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Individual Fairness
“Had the protected attributes of the individual been different, would the decision
provided by the model have remained the same?”

Focus on individual fairness (Dwork et al., 2012; Kusner et al., 2017) rather than
group fairness (Barocas et al., 2023; Hardt et al., 2016).
“we capture fairness by the principle that any two individuals who are similar with
respect to a particular task should be classified similarly.” Dwork et al. (2012)

Build a counterfactual individual and and compare the model’s prediction.
Two philosophies:

Ceteris paribus: changing the sensitive attribute only, all other things equal.

Mutatis mutandis (Kusner et al., 2017; Kilbertus et al., 2017) (this paper): the
sensitive attribute may influence other variables that also need to be adjusted
alongside it.
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Intuitive Example

Consider the height of females and males.
What is the counterfactual of a female
with height 170cm (=5’ 7") had she
been a male?
Within the distribution of females, this
corresponds to a quantile level
α = 84.8%.

Ffemale(170) = 84.8%.

84.8%

150 155 160 165 170 175

height distribution (F)
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Intuitive Example

The corresponding quantile in the
height distribution of males is:

F −1
male(84.8%) = 184cm (≈ 6′).

84.8%

165 175 185

height distribution (M)
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Intuitive Example

Counterfactual of a 170cm (=5’ 7") female
had she been a male?

T ⋆(170) = ( F −1
male ◦ Ffemale )(170)

= 184 cm (≈ 6′).
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A Few Notations

Y : observed outcome.
e.g., loan approval (Y ∈ {0, 1}, premium (Y ∈ [0, 1]), earnings (Y ∈ R).

S ∈ {0, 1}: binary sensitive attribue requiring fairness consideration.
e.g., race (S = Black, Non Black), sex (S = {Female, Male}).

X : features that may be influenced by the sensitive.

Y ⋆(0), Y ⋆(1): potential outcomes in the protected/unprotected groups.

If we observed outome Y for some individual in group S = 0,

the counterfacual outcomes would be Y ⋆(1).

A. Fernandes Machado, A. Charpentier, E. Gallic | AAAI-25, Philadelphia, PA, USA 6 / 28



Sequential Conditional (Marginally Optimal) Transporton Probabilistic Graphsfor Interpretable Counterfactual Fairness
Introduction

Mutatis Mutandis: Two Key Approaches
Causal Graphs Plečko and Meinshausen (2020); Plečko et al. (2024)

Based on the causal inference framework (Pearl, 2009; Pearl and Mackenzie, 2018;
Chernozhukov et al., 2024)

Strong advantage: explainability

CATE = E[ Y ⋆(1) − Y ⋆(0) |X = x]=0

Optimal Transport (De Lara et al., 2021; Charpentier et al., 2023)
Treat fairness adjustment as a transport problem in probability spaces.

E[ Y ⋆(1) | X = x⋆(1) ] − E[ Y ⋆(0) |X = x]=0

Our contribution: sequential transport unifies these two approaches.

?

?

potential outcomes unprotected group potential outcomes protected group
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Graphical Models and Causal Networks
A Directed Acyclic Graph (DAG) G = (V , E ) models relationships between
variables as nodes (V ) and edges (E ).

S X1

X2
Y

Such a causal graph imposes some ordering on variables, referred to as
“topological sorting” Ahuja et al. (1993). Here,

S → X2 → X1 → Y .

The joint distribution of X = (X1, . . . , Xd) satisfies the Markov property:

P[x1, · · · , xd ] =
d∏

j=1
P[xj |parents(xj)],

where parents(xi) are the immediate causes of xi .
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Counterfactual for Non Linear Models
From Pearl (2000), let C , X , E be absolutely continuous, and consider i where
Ei = hi(parents(Ei), Ui) with parents(Ei) = x fixed.

Define hi |x(u) = hi(x, u).

ei = hi |x(ui) represents the conditional quantile of Ei at probability level ui .

Its counterfactual counterpart e⋆
i is the conditional quantile (conditioned on x∗)

at the same level ui .

C X E

uC uX uE


C = hc(UC )
X = hx (C , UX )
E = he(C , X , UE ),

c X ⋆ E ⋆

uX uE


C = c (or do(C = c))
X ⋆

c = hx (c, UX )
E ⋆

c = he(c, X ⋆
c , UE ),

where u 7→ hc(·, u), u 7→ hx (·, u) and u 7→ he(·, u) are strictly increasing in u, UC , UX
and UE are independent, supposed to be uniform on [0, 1].
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Optimal Transport and Monge Mapping

Optimal Transport: how to find the best way
to transport mass from one distribution to
another while minimizing a given cost.
It involves constructing a joint distribution
(coupling) between two marginal probability
measures (Villani, 2003, 2009).
Consider a measure µ0 (resp. µ1) on a metric
space X0 (resp. X1). The goal is to move every
elementary mass from µ0 to µ1 in the most
“efficient way.”

From Monge (1781): Mémoire sur
la théorie des déblais et des
remblais . excavation

backfill
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Univariate Optimal Transport Map
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From Santambrogio (2015), the optimal Monge
map T ⋆ for some strictly convex cost c such
that T ⋆

#µ0 = µ1 is:

T ⋆ = F −1
1 ◦ F0 ,

quantile function cdf for µ0
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Topological Ordering (1/4)

Step 1: Assuming a causal graph G.
Step 2: Derive the topological ordering from the DAG:

Knothe-Rosenblatt
rearrangement (Bonnotte,
2013), inspired by the
Rosenblatt chain rule:
provides the “monotone lower
triangular map” (“marginally
optimal” Villani, 2003)

Tkr (x1, · · · , xd) =



T ⋆
1 (x1)

T ⋆
2 (x2|x1)

...
T ⋆

d−1(xd−1|x1, · · · , xd−2)
T ⋆

d (xd |x1, · · · , xd−1)


.

→ Sequentially mapping X|S = 0 to X|S = 1 by conditioning on each preceding node in
the topological order.
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Topological Ordering (2/4)

Sequential Transport extends the Knothe-Rosenblatt map to transport individuals
from X|S = 0 to X|S = 1, while respecting any assumed underlying causal graph.

The sequential conditional transport on graph G writes:

T ⋆
G(x1, · · · , xd) =


T ⋆

1 (x1)
T ⋆

2 (x2| parents(x2))
...

T ⋆
d−1(xd−1| parents(xd−1))

T ⋆
d (xd | parents(xd))

 .
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Topological Ordering (3/4)

sex s

age

job savings

housing

credit

duration

purpose

default

Causal graph in the German Credit dataset from
Watson et al. (2021).

Step 1: Asusming a causal graph G.
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Topological Ordering (4/4)

sex s

age x1

job x2 savings x3

housing x4

credit x5

duration x6

purpose x7

default y

Causal graph in the German Credit dataset from
Watson et al. (2021).

Step 2: sequential conditional
transport based on a topological
ordering:

T ⋆
G(x1, · · · , x7) =



T ⋆
1 (x1)

T ⋆
2 (x2|x1)

T ⋆
3 (x3|x1, x2)

T ⋆
4 (x4|x2, x3)

T ⋆
5 (x5|x1, x2, x4)
T ⋆

6 (x6|x3, x5)
T ⋆

7 (x7|x1, x4, x5, x6)


.
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Example With Simulated Data
We generate a sample {(Si , X1i , X2i , Yi)}200

i=1, with S ∈ {0, 1},
and the covariates X = (X1, X2) are drawn from two bivariate
Gaussian distributions with group-specific parameters.

X =
(

X1
X2

)
, µs =

(
µs,X1

µs,X2

)
, Σs =

(
σ2

s,X1
ρs,X1,X2

ρs,X1,X2 σ2
s,X2

)
, for

s = {0, 1}.

Each outcome Y is drawn from a Ber(ps) with

ps = exp(etas)/(1 + exp(etas))

where
{

η0 = 0.6X1 + 0.2X2
η1 = 0.4X1 + 0.3X2.

Let us focus on individual (s = 0, x1 = −2, x2 = −1).
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Transport x1 | s From Group 0 to Group 1
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Sequential Transport (simulated data). Red square: multivariate OT. transport x1 | s .
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Transport x2 | x1, s From Group 0 to Group 1
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Sequential Transport (simulated data). Red square: multivariate OT. transport x2 | x1, s
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Code

This can be easily done with our I functions from our small package:
remotes::install_github(

repo = "fer-agathe/sequential_transport", subdir = "seqtransfairness")
library(seqtransfairness)
sim_dat <- simul_dataset() # Simulate data
variables <- c("S", "X1", "X2", "Y")
adj <- matrix(

# S X1 X2 Y
c(0, 1, 1, 1,# S

0, 0, 1, 1,# X1
0, 0, 0, 1,# X2
0, 0, 0, 0 # Y

),
ncol = length(variables), byrow = TRUE
dimnames = rep(list(variables), 2))

# Sequential transport according to the causal graph
transported <- seq_trans(data = sim_dat, adj = adj, s = "S", S_0 = 0, y = "Y")
predict(transported) # Transp. values from S=0 to S=1, using the causal graph.

A. Fernandes Machado, A. Charpentier, E. Gallic | AAAI-25, Philadelphia, PA, USA 19 / 28



Sequential Conditional (Marginally Optimal) Transporton Probabilistic Graphsfor Interpretable Counterfactual Fairness
Interpretable Counterfactual Fairness

Interpretable Counterfactual Fairness

Now, assume a logistic regression model was fitted on the simulated data and returned
scores according to:

m(x1, x2, s) =
(
1 + exp

[
−
(
(x1 + x2)/2 + 1(s = 1)

)])−1
.

Observation: (s=0, x1 = −2, x2 = −1)
Prediction : m(0, −2, −1) = 18.24%.

Pred. with Seq. T : m(s = 1, x⋆
1 , x⋆

2 ) = 61.4%

Pred with OT : m(s = 1, x⋆
1 , x⋆

2 ) = 56.5%

S
X2

X1
Y

Assumed causal structure.
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Counterfactual assuming X2 is caused by X1
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Decomposition of the mutatis mutandis difference

The mutatis mutandis difference can be decomposed:

m(s = 1, x⋆
1 , x⋆

2 ) − m(s = 0, x1, x2) = +43.16% (mutatis mutandis diff.)

= m(s = 1, x1, x2) − m(s = 0, x1, x2) : −10.66% (cet. par. diff.)

+ m(s = 1, x⋆
1 , x2) − m(s = 1, x1, x2) : +15.63% (change in x1)

+ m(s = 1, x⋆
1 , x⋆

2 ) − m(s = 1, x⋆
1 , x2) : +38.18% (change in x2|x⋆

1 ) .
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Counterfactual assuming X1 is caused by X2
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Application on Real Data

õ
Law School Admission Council Dataset
(Wightman, 1998)

◎
1st year law school grade (FYA) > median?
(Y ∈ {0, 1})

� Race (s ∈ {Black, White})

p
Undergrad. GPA before law school (x1, UGPA)
Law School Admission Test (x2, LSAT)

Ô Logistic model (aware, i.e., including S)

race S
LSAT X2

UGPA X1
FYA Y

Assumed causal graph.

Predictions with: factuals , naive (cet. par.), optimal transport , fairadapt ,
sequential transport
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Application on Real Data

2.0 2.5 3.0 3.5
X1 (UGCA)

24
28

32
X

2 (
LS

A
T
)

8.82%

45.72%

42.51%
40.51%

42.03%

Factual
Naive
OT
Fairadapt
Seq. T.

Pred. for a Black indiv. using their factual and
counterfactual characteristics

0.0 0.2 0.4 0.6 0.8

0
8 Factuals − Black Multi. OT

0.0 0.2 0.4 0.6 0.8

0
8 Naive

0.0 0.2 0.4 0.6 0.8

0
8 fairadapt

0.0 0.2 0.4 0.6 0.8

0
8 Seq. T.

Densities of predicted scores. Yellow line:
density for White indiv.
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Global Fairness Metrics

A model m satisfies the independence property if m(X , S) ⊥⊥ S, with respect to the
distribution P of the triplet (X , S, Y ) (Barocas et al., 2017).

Demographic Parity → E
[

Ŷ | S = A
]

= E
[

Ŷ | S = B
]?

score ŷ

Demographic Parity can be extended to Counterfactual Demographic Parity,
allowing fairness assessment within subgroup s = 0:

CDP = 1
n0

∑
i∈D0

m(1, x⋆
i ) − m(0, x i),

i.e., “average treatment effect of the treated” in the classical causal literature.
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Global Fairness Metrics

Naive Fairadapt multi. OT seq. T
Aware model 0.22 0.38 0.37 0.37

Unaware model 0 0.19 0.18 0.18

Table 1: Counterfactual Demographic Parity comparing predictions using (s = 0, x) (factuals)
and using (x = 1, x⋆) (counterfactuals), for the aware model (which includes S) and the unaware
model (which does not).
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Conclusion

We introduced sequential transport as a novel approach to individual fairness:
Linking causal graph approach to optimal transport approach.

Provides an interpretable closed-form solution.

arXiv:2408.03425 fer-agathe/sequential_transport

Agathe Fernandes Machado Ewen Gallic Arthur Charpentier

Comments are welcome: # fernandes_machado.agathe@courrier.uqam.ca
A. Fernandes Machado, A. Charpentier, E. Gallic | AAAI-25, Philadelphia, PA, USA 28 / 28

https://arxiv.org/abs/2408.03425
https://github.com/fer-agathe/sequential_transport
mailto:fernandes_machado.agathe@courrier.uqam.ca


Sequential Conditional (Marginally Optimal) Transporton Probabilistic Graphsfor Interpretable Counterfactual Fairness
Appendix

References I

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network flows: Theory, algorithms, and applications.
Prentice Hall.

Barocas, S., Hardt, M., and Narayanan, A. (2017). Fairness in machine learning. Nips tutorial, 1:2017.

Barocas, S., Hardt, M., and Narayanan, A. (2023). Fairness and machine learning: Limitations and opportunities.
MIT press.

Bonnotte, N. (2013). From Knothe’s rearrangement to Brenier’s optimal transport map. SIAM Journal on
Mathematical Analysis, 45(1):64–87.

Charpentier, A., Flachaire, E., and Gallic, E. (2023). Optimal transport for counterfactual estimation: A method
for causal inference. In Optimal Transport Statistics for Economics and Related Topics, pages 45–89. Springer.

Chernozhukov, V., Hansen, C., Kallus, N., Spindler, M., and Syrgkanis, V. (2024). Applied causal inference
powered by ml and ai. arXiv preprint arXiv:2403.02467.

De Lara, L., González-Sanz, A., Asher, N., and Loubes, J.-M. (2021). Transport-based counterfactual models.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. (2012). Fairness through awareness. In
Proceedings of the 3rd innovations in theoretical computer science conference, pages 214–226.

A. Fernandes Machado, A. Charpentier, E. Gallic | AAAI-25, Philadelphia, PA, USA 1 / 3



Sequential Conditional (Marginally Optimal) Transporton Probabilistic Graphsfor Interpretable Counterfactual Fairness
Appendix

References II

Hardt, M., Price, E., and Srebro, N. (2016). Equality of opportunity in supervised learning. Advances in neural
information processing systems, 29:3315–3323.

Kilbertus, N., Rojas Carulla, M., Parascandolo, G., Hardt, M., Janzing, D., and Schölkopf, B. (2017). Avoiding
discrimination through causal reasoning. Advances in neural information processing systems, 30.

Kusner, M. J., Loftus, J., Russell, C., and Silva, R. (2017). Counterfactual fairness. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems 30, pages 4066–4076. NIPS.

Monge, G. (1781). Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale des Sciences
de Paris.

Pearl, J. (2000). Comment. Journal of the American Statistical Association, 95(450):428–431.

Pearl, J. (2009). Causality. Cambridge university press.

Pearl, J. and Mackenzie, D. (2018). The book of why: the new science of cause and effect. Basic books.

Plečko, D. and Meinshausen, N. (2020). Fair data adaptation with quantile preservation. Journal of Machine
Learning Research, 21(242):1–44.

A. Fernandes Machado, A. Charpentier, E. Gallic | AAAI-25, Philadelphia, PA, USA 2 / 3



Sequential Conditional (Marginally Optimal) Transporton Probabilistic Graphsfor Interpretable Counterfactual Fairness
Appendix

References III

Plečko, D., Bennett, N., and Meinshausen, N. (2024). fairadapt: Causal reasoning for fair data preprocessing.
Journal of Statistical Software, 110(4):1–35.

Santambrogio, F. (2015). Optimal transport for applied mathematicians. Springer.

Villani, C. (2003). Topics in optimal transportation, volume 58. American Mathematical Society.

Villani, C. (2009). Optimal Transport. Springer Berlin Heidelberg.

Watson, D. S., Gultchin, L., Taly, A., and Floridi, L. (2021). Local explanations via necessity and sufficiency:
unifying theory and practice. In de Campos, C. and Maathuis, M. H., editors, Proceedings of the
Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, volume 161 of Proceedings of Machine
Learning Research, pages 1382–1392. PMLR.

Wightman, L. F. (1998). Lsac national longitudinal bar passage study. lsac research report series. Technical
report, Law School Admission Council, Newtown, PA.

A. Fernandes Machado, A. Charpentier, E. Gallic | AAAI-25, Philadelphia, PA, USA 3 / 3


	Introduction
	Graphical Models and Causal Networks
	Optimal Transport
	Sequential Transport
	Interpretable Counterfactual Fairness
	Conclusion
	Appendix
	Appendix
	References


