See Appendix B for alternative definitions of the weather shocks.
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longest estimated growth duration among the crops (which is 14 months maximum for cas-
sava; see Table 1). To facilitate a clearer interpretation of the figures, we use the same horizon
for all crops. However, since the growth duration is specific to each crop, we represent the
average season duration on the graphs with an orange dashed vertical line. A response to a
one standard deviation shock of temperature anomalies is reported at the top and for precipi-
tation anomalies at the bottom.18 In both cases, a positive shock is considered: a one standard
deviation increase in temperature and a one standard deviation increase in precipitation, both
with respect to their historical averages. Positive deviations in temperature or precipitation
anomalies correspond to higher-than-usual values.19

Cassava Maize Potato Rice
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Figure 1. Agricultural Production Response to a Weather Shock.

Overall, the shock leads to a sharp and net decrease in production for several months
for every crop considered in our sample. However, the response is crop-specific due to the
heterogeneous characteristics of the four types of crops considered. In terms of magnitude,
maize production appears to be the most affected by a temperature shock, with a loss of 15%
of the detrended production after a rise in the monthly maximal temperatures of one stan-
dard deviation with respect to the historical average. The effect of the shock lasts for several
months, and production remains highly altered even months later. Rice exhibits a smaller

18Note that the number of regions is not the same across crops because some regions do not produce specific
types of agricultural products. We refer to Table 1 for a description of agricultural production per region and
crop type.

19Differential effects based on the sign of the anomaly are discussed in Appendix B.
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response on impact, suggesting that this crop type is more temperature-tolerant one or two
months before harvesting. However, this response is followed by a gradual drop in production
that lasts longer than the crop’s growth period. Note that IRFs not necessarily returning to
zero after harvesting underscores hysteresis mechanism.20 We attribute hysteresis to several
factors. Possible explanations include reduced income, depletion of inputs, delays in reallo-
cating land or resources, and shifts in the composition of farmers within a region. This result
suggests a learning mechanism, where farmers adapt their crop selection in future growing
seasons.

The second row of panels in Figure 1 reports the response of agricultural production fol-
lowing the realization of a precipitation anomaly shock at h = 0. A positive realization of
the shock is associated with wetter-than-usual weather, specifically, a one standard devia-
tion increase in total precipitation relative to the historical average. A precipitation anomaly
exhibits a similar pattern to temperature anomaly shocks but with a response of relatively
smaller magnitude. Excess rainfall is detrimental to agricultural production, leading to an av-
erage agricultural loss between 2% and 8%, with stronger effects occurring a few months after
the shock. As explained by Skees et al. (2007), excess rainfalls—such as those driven by El Niño
events in Peru—devastated several regions with massive flooding that washed crops away.21

The presence of a tropical climate, characterized by abundant rainfall, induces a large decrease
in agricultural production following the realization of the precipitation anomaly shock. Al-
though the shocks display a similar pattern, each crop reacts differently to them through the
timing and magnitude of their responses.

Variations in production following a precipitation shock are also highly crop-specific and
more volatile than responses to temperature shocks. Cassava, maize, and potato are clearly
affected during the first months following the shock, with the effect becoming more variable
and less significant over time. In contrast, rice is sensitive to precipitation, but the impact is
observed twomonths after the realization of the shock. Notably, for potato and rice, the effects
of the precipitation tend to vanish as the horizon grows, while cassava andmaize exhibit more
persistent effects. This persistence highlights that farmers tend to lower production even after
the crop growth duration, indicating an adaptation mechanism.

4 Time-varying Exposure to Weather Shocks

The baseline projections in section 3 underline that the effects of weather shocks are
heterogeneous over the horizon of the IRF. These abnormal weather shocks have immediate

20It is not surprising for impulse response functions in local projections to not return to zero, as they can
capture persistent or long-term effects of shocks that may not fully dissipate over the projected time horizon. In
the canonical paper of Jordà (2005), the IRFs also do not converge to zero.

21Crost et al. (2018) find that an increase in wet-season rainfall is harmful to crops and produces more conflict
in the Philippines.
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impacts, but also delayed effects, implying that not only the crops ready to be harvested but
also those that are still in their early growing stages are affected. Thus, a natural question that
arises from this observation is to investigate the time-dependence of weather shocks over the
growing stages of crops.

A significant body of literature has already demonstrated that the impact of weather
shocks on agriculture significantly depends on crop growth stages. For instance, Welch et al.
(2010) show differential effects of increases in minimum and maximum temperatures on rice
yields in tropical/subtropical Asia based on the growth phase. Additionally, Letta et al. (2022)
find that weather shocks trigger a rise in food prices during the growing period. Moreover,
Massetti et al. (2016) empirically examine how weather shocks during a growing season affect
maize and soybean harvests using US county-level data. Crops necessitate different types of
nutrients depending on the stage of plant development. Excessively high temperatures or
water volumes can be highly detrimental to crop growth at some stages while having little or
no effect at other stages.

This section aims to capture this effect. We take advantage of the high frequency of the
data to monitor the quantity of crops planted and harvested each month. Departing from
the conventional approach in the literature, which often uses fixed periods to define growth
and harvest seasons, our methodology involves a monthly continuous variable that weighs
the flow of land planted versus harvested. This enables a more dynamic assessment of agri-
cultural stages, distinguishing between the growing period (i.e., when the planted surface is
increasing) and the harvesting period (i.e., when the harvested surface is increasing). The re-
sponse of agricultural production to weather shocks can be contrasted between planted and
harvested regimes. To achieve this using local projections, we adapt the framework devel-
oped by Auerbach and Gorodnichenko (2011) for fiscal policy, modifying it to accommodate
state-dependent effects of the weather with a smooth transition between the growing and
harvesting stages. This framework enables us to empirically track the variation in the start
and duration of the growing and harvesting seasons, rather than fixing them arbitrarily as
done in most literature. Instead, having flexible seasons allows to account partially for farm-
ers adjustments, who could adapt their practices in the context of climate change (Cui and
Xie, 2022).

4.1 A State-dependent Framework

Based on the previous toy model of agricultural production from Equation 2, we mod-
ify this model to formalize plant cycles and the underlying time-varying sensitivity of land
productivity to weather shocks.

Let pc,i,t denote the new surface planted and hc,i,t denote its harvested counterpart at
time t for crop type c in region i. Therefore, the net flow of the newly planted surface is
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given by pc,i,t − hc,i,t. The total fraction of land with growing crops is measured here as
the cumulative sum of flows in the cultivated land surface over the lifetime of a crop Tc as
follows: zc,i,t =

∑Tc

h=0(pc,i,t−h−hc,i,t−h). To compare regions on a regular basis, we remove the
possible trend and divide by the standard error as follows, ẑc,i,t = (zc,i,t − zHP

c,i,t)/σc,i,t, where
ẑc,i,t is the zero-mean standardized index variable of the utilized land surface. To express this
index as a transition function with support [0, 1], since the planted surface index has been
standardized, ẑc,i,t ∼ N (0, 1), we use the cumulative distribution function of the standard
normal distribution Φ(·):22

Φ(ẑc,i,t) =
1√
2π

∫ ẑc,i,t

−∞
exp(−t2/2) dt. (5)

Letting Φ(ẑc,i,t)Lc,i,t denote the fraction of the potential land that is planted, Φ(ẑc,i,t) is
interpreted as the mass of land planted or the degree of exposure of agricultural production
to weather changes.

Consider now that weather effects depend on the growth stage of crops. The harvesting
season is interpreted as the period when the mass of land plantedΦ(zc,i,t) is low (approaching
zero). By contrast, the growing season corresponds to a situation in which Φ(zc,i,t) is high
(approaching one). Differentiating the effects of the weather on the growing and harvesting
seasons, the surface of harvested land can be written as follows:

Hc,i,t ≤ Lc,i,t exp
(

Tc∑
h=0

(
Φ(ẑc,i,t−h)α

h
c,G + (1− Φ(ẑc,i,t−h))α

h
c,H

)
Wi,t−h

)
, (6)

where αh
c,G and αh

c,H are agricultural production responses during the growing and harvesting
seasons, respectively.

Injecting this term into the production yields the following expression:

ln
(
Yc,i,t

Lc,i,t

)
= ln (Ac,i) +

Tc∑
h=0

(
Φ(ẑc,i,t)α

h
c,G + (1− Φ(ẑc,i,t))α

h
c,H

)
Wi,t−h + ln (Ni,c,t) . (7)

The local projections framework can be adapted again to analyze the role of the growing
versus harvesting season in the propagation of shocks. We examine the non-linear influence
of the season on the response of each crop production to weather shocks. The same local pro-
jection method is used, but augmented with a state-dependent variable to allow for non-linear
responses as described in Auerbach and Gorodnichenko (2011). This framework considers the

22Note that Auerbach and Gorodnichenko (2011) adopt a similar strategy to define recessions but assume a lo-
gistic transition function, which implies having to arbitrarily define a threshold when calibrating the parameters
of the logistic function. To avoid this assumption, we use the cumulative distribution function of the standard
normal distribution, which in turn is more agnostic with respect to the transition.
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probability of being in the growing season or during the harvesting season:

yc,i,t+h = Φ(ẑc,i,t)
[
αG,T
c,h Ti,t + αG,P

c,h Pi,t + βG
c,i,hXt + γG

c,i,h Trendt ×Montht

+δGc,i,hTrend2t ×Montht

]
+ (1− Φ (ẑc,i,t))

[
αH,T
c,h Ti,t + αH,P

c,h Pi,t + βH
c,i,hXt + γH

c,i,hTrendt ×Montht

+δHc,i,hTrend2t ×Montht

]
+ εc,i,t+h, (8)

where yc,i,t+h is the deseasonalized production, and Ti,t, Pi,t, and Xt are, respectively, the
temperature anomalies, precipitation anomalies, and control variables, as previously defined
in Equation 4. Again, a monthly region-specific quadratic trend is included in the model.
The difference from this latter equation is that we now estimate the associated coefficients
conditionally on the state of the season. Note that αH,T

c,h and αH,P
c,h are, therefore, the parame-

ters of interest for the harvesting season, whereas αG,T
c,h and αG,P

c,h are the parameters for the
growing season. Following Auerbach and Gorodnichenko (2011), we also allow for seasonally
dependent fixed effects and marginal effects for the control variables.

4.2 Season-dependent Impulse Response Functions

The response obtained from Equation 8 are reported in Figure 2. As before, the first row
presents the crop-specific responses to a one standard deviation temperature anomaly shock,
whereas the second row shows the responses to a precipitation anomaly shock. Responses are
distinguished by regime: the gray line represents the responses during the growing season,
while the green line refers to the harvesting season. Confidence intervals are reported at the
95% confidence level.

The distinction between growing and harvesting seasons plays an important role. Over-
all, we observe a differentiated impact, with a stronger reduction in production when a shock
occurs during the growing season. This result appears more clearly when examining temper-
ature shocks, whereas precipitation shocks display a more volatile response.

Two results are important to notice with this specification. First, looking at the responses
to temperature shocks, we observe that both the magnitude and duration of the shock differ
depending on its timing. Using the example of cassava and rice, we discern two specific
patterns. When a temperature shock happens during the growing season, while production
decreases instantaneously, the strongest reduction occurs several months after the shock. This
result suggests that a shock affects both mature crops (immediate effect on production) and,
with a delay, crops that are in their growth phase at the time of the shock. This result is in
line with Hatfield and Prueger (2015) who find that when a temperature shock occurs during
the growth stage of crop development, it may affect crop growth, which in turn leads to lower
yields. However, if a shock occurs when the crop is about to be harvested, then only a high-
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Figure 2. Agricultural Production Response to a Weather Shock Contrasting for Growing vs.
Harvesting Season.

magnitude shock (e.g., severe drought, hail, landslide, etc.) is likely to significantly affect
production. The response of cassava production shows that the detrimental effect is smaller
inmagnitude and duration compared to growing season shocks. In the case of rice, a positive—
yet non-significant—response of production after a temperature shock is observed, whichmay
be driven by better drying conditions for grains.

Strikingly, this effect of temperature shocks is common to all crops except potatoes, al-
though its timing and duration remain highly crop-specific. Precipitation shocks lead to more
volatile and less significant responses. This underscores the importance of considering the dif-
ferent effects of the season, which may not appear clearly when looking at aggregated vari-
ations over time. Because the seasons may vary slightly between regions (see Figure OA.4),
estimating the aggregated effect of weather shocks, as in section 3, may undervalue the dura-
tion of the shock and thus provide a lower bound of the potential regional effects. Given that
the responses differ with respect to season, policies designed to mitigate the aftermath of a
shock should be adapted accordingly.
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5 From Regional to Country-Wide Fluctuations

Are regional weather shocks sufficiently important to spread to the rest of the econ-
omy? Weather shocks tend to be serially correlated across regions because these regions
share common atmospheric, soil, or topographic patterns. Therefore, a weather shock may
entail macroeconomic fluctuations at the national level if the number of regions affected by
the same weather pattern is high enough. On policy grounds, a quantitative assessment of
weather shocks to macroeconomic fluctuations is particularly important for the design of mit-
igation policies.

In what follows, we first extract a national aggregate index of the weather shocks on agri-
cultural output. We next propose to analyze the aggregate effects of weather shocks through
the lens of local projections and a VAR framework. VAR are a widespread tool in macroecono-
metrics for forecasting purposes, and (unlike local projections) amenable for counterfactual
policy analysis.

5.1 A National Measure ofWeather Damages: theWeather Component of

Agricultural Loss (WCAL)

The literature typically provides a synthetic measure of weather based on average mea-
sures of county-level weather shocks and analyzes its interaction with macroeconomic time
series (see, e.g., Natoli, 2024; Gallic and Vermandel, 2020). This approach typically infers an
immediate effect of a contemporaneous weather shock in t on macroeconomic variables, and
its delayed reverberation through the propagation patterns over t + N with an N horizon.
This methodology arbitrarily forces weather shocks to have immediate and homogeneous im-
pacts on agricultural production, underestimating both (i) the delayed effects from the crop
growth process and (ii) the heterogeneous responses of different crops.

By contrast, we propose measuring the macroeconomic effects of the weather through a
“weather-implied losses” variable, as measured by our baseline local projections in Equation 4.
We define the national weather-adjusted agricultural production yωt at time t by summing
the significant crop-specific contributions of weather represented by the coefficients of the
weather variables βT

c,h and βP
c,h over the horizons and regions:23

yωt =
1∑
c ωc,t

∑
c

∑
h

∑
i

1signifc,i,t,h ×
(
βT
c,hTi,t−h + βP

c,hPi,t−h

)
× ωc,t

card(Ic,t)
, (9)

where ωc,t =
∑

i y
raw
c,t,i × pc is a quantity weight for crop c at time t. It represents the sum of

monthly agricultural production over regions, expressed in monetary terms, where pc is the
average selling price of crop c in our sample. card(Ic,t) is the number of regions that produce

23The steps to obtain the expression of this variable are detailed in Online Appendix B.
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crop c at time t, and the characteristic function 1signifc,i,t,h equals 1 when the contribution is
significantly different from 0 (based on the 95% confidence intervals of the coefficients βT

c,h

and βP
c,h), and 0 otherwise. The horizon h retained here to define the indicator is 9 months,

corresponding to the longest average growth duration among the four crops studied (see Ta-
ble 1). This choice focuses on the surprise element of the shock, and avoids encompassing
adaptive responses that might occur over a longer horizon.

The national weather-adjusted agricultural production is then expressed as a measure de-
notedWCALt, termed the “weather component of agricultural losses,” measured in percentage
deviations from trend:

WCALt = −100× (yωt − yωt ). (10)

This metric represents the deviation or loss from the expected trend. The trend itself is deter-
mined through the application of a Hodrick-Prescott filter. The inclusion of a negative sign
ensures that positive values of WCALt correspond to losses, rather than gains. In simpler
terms, WCALt provides an intuitive measure that expresses the percentage loss of agricul-
tural value-added attributed to weather shocks.

5.2 Quantitative analysis

In this section, we measure the country-level effect of weather shocks through our new
synthetic measure of weather shocks. We employ Vector Auto Regressive (VAR) and local
projections (LP) to measure the propagation of weather losses at the national level of Peru. A
methodological description is given in Appendix D for VAR and LP.The vector of endogenous
variables, Yt =

[
WCALt, RERt, πA

t , πt, Xt, yAt , yt, rt

]
, contains eight variables: the aggregate mea-

sure of weather-driven agricultural losses denotedWCALt, Real Exchange Rate denoted RERt,
the percentage change in the Food Consumer Price Index denoted πA

t , the percentage change
in the Consumer Price Index (CPI) denoted πt, exports denoted Xt, agricultural production
denoted yAt , GDP denoted yt and nominal rate rt. All macroeconomic data are presented in the
data section, except for the agricultural output, which is calculated using the regional monthly
production values for the crops of interest yAt =

∑
c ωc,t,where yraw

c,t,i×pc is the quantityweight
for crop c at time t from the local projection. Variables exhibiting a trend (agricultural out-
put and GDP) are expressed as percentage deviations from the Hodrick-Prescott trend, while
seasonal components are removed using the X13 method of the Census Bureau. Our sample
covers the period 2003M1–2015M12.

With the Cholesky factorization of the reduced-form VAR covariance matrix, the order
of the variable matters. To impose full exogeneity in the weather process, we follow Gallic
and Vermandel (2020) by placing the weather-driven agricultural-losses equation in the first
position in the VAR and muting cross-interactions with other variables. Following the order-
ing scheme of Stock and Watson (2001), we next order price variables, followed by quantities,
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and terminate with interest rates. The idea is that price variables are driven more by exoge-
nous factors (e.g., oil price shocks), whereas the interest rate is the most endogenous variable
that reacts to contemporaneous changes in prices and quantities.

Exports (pp) Agricultural output (pp) GDP (pp) Interest rate (pp)

Agricultural losses Real exchange rate Food inflation rate (pp) Inflation rate (pp)
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Figure 3. System Response to a Unit Orthogonal Shock to the Weather Aggregate Cost
Equation.

The number of lags selected using the AIC criterion is 2. Figure 3 illustrates the system’s
response to a unit increase in agricultural output resulting from weather shocks. This section
primarily focuses on the results of the VAR, as these results are typically easier to interpret.
LPs are included to provide robustness to the results by offering an alternative assumption
on the data-generating process, but IRF are typically much harder to interpret because these
responses are not necessarily stationary and smooth.

An increase in losses in the agricultural sector due to weather shocks triggers an imme-
diate 0.1% reduction in the real exchange rate, primarily because exports and output in the
agricultural sector decrease. As exports return to their long-term mean, real exchange rates
adjust by increasing in response to growing exports. This overall recessionary impact initially
leads to decreases in both consumer and food price indices, reflecting weak demand. This
disinflation can be rationalized within a forward-looking standard New Keynesian Phillips
curve in open economies: on impact, domestic producers anticipate that the domestic cur-
rency will appreciate in the future, lowering future marginal costs and hence inflation today.
This disinflationary effect of weather shocks aligns with the findings of Natoli (2024) and Fac-
cia et al. (2021), both of whom observe lower-than-usual inflation following a temperature
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shock. However, it is important to note that our setup implies positive inflation 10 months
after the realization of the weather loss, which can be attributed to the scarcity of agricul-
tural products and the decrease in real exchange rates, making imports more expensive in the
future.

In terms of quantities, a unit loss shock resulting from the weather implies a 0.41% re-
duction in agricultural output below its trend, while GDP is 0.1% lower. Finally, the central
bank faces no trade-off on impact, as both prices and quantities are moving in the same di-
rection. However, after one year, when inflation picks up, a typical supply-driven trade-off
emerges between inflation and quantity stabilization, as both move in opposite directions in
the medium term. The VAR model suggests that the Peruvian central bank prioritizes out-
put stabilization when weather shocks occur, leading to an accommodative response in the
nominal interest rate.

Much of the divergence between local projections concerns price dynamics, which con-
sequently affect the response of monetary policy. According to local projections, food and
overall inflation decline 7 months after the realization of the shock, leading to delayed ef-
fects on interest rates. Note also that the IRFs for inflation and exports do not necessarily
go back to zero. This is not surprising: local projections are not constrained by stationar-
ity, which contrasts with the assumptions typically imposed in VAR models. While VARs
require weak stationarity, LPs are more flexible and agnostic, accommodating a wide range
of data-generating processes, including those with non-stationary dynamics.

To connect our work with prior studies, our quantitative assessment of the macroeco-
nomic cost of weather shocks aligns with existing literature. The responses of output and
interest rates closely mirror the findings of Natoli (2024) for the US economy regarding tem-
perature anomalies. Additionally, our results are consistent with the VAR model of Gallic and
Vermandel (2020) for New Zealand, where they similarly observe a 0.1% decrease in GDP, a 1%
decline in agricultural output, and a 0.4% drop in the real exchange rate following a drought
shock.

6 Conclusion

This paper provides a quantitative exploration of the impact of weather shocks on agri-
cultural production in Peru, using high-frequency, crop-region-specific data. By employing a
linear panel model with local projections, we have quantified the immediate and lagged ef-
fects of temperature and precipitation anomalies on various crops. Our findings indicate that
weather shocks lead to significant declines in agricultural output, with the magnitude and
duration of these effects varying across different crops.

At the macroeconomic level, weather-induced losses in agricultural output translate into
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broader economic impacts, including reductions in GDP and potential increases in food prices.
Policymakers can use our estimates to anticipate periods of agricultural scarcity and imple-
ment measures such as import adjustments to stabilize local markets. Additionally, our study
highlights the necessity for adaptive agricultural practices and policies that enhance the re-
silience of crops to extreme weather conditions, particularly in the context of climate change.

This paper also highlights the importance of employing relatively more disaggregated
data to capture the effects of weather shocks and climate impacts more broadly. With longer
time-series data, our methodology could be extended to other important research questions,
especially those related to the adaptation and mitigation strategies implemented by farmers
from amacroeconomic perspective. This, in turn, could be put into perspectivewith the results
from studies using microeconomic data relying on household surveys.

Themethodology presented in this paper offers valuable tools for policymakers. Bymon-
itoring extreme precipitation and temperature events in specific regions, governments can
anticipate their future delayed effects on agricultural production several months in advance.
This anticipation can help the implementation of mitigation policies to avoid surges in local
food prices.

Future research should aim to integrate our high-frequency analysis with models that
account for intertemporal mitigation strategies by farmers. Such integration could provide a
more comprehensive understanding of how farmers adjust their practices over multiple sea-
sons in response to weather shocks. Additionally, combining high-frequency production data
with household-level surveys could shed light on the impacts of weather shocks on income,
consumption, and overall well-being, offering valuable insights into the socio-economic di-
mensions of climate resilience.

Appendix A Replication Codes

All the codes used to produce this article are available online. We provide an ebook
(https://3wen.github.io/weather-peru/) that explains, step by step, how to reproduce the re-
sults, using R software. The index of the ebook links to archive files containing the data and
the codes.

Appendix B Positive vs. Negative Surprise Weather Shocks

Positive and negative weather shocks may have differentiated impacts on production.
The definition of weather shocks in the main part of the paper assumes symmetrical effects.
To relax this assumption, we consider, following Natoli (2024), an alternative definition of
weather shocks. The idea is to compare the realized temperatures (or precipitation) in a given
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monthm of year y at location ℓwith expected temperatures (precipitation) based on observa-
tions from the same month in previous years at the same location. The difference is defined
as a surprise shock.

For days hotter (wetter) than expected, the shock in cell ℓ is defined as:

WSurprise(+)
ℓ,y,m,c =

nm∑
d=1

1(Wℓ,y,m,d > utℓ,y,m,c)︸ ︷︷ ︸
Climate realization

− 1

5

5∑
k=1

nm∑
d=1

1(Wℓ,y−k,m,d > utℓ,y,m,c)︸ ︷︷ ︸
Expected realization

, (B.11)

where Wℓ,y,m,d is the daily average temperature (or total rainfall), nm is the number of days
in month m, and utℓ,y,m,c is the threshold for hot days for crop c.

Similarly, cold (dry) shocks are defined as:

WSurprise(−)
ℓ,y,m,c =

nm∑
d=1

1(Wℓ,y,m,d < ltℓ,y,m,c)−
1

5

5∑
k=1

nm∑
d=1

1(Wℓ,y−k,m,d < ltℓ,y,m,c), (B.12)

where ltℓ,y,m,c is the crop-specific threshold for cold days. Thresholds utℓ,y,m,c and ltℓ,y,m,c

are based on the 90th and 10th percentiles of temperatures (precipitation) observed during
month m over the past five years. The sample of past observation is denoted as W ℓ,y,d =

{{Wℓ,y−1,m,d}nm
d=1, {Wc,y−2,m,d}nm

d=1, . . . , {Wc,y−5,m,d}nm
d=1}}.

To set the thresholds, we rely on values traditionally used in the literature for calculating
degree days. Most often, the lower threshold is set at 8◦C and the upper threshold ranges
between 29◦C and 32◦C (Lobell et al., 2011; Aragón et al., 2021; Jagnani et al., 2021). We set
the lower threshold at 8◦C for all crops, and the upper threshold at 30◦C for potatoes and
cassava. For maize and rice, we adopt the same value used in Rising and Devineni (2020) and
set the upper threshold at 29◦C.

For precipitation shocks, the thresholds are defined using the percentiles of past values
only:

utℓ,y,m,c = P90(P ℓ,y,d) (B.13)

ltℓ,y,m,c = P10(P ℓ,y,d). (B.14)

Positive values ofW (+)
ℓ,y,m,c represent days that are hotter (or wetter) than expected, while

positive values of W (−)
ℓ,y,m,c represent days that are colder (or drier) than expected.

Figure B.1 presents the impulse response functions (IRFs) of agricultural production for
rice, maize, potato, and cassava in response to different types of weather surprises: cold, hot,
dry, and wet. Each panel shows the effects over several months, with percentage changes in
production relative to baseline levels, and shaded areas indicating the 68% and 95% confidence
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region-level clustered standard errors. The orange dashed bars represent the average growth duration.

Figure B.1. Agricultural Production Response to Positive and Negative 1 Standard Deviation
Weather Shocks.

intervals.

Cold surprises generally have mixed effects across different crops. Cold surprises imply
a negative effect on impact, but this is statistically significant only at the 68% confidence level.
Much of the variation in temperature effects is actually driven by hot surprises, which create
substantial declines in cassava, maize, and rice. However, the magnitude of these responses is
much smaller than in the previous quantitative assessment. The main reason is that these re-
sponses cannot be directly compared, as the surprise index changes the units of interpretation
of the responses.

Regarding precipitation, the dry surprises reveal a stark vulnerability in certain crops. All
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types of crops are heavily impacted, showing a sharp reduction of up to -20%. In contrast, wet
surprises generally result in positive outcomes for agricultural production. All crops benefit
from wetter conditions, showing production increases of up to 20%.

Note again that these IRFs are qualitatively quite different from the outcomes obtained in
the rest of the paper. These differences emerge from the way weather shocks are measured.
Our measure of weather shocks gives similar weight to all observations without recursive
treatment. In contrast, Natoli (2024) proposes a recursive formulation to disentangle the stan-
dard part of the weather from its surprise component. This separation filters out a fraction of
the information in weather shocks, leading to differences in the measured effects of weather
shocks.

To illustrate the mechanism, consider a farmer facing extreme and consecutive weather
shocks. In our case, the farmer will be equally harmed by each realization over time. However,
under the surprise treatment, the impact of the second shock will be relatively less significant
as the farmer will have learned from the first shock. In practice, two consecutive weather
shocks should be detrimental, as a farmer has no possibility to hedge against a second shock
once crops are already planted.

Appendix C Temporal Aggregation

Most studies on the effects of weather shocks on agricultural production rely on annual
data. The Peruvian data allow us to conduct the analysis at a finer temporal scale, namely,
monthly. In this section, we examine the measures of weather shocks according to data ag-
gregation. Specifically, we aggregate monthly production data into quarters and years. These
three levels of aggregation allow us to replicate the analysis from section 3, showing the ef-
fects of precipitation or temperature shocks using a Local Projection framework. The Impulse
Response Functions in Figure C.1 show the agricultural production response to temperature
shocks (top) or precipitation shocks (bottom), expressed monthly (blue), quarterly (yellow), or
annually (purple). Interestingly, we observe that the shapes of the response functions are very
similar when production data are aggregated monthly or quarterly for most crops and both
types of shocks. However, annual aggregation produces responses that underestimate the
effects of shocks on production, and in the case of precipitation for maize and potatoes, even
leads to opposite conclusions. The level of data aggregation significantly affects the measured
impact of weather shocks on agricultural production. Monthly and quarterly data provide a
more detailed and accurate picture of these impacts compared to annual data. When access
to such finer scale data is possible, monthly or quarterly data should be preferred to annual
data.
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Figure C.1. Agricultural Production Response to a Weather Shock, Using Either Monthly,
Quarterly, or Annual Data.

Appendix D Vector Autoregression and Local Projections

To investigate the economic impact of weather-induced losses in the agricultural sector,
we employ two approaches: a structural vector autoregressionmodel (SVAR) and local projec-
tions (LPs). SVAR models are widely used for forecasting purposes, as they capture dynamic
interdependencies across time series. In contrast, LPs offer greater flexibility by estimating
impulse responses directly at each forecast horizon without imposing a rigid system structure.
Both complementarymethodologies allow us to assess how agricultural loss shocks propagate
through the economy.

Consider the following structural form with p lags:

BYt = Γ0 +

p∑
l=1

ΓlYt−l + εt, (D.15)

where Yt is a vector of k endogenous variables at time t, B is a k × k matrix representing
contemporaneous interactions, Γ0 contains the model intercepts, Γl are k × k matrices for
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lagged interactions, and εt is a vector of white noise errors.24

LPs offer an alternative to traditional Vector Autoregressions (VARs), such as the model
specified in Equation D.15, where the dynamic behavior of a set of variables Yt is described by
a system of autoregressive equations with lagged values and contemporaneous interactions.
In a VAR, impulse response functions (IRFs) are derived from the entire estimated system,
which requires strong assumptions about the structure and dynamics across all horizons. In
contrast, as previously mentioned, LPs estimate the response of the outcome variable directly
at each forecast horizon, typically using the following linear regression for each horizon h:

Yt+h = A0(h) +

p∑
l=1

Γl(h)Yt−l + εt+h, (D.16)

where Yt+h is the variable of interest at horizon h, Xt represents the shock or treatment
variable at time t, and the lagged terms Yt−l control for past values of the outcome variable.
The coefficient βh provides the impulse response at each horizon. Thismethod allows for more
flexibility, as it estimates the IRF horizon by horizon, without relying on the entire system’s
structure as in VARs.
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Online Appendix (not foR Publication)
The Dynamic Effects of Weather Shocks on

Agricultural Production
This online appendix includes two sections. First, Online Appendix A provides details

on the data used in the article. More specifically, Online Appendix A.1 provides details on
how agricultural production is specified by time, crop, and region in the analysis. Next, On-
line Appendix A.2 explains the temporal and spatial aggregation of daily weather data into
monthly regional metrics. Online Appendix A.3 presents the macroeconomi data. Second,
Online Appendix B outlines the methodology for calculating the weather-adjusted agricul-
tural loss (WCAL) metric used in the macroeconomic analysis.
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Online Appendix A Data

Online Appendix A.1 Regional Agricultural Production Data

Our primary source of agricultural data is derived from monthly agricultural reports, El
Agro en Cifras, produced by the Ministry of Agriculture and Irrigation of Peru (MINAGRI)
spanning from 2001 to 2019.25 These reports provide agroeconomic indices and agricultural
production figures at both regional and national levels. We extracted data on production
(measured in tons) and on the planted and harvested areas (measured in hectares) for each
of the primary crops cultivated in Peru across 25 administrative regions, covering the period
from January 2001 to December 2015. It is important to note that observations after 2016
are no longer reported on a monthly basis but are presented quarterly; therefore, they are
excluded from our analysis. Each monthly report presents data as a cumulative sum from
January to the respective reporting month. To convert the production data into net flows, we
apply a first-difference filter.

25https://www.midagri.gob.pe/portal/boletin-estadistico-mensual-el-agro-en-cifras.
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Four main crops are analyzed in this study: potato (papa), cassava (yuca), rice (arroz cás-
cara), and maize (maíz amarillo duro).26 These selected crops collectively represent a substan-
tial share of agricultural production, comprising 53% of the cultivated surface and 37% of the
total production in Peru.27 To ensure the validity of our data over the same years of observa-
tion, we cross-referenced them with the Food and Agriculture Organization data (FAOSTAT)
and, observed similar quantities (see Table OA.1). According to the FAO data, the crops we
focus on constitute 41% of the cultivated surface and 31% of the total quantity produced. The
slight differences observed between the figures provided by the monthly reports produced by
the Peruvian Ministry and those reported by the FAO are ascribed to the fact that the former
focus solely on the main crops, while the latter are more exhaustive.

Table OA.1. Main Agricultural Cultures in Peru.

FAO data MINAGRI data

Total surface Share Total surface Share (%)

Maize
7,349,640 16,4

4,227,147 14.7

Starchy corn 2,948,963 10.3

Rice, paddy 5,359,251 12.0 5,320,330 18.5

Coffee, green 4,999,410 11.1 - -

Potatoes 4,213,436 9.4 4,151,734 14.5

Barley 2,253,611 5.0 2,233,429 7.8

Plantains and others 2,227,709 5.0 - -

Wheat 2,158,122 4.8 2,102,246 7.3

Cassava 1,425,493 3.2 1,418,054 4.9

Sugar cane 1,112,131 2.5 1,032,231 3.6

Beans, dry 1,104,473 2.5 686,788 2.4

Notes: The products in bold are those studied in this study. The total surfaces correspond to the sum of national harvested surfaces, from
2001 to 2015, in hectares. Maize corresponds to Dent corn in the MINAGRI data. No distinction is made between Dent corn and Starchy
corn in FAO data. Source: FAO and MINAGRI. Authors’ estimate.

Agricultural production variations are both spatial and temporal. Regarding the spatial
variability of agricultural production, a first overview is given in Figure OA.1. The maps show
that each region’s share of total production during the period is heterogeneous and specific

26Two types of maize are reported in the reports. We refer to maíz amarillo duro, or ”Dent corn,” as ”Maize.”
27While the Peruvian agricultural report includes data for other crop types, these exhibit numerous missing

observations and do not encompass a sufficiently large time span for inclusion in the quantitative analysis.
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to each crop. Regions marked with gray hatching are excluded from the analysis. These
regions either lack production for certain crops or have production concentrated in a very
short period of four months or less, with zero production the rest of the time, making the
analysis of weather shock propagation difficult. This is the case for example, of the Puno
department in southeastern Peru, for which rice production is concentrated between April
and June and is zero the rest of the year. This region is therefore excluded from the analysis.28

Nevertheless, only a few regions are excluded, and they contribute little to overall production,
leading to a final sample ranging from 16 regions for rice to 23 for maize.

Potato Rice

Cassava Maize

Share

0%

10%

20%

30%

included

Yes

No

Notes: Distribution of production of each crop by administrative region. For each map, the sum of the distributions across
regions equals 1. Source: MINAGRI. Author’s estimate.

Figure OA.1. Regional Distribution of Crop Production by Administrative Regions.

Another way to represent the spatial heterogeneity of production is by topography. Peru
is geographically diverse in terms of climate and geographical topology, typically divided into
three climate areas: coastal, highlands, and Amazon rainforest. These areas exhibit very dif-
ferent climatic conditions due to their proximity to the sea and different altitudes. As ex-

28Regions with no reported agricultural production or with zero production for at least eight consecutive
months are excluded from the analysis.

iii



plained by Aragón et al. (2021), the coastal area is a narrow strip extending from the seashore
to 500 meters above sea level (masl) with a semi-arid climate, warm temperatures, and lit-
tle precipitation. The highlands extend from 500 masl to almost 7,000 masl, although most
agriculture ceases below 4,000 masl, with a much cooler and wetter climate and seasonal pre-
cipitation in spring and early summer. Finally, the Amazon rainforest area is characterized
by tropical weather with significant rainfall. A map dividing the Peruvian territory into these
three natural regions is is shown in Figure OA.2. The map is based on data available on the
Geo GPS Peru website.29 Because natural regions do not always correspond to administrative
regions, three variables are created for each area to represent the share of each natural region
type in the administrative region.

Natural region

Coast

Forest

Highlands

Source: Geo GPS Peru.

Figure OA.2. Natural Regions in Peru.

Regarding temporal variability, we first examine national-level crop-specific temporal
patterns. The curves in Figure OA.3, representing the national monthly production of each
crop over the analysis period, indicate strong seasonality in the data. Interestingly, some crops
(potato and rice) exhibit a clear and regular pattern, whereas others (cassava and maize) are
more volatile. A positive trend is also observed for cassava.30

29See https://www.geogpsperu.com/2019/11/mapa-de-regiones-naturales-costa-sierra.html.
30This positive trend is potentially due to the increase in agrarian land resulting from deforestation of the

Amazon rainforest, where a large share of cassava is produced. See Figure OA.1.
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Notes: The graphs show the evolution of monthly crop production, summed over all administrative regions. For cassava, two observations
(2007-06-01 and 2007-07-01) were identified as erroneous and replaced by a linear interpolation between May and July 2007. Source: MINA-
GRI. Author’s estimate.

Figure OA.3. National Monthly Crop Production for Selected Crops (in Tons).

In Figure OA.4, we document regional differences and seasonality by averaging monthly
production over different types of natural regions. Seasonal patterns are observed more
closely in these graphs. For example, potato production sharply increases between March
and May before decreasing. In contrast, maize displays differentiated seasonal cycles depend-
ing on the natural region. In coastal regions, there is only one production peak, in June. In
forested areas, there are two main peaks: a high peak in February and a smaller peak in July.
The example of cassava shows that production can be highly concentrated in one area, specif-
ically in the forest, where more than half of the production is located. In contrast, maize
production is more evenly distributed.
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Notes: The graphs show the sum of each crop production, broken down by month and weighted by the share of the natural region. Source:
MINAGRI. Author’s estimate.

Figure OA.4. Crop Production by Months and Natural Regions (in Tons).
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Online Appendix A.1.1 Definition of Agricultural Production

In agricultural economics, it is common to express agricultural production as yields by
dividing it by the planted land surface. However, with monthly data, a significant number of
observations exhibit zero values for the planted area or production, resulting in an inability
to calculate yields for those months. In the article, we express agricultural production as its
normalized value, where normalization consists of dividing the production value by the his-
torical regional monthly average. Normalizing allows to correct for the size effect stemming
from regional heterogeneity in production. In a nutshell, we first calculate the crop-specific
average production over the entire period (January 2001 to December 2015) on a monthly ba-
sis for each region. Then, we express monthly agricultural production relative to this average.
The remainder of this section explains our methodology in more details.

In a first step, we calculate the crop-specific average production over the entire period
(January 2001 to December 2015) on a monthly basis for each region

yc,i,m =
1

n

n∑
t=1

yraw
c,i,m,t, (OA.1)

where yraw
c,i,m,t represents the agricultural production reported for crop c in region i in month

m at date t, and n is the number of periods with reported production values.

Then, in a second step, we express agricultural production relative to the average:

yc,i,m,t =


yraw
c,i,m,t

yc,i,m
, yc,i,m > 0

0, yc,i,m = 0

. (OA.2)

Values of yc,i,m,t > 1means that the production for crop c in region i during monthm of year
t is higher than the average monthly production for that crop and region over the period 2001
to 2015. For example, a value of 1.5 means that the production is 50% higher than average.
Conversely, values of yc,i,m,t < 1 correspond to production levels lower than the average
monthly production for that crop and region over the period 2001 to 2015. For example, a
value of 0.8 means that the production is 20% lower than average. Lastly, values of yc,i,m,t = 1

indicate that the average production for that crop in that region and month over the period is
equal to the average.

Online Appendix A.2 Weather and Climate Data

Our analysis uses weather anomalies and controls for ENSO events. This section presents
the sources and methods used to align the data with the agricultural data at the same spatial
and temporal scales.
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Online Appendix A.2.1 Weather Anomalies

To construct the weather shock series, we consider daily grid temperature and precipi-
tation data, aggregated at the monthly level for each region of Peru. We follow Barrios et al.
(2010) and demean weather observations at the grid level. The means are the monthly his-
torical values observed over the past 30 years. Next, we aggregate the values at the regional
and monthly levels. The aggregation process is described in detail in this appendix. In sum-
mary, the obtained variables—temperature and precipitation anomalies—are deviations from
the historical average.

Gridded weather data. We obtained temperature data from PISCOt V1.1, and precipitation
data from PISCOp V2.0. These datasets provide gridded daily temperature data and precipi-
tation, for Peru. The data were collected from January 1981 to December 2016. The grid has
a 0.1° spatial resolution (10 km). The data sets are developed by the SENAMHI (the National
Service of Meteorology and Hydrology of Peru). Themethodology that led to the construction
of this data set is explained by Huerta et al. (2018) for temperatures and by Aybar et al. (2020)
for precipitation.31

From grid data to regional data. Agricultural production is available at the regional level.
Therefore, it is necessary to map grids and regions to aggregate the weather data at the re-
gional level. In addition, shocks such as excessive temperatures or rainfall occurring in agri-
cultural areas should not be accounted for in the same way as shocks occurring in urban
geographic land. For example, the weather conditions of a grid cell where 90% of the surface
is used for agricultural production should matter more than those of a cell with 10% of the
agricultural surface. When aggregating the weather data, wemust identify where agricultural
regions are located in Peru to give these regions more weight in the aggregation procedure.
To do so, we rely on data from Copernicus, a European program for monitoring the Earth us-
ing satellite and in situ data managed by the European Commission.32 We use the 2015 Peru
data with a 100m resolution.

Regional weather anomalies. What are the relevant weather shocks for predicting agri-
cultural production? Parry et al. (2007) documented a large negative sensitivity of crop pro-
duction to extreme daytime weather variables. Building on this observation, we construct
our temperature variable by computing the average monthly maximum temperature, and our
precipitation variable is defined as the sum of the monthly rainfall. Following D'Agostino and
Schlenker (2016), transformations of the weather data are first performed at the scale of the

31Data can be obtained from https://drive.google.com/drive/folders/1eGqhmJXBJfFSzUFz2RVqtbKIlOphpkcs
for temperatures and from https://piscoprec.github.io/webPISCO/en/ for precipitation.

32The data are freely available: https://land.copernicus.eu/global/products/lc. The share of agricultural land
for each grid cell is shown on the map in Figure OA.5.
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grid cells and then aggregated at a monthly frequency for each region. Let Tc,y,m,d andPc,y,m,d

denote the temperature and precipitation observed in cell c on day d = {D1, D2, ...D31},
month m = {M1,M2, ...M12} and year y = {2001, 2002, ..., 2015}. The temperature vari-
able denoted Tc,y,m is defined here as the average of the most extreme meteorological events
observed over the sequence of days within the considered month m in cell c, whereas the
precipitation variable denoted Pc,y,m is defined as the sum of the observed daily values:

Tc,y,m =
1

Ndm

Ndm∑
d=1

Tc,y,m,d, Pc,y,m =

Ndm∑
d=1

Pc,y,m,d, (OA.3)

where Ndm is the number of days within month m.

We measure the distance of the weather variable from its monthly average to assess the
relative intensity of one weather shock with respect to the other realizations. Let Wc,y,m

denote one of the two weather measures, temperature or precipitation, observed in cell c,
month m and year y. The abnormal realization of the weather is expressed as follows:

Wc,y,m = Wc,y,m −Wc,•,m, (OA.4)

where Wc,•,m := (yT − y0 + 1)−1

yT∑
y=y0

Wc,y,m denotes the average value of the weather data

in cell c observed during a specific month m from year y0 to year yT . We set y0 = 1986 and
yT = 2015 so that the average is computed over a period of 30 years, which is a standard
practice in the literature to define climate normals (see, e.g., Deschênes and Greenstone, 2007;
Auffhammer et al., 2013).

Cell-specific weather anomalies are then aggregated at a monthly regional level. To ac-
complish this, for each region, we simply calculate the average of the anomalies from each
cell, weighting each term according to two measures. The first is the proportion ωarea

c of the
cell to the total surface area of the region. The second is the proportion ωcropland

c that the cell
represents in the agricultural production of the region. Refer to the map in Figure OA.5 for a
representation of these shares, where the values are calculated from the Land Cover map data
(Buchhorn et al., 2020).

The weather anomaly variable is defined at each date t (year y and month m) as follows:

Wi,t =

∑
c∈Ri

ωarea
c ωcropland

c Wc,t∑
c∈Ri

ωarea
c ω

cropland
c

, (OA.5)

where Ri denotes the set of cells that fall in region i.

We apply this procedure to both temperature and precipitation observations to derive the
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temperature anomaly Ti,t and the precipitation anomaly Pi,t in region i at time t. We interpret
a large value of Ti,t as excess heat (measured in ℃) with respect to its historical average.
Similarly, we interpret a large value of Pi,t as an excess humidity (measured in millimeters of
rain) with respect to its historical average.

Share of
agricultural
land

0%

5%

10%

15%

20%

Notes: 2015 data, 100m resolution. Source: Author’s estimate using data from Buchhorn et al. (2020).

Figure OA.5. Share of Agricultural Area in the Cell, for Each Cell of the Grid.

Online Appendix A.2.2 ENSO Oscillations

To explore the cause-and-effect relationship, local projections are typically built under
the assumption that weather shocks (or any regressor of interest) are unexpected. However,
our sample also includes El Niño and La Niña events. Notably, these climate phenomena are
characterized by their predictable occurrence, diverging from the typical unexpected nature
of weather shocks. Even though farmers are still surprised by the magnitude of the weather
shocks during ENSO events, they can adapt by adjusting their crop mix before the weather
shock materializes, introducing a potential bias in the quantitative analysis. To circumvent
this issue, we use ENSO variations as a control variable to account for the expectational effect
that ENSO may have on the projection. These ENSO fluctuations are classified using the
Oceanic Niño Index, which computes a three-month average of the sea surface temperature
anomalies in the central and eastern tropical Pacific Ocean. We collect this index from the
Golden Gate Weather Service.33 An El Niño (or La Niña) event is defined by a period of five
consecutive three-month periods with an index above 0.5 (or below−0.5 for a La Niña event).

Online Appendix A.3 Macroeconomic Data

Because the data-generating process of our agricultural data is driven by alternative
sources of randomness, such as economic shocks unrelated to theweather, we includemacroe-

33See https://ggweather.com/enso/oni.htm.
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conomic data as control variables. The goal of these control variables is to isolate the effect of
weather variables on agricultural production from any other sources of fluctuation. By hold-
ing constant values for the control variables, any changes in the outcome can be attributed
solely to the variable of interest, rather than the combined effects of multiple variables. This
makes it possible to draw more accurate conclusions regarding the causal relationship be-
tween weather shocks and agricultural output. To consider these potential effects, control
variables based on macroeconomic data for the Peruvian economy taken from the data ware-
house of the Banco Central de Reserva del Peru are included.34 The following series are included:
the Peruvian Consumer Price Index (CPI), Food Price Index (FPI), Sol/US Exchange rate, na-
tional interest rate, GDP index and a sectoral index for industrial production. Note that all
the control variables are national aggregates given on a monthly basis. Nominal variables
(e.g., exchange rate, FPI, and CPI) are detrended by calculating their growth rate. GDP and in-
dustrial production indices are expressed as percentage deviations from the Hodrick-Prescott
filter to control our projections from the effects stemming from aggregate demand and supply
shocks. A similar transformation is applied to the interest rate, as the latter exhibits a down-
ward trend in the considered time span. In addition, we control for international variations
that may affect the production of each culture by including their respective commodity prices
using data from the International Monetary Fund.35

Online Appendix B Weather-Adjusted Agricultural Losses

The weather component of agricultural losses, Wt (see Equation 10 in the paper), is de-
fined using a variable we denoted yωt and termed “weather-adjusted agricultural production”
(see, again, Equation 10 in the paper) following a five steps procedure.

Step 1. Estimating Weather Shock Contributions. In the first step, the contribution of
weather shocks to a given crop (c) and time horizon (h) in each time period (t) is estimated.
The weather shock contribution (Γc,i,t,h) is determined by considering the temperature (Ti,t)
and precipitation (Pi,t), along with their respective coefficients (βT

c,h and βP
c,h). This contribu-

tion is calculated as follows:

Γc,i,t,h = βT
c,hTi,t−h + βP

c,hPi,t−h. (OA.6)

Step 2. CalculatingQuantityWeights. In the second step, we compute the quantity weights
used in the third step. For each crop and date, these weights are defined by summing the

34Data are taken from the Central Bank of Peru, where the Real Exchange Rate token is PN01259PM, Exports
is PN01461BM, Food CPI is PN01336PM, CPI is PN01270PM, industrial GDP is PN02079AM, GDP PN01773AM, and
interest rate is PN07819NM. All seasonal components are removed from the time series, excluding the interest
rates.

35International commodity prices have been taken from the IMF Primary Commodity Price System website.
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monthly agricultural production over regions, expressed in monetary terms. The weights are
calculated as follows:

ωc,t =
∑
i

yraw
c,t,i × pc, (OA.7)

where yraw
c,t,i represents the raw agricultural production in tons and pc is the average selling

price of crop c in our sample.

Step 3. Weather-Adjusted Agricultural Production. Moving on to the third step, we cal-
culate the weather-adjusted agricultural production (yωc,t) for each crop (c) at each date (t) is
computed. This is achieved by summing the significant crop-specific contributions of weather
(Γc,i,t,h) to agricultural production across regions as follows:

yωc,t =
∑
h

∑
i

1signifc,i,t,h × Γc,i,t,h × ωc,t

card(Ic,t)
, (OA.8)

where card(Ic,t) is the number of regions that produce crop c at time t, and the char-
acteristic function 1signifc,it,h equals 1 when the contribution is significantly different from 0
(based on the 95% confidence intervals of the coefficients βT

c,h and βP
c,h), and 0 otherwise.

Step 4. Aggregating Crop-Specific Production. In the fourth step, crop-specific weather-
adjusted agricultural production is aggregated at the national level, considering the quantity
weights (ωc,t):

yωt =

∑
c y

ω
c,t∑

c ωc,t

, (OA.9)

where ωc,t are the quantity weights computed in the second step.

Step 5. Expressing Weather-Adjusted Production as a Deviation. Finally, in the fifth step,
the national weather-adjusted production is expressed as a loss or deviation from its trend.
The trend is obtained using a Hodrick-Prescott filter:

WCALt = −100× (yωt − yωt ). (OA.10)

A negative sign is applied to ensure that the positive values of WCALt correspond to
losses rather than gains. Intuitively, Wt measures the percentage loss of agricultural value-
added from weather shocks.

xi


	1 Introduction
	2 Data
	2.1 Data Sources and Transformations
	2.2 Summary Statistics of Agricultural Data

	3 The Dynamic Effects of Weather Shocks
	3.1 Empirical Approach
	3.2 Impulse Response Functions Results

	4 Time-varying Exposure to Weather Shocks
	4.1 A State-dependent Framework
	4.2 Season-dependent Impulse Response Functions

	5 From Regional to Country-Wide Fluctuations
	5.1 A National Measure of Weather Damages: the Weather Component of Agricultural Loss (WCAL)
	5.2 Quantitative analysis

	6 Conclusion
	Appendix A Replication Codes
	Appendix B Positive vs. Negative Surprise Weather Shocks
	Appendix C Temporal Aggregation
	Appendix D Vector Autoregression and Local Projections
	Table of Contents
	Online Appendix A Data
	Online Appendix A.1 Regional Agricultural Production Data
	Online Appendix A.2 Weather and Climate Data
	Online Appendix A.3 Macroeconomic Data

	Online Appendix B Weather-Adjusted Agricultural Losses

