Sequential Conditional Transport on ProbabilisticGraphs for Interpretable Counterfactual Fairness

^aUniversité du Québec à Montréal (fernandes_machado.agathe@courrier.uqam.ca), ^bAMSE, Aix-Marseille Université

MOTIVATIONS

Individual algorithmic fairness: similar individual should receive similar outcomes, regardless of the **sensitive attribute** [3].

Counterfactual fairness: evaluate whether a model's decision would have remained unchanged under a hypothetical alteration of the **sensitive attributes**.

Where $Y^*(1)$ and $Y^*(0)$ are potential outcomes if $S = 1$ and $S = 0$, respectively. The literature looking at *mutatis mutandis* counterfactual fairness has developped two approaches based on: (i) quantile preservation on **causal graphs** [8, 9] (fairadapt), (ii) **multivariate optimal transport** (OT) [2].

Our contribution: Sequential Transport (ST), bridging the two approaches.

 x_i .

Let C, X, E be absolutely continuous, and consider *i* where $E_i = h_i$ (parents (E_i) , U_i) with parents (E_i) = x fixed. Define $h_{i|\boldsymbol{x}}(u) = h_i(\boldsymbol{x}, u)$. Then, $e_i = h_{i|\boldsymbol{x}}(u_i)$ represents the conditional quantile of E_i at probability level u_i . Its **counterfactual**

counterpart e_i^* is the conditional quantile i (conditioned on x^*) at the same level u_i .

 \mathbf{Agathe} FERNANDES $\mathbf{MACHADO}^a$, $\operatorname{Arthur } \mathbf{CHARPENTIER}^a$, and Ewen GALLIC^b

where $u \mapsto h_c(\cdot, u)$, $u \mapsto h_x(\cdot, u)$ a[n](#page-0-3)d $u \mapsto h_e(\cdot, u)$ are strictly increasing in u , U_C , U_X and U_E are independent, supposed to be uniform on [0, 1].

PROBABILIS[T](#page-0-0)[IC](#page-0-1) GRAPHICAL MODELS

Probabilistic Graphical Models

• A **Directed Acyclic Graph** (DAG) $G = \bullet$ Each edge $x_i \rightarrow x_j$ represents a causal rela- (V, E) models relationships between variables as nodes (V) and edges (E) . • The joint distribution of the variables $X =$

$$
S \xrightarrow{\qquad \qquad } X_1
$$

• Such a causal graph imposes some ordering on variables, referred to as "**topological sorting**" [1]. Here,

$$
S \to X_2 \to X_1 \to Y .
$$

Let X_1 , X_2 and X_3 be continuous variables, with continuous conditionals. We aim to transport an individual $(S = 0, x_1, x_2, x_3)$ from group $\{S = 0\}$ to $\{S = 1\}$, following the **topological order** of a DAG.

$$
(X_1, \ldots, X_d)
$$
 satisfies the **Markov property:**

$$
\mathbb{P}[x_1, \cdots, x_d] = \prod^d \mathbb{P}[x_j | \text{parents}(x_j)],
$$

tionship, where x_i directly influences x_j .

 $i=1$ where parents $\left(x_i\right)$ are the immediate causes of **Algorithm 1: Sequential transport on causal graph Require:** graph $\mathcal G$ on (s, x) , with adjacency matrix $\mathbf A$ **Require:** dataset (s_i, x_i) and one individual $(s = 0, a)$ **Require:** bandwidths h and b_j 's

 $(s, v) \leftarrow A$ the topological ordering of vertices (DFS) $T_s \leftarrow$ identity

for $j \in v$ **do** $\mathbf{p}(j) \leftarrow$ parents (j) $T_j(\boldsymbol{a}_{\boldsymbol{p}(j)}) \leftarrow (T_{\boldsymbol{p}(j)_1}(\boldsymbol{a}_{\boldsymbol{p}(j)}), \cdots, T_{\boldsymbol{p}(j)_{k_j}}(\boldsymbol{a}_{\boldsymbol{p}(j)}))$ $(x_{i,j|s}, x_{i,p(j)|s}) \leftarrow$ subsets when $s \in \{0,1\}$ $w_{i,j|0} \leftarrow \phi(\boldsymbol{x}_{i,\boldsymbol{p}(j)|0};\boldsymbol{a}_{\boldsymbol{p}(j)},\boldsymbol{b}_{j})$ (Gaussian kernel) $w_{i,j|1} \leftarrow \phi(\boldsymbol{x}_{i,\boldsymbol{p}(j)|1}; T_j(\boldsymbol{a}_{\boldsymbol{p}(j)}), \boldsymbol{b}_j)$ $\hat{f}_{h_j | s} \leftarrow$ density estimator of $x_{\cdot,j | s}$, weights $w_{\cdot,j | s}$. $\hat{F}_{h_j|s}(\cdot) \leftarrow$ \int $-\infty$ $\hat{f}_{h_j|s}(u)\mathrm{d}u$, c.d.f. $\hat{Q}_{h_j | s} \leftarrow \hat{F}_{h_j |}^{-1}$ $\sum\limits_{h_j|s'}^{\text{--}1}$ quantile $\hat{T}_j(\cdot) \leftarrow \hat{Q}_{h_j|1} \circ \hat{F}_{h_j|0}(\cdot)$ **end for** $\boldsymbol{a}^{\star} \leftarrow (T_1(\boldsymbol{a}_1), \cdots, T_d(\boldsymbol{a}_d))$ **return** $(s = 1, \mathbf{a}^{\star})$, counterfactual of $(s = 0, \mathbf{a})$

 X_1

Counterfactual for Non-Linear Structural Mod[el](#page-0-4)s [7]

OPTIMAL TRANSPORT (OT)

Given two distributions μ_0 and μ_1 over spaces \mathcal{X}_0 and \mathcal{X}_1 , OT finds a mapping $T:\mathcal{X}_0\to\mathcal{X}_1$ that minimizes the cost of moving mass from μ_0 to μ_1 . If we consider $\mathcal{X}_0 = \mathcal{X}_1$ as a compact subset of \mathbb{R}^d , there exists T such that $\mu_1 = T_{\#}\mu_0$ (push-forward of μ_0 by T) when μ_0 and μ_1 are two measures, and μ_0 is atomless. If μ_0 and μ_1 are absolutely continuous w.r.t. Lebesgue measure, we can find an "optimal" mapping T^* satisfying Monge's problem [6]. For some positive cost function $c: \mathcal{X}_0 \times \mathcal{X}_1 \to \mathbb{R}_+$,

$$
T^* := \inf_{T_{\#}\mu_0 = \mu_1} \int_{\mathcal{X}_0} c(\bm{x}_0, T(\bm{x}_0)) \mu_0(\mathrm{d} \bm{x}_0).
$$

Univariate OT for Gaussian distributions.

 $T^* = F_1^{-1}$ $\frac{1}{1}$ \circ F_0 **Multivariate Case**: with strictly convex cost in $\mathbb{R}^d \times \mathbb{R}^d$, the Jacobian matrix ∇T^* , even if not necessarily nonnegative symmetric, is diagonalizable with nonnegative eigenvalues. But, it is generally difficult to give an analytic expression for T^* .

SEQUENTIAL TRANSPORT

CDP *for Black individuals comparing classifier predictions over original features* x *(resp.* $(s = 0, x)$ and their counterfactuals x^* (resp.

Knothe-Rosenblatt (KR) Conditional Transport Example of Sequential Transport (ST). The KR rearrangement, inspired by the Rosen-ST extends the KR map to transport inblatt chain rule, provides the "monotone lower dividuals from $\mathbf{X}|S~=~0$ to $\mathbf{X}|S~=~1,$ triangular map" ("marginally optimal" [10]), se-while respecting any assumed underlyquentially mapping $X|S = 0$ to $X|S = 1$ by condi- ing causal graph. tioning on each preceding node in the topological order.

$$
S \underbrace{\longrightarrow} X_1 \underbrace{\longrightarrow} X_2 \underbrace{\longrightarrow} X_3
$$
\n
$$
T_{\underline{k}r}(x_1, x_2, x_3) = \begin{pmatrix} T_1^*(x_1 | S = 0) \\ T_2^*_{11}(x_2 | x_1, S = 0) \\ T_{3|1,2}^*(x_3 | x_2, x_1, S = 0) \end{pmatrix}
$$

- R. K., Magnanti, T. L., and Orlin, J. B. (1993). *Network flows: Theory, algorithms, and applications*. Prentice Hall.
- 1, L., González-Sanz, A., Asher, N., and Loubes, J.-M. (2021). Transport-based counterfactual models. [3] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. (2012). Fairness through awareness. In *Proceedings of the 3rd innovations in theoretical computer science conference*, pages 214–226.
- us, N., Rojas Carulla, M., Parascandolo, G., Hardt, M., Janzing, D., and Schölkopf, B. (2017). Avoiding discrimination through causal reasoning. *Advances in neural information processing systems*, 30.
- ; M. J., Loftus, J., Russell, C., and Silva, R. (2017). Counterfactual fairness. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, Sarnett, R., editors, *Advances in Neural Information Processing Systems 30*, pages 4066–4076. NIPS. [6] Monge, G. (1781). Mémoire sur la théorie des déblais et des remblais. *Histoire de l'Académie Royale des Sciences de Paris*.
- [7] Pearl, J. (2000). Comment. *Journal of the American Statistical Association*, 95(450):428–431.
- [8] D. and Meinshausen, N. (2020). Fair data adaptation with quantile preservation. *Journal of Machine Learning Research*, 21(242):1-44. [9] D., Bennett, N., and Meinshausen, N. (2024). fairadapt: Causal reasoning for fair data preprocessing. *Journal of Statistical Software*, 110(4):1–35.
- [10] Villani, C. (2003). *Topics in optimal transportation*, volume 58. American Mathematical Society.

$$
S \longrightarrow \mathbf{X}_2 \longrightarrow Y
$$

$$
T_{\underline{st}}(x_1, x_2) = \begin{pmatrix} T_1^*(x_1 | S = 0) \\ T_{2|1}^*(x_2 | x_1, S = 0) \end{pmatrix}
$$

18.24%.

assessment within subgroup $s = 0$ (more fairness criteria in

 $CDP =$ 1 n_0 \sum $i\in\mathcal{D}_0$ $m(1,\boldsymbol{x}^{\star}_i$ $\begin{aligned} \boldsymbol{\dot{\check{\mathrm{r}}}}\boldsymbol{\rangle}-m(0,\boldsymbol{x}_i), \end{aligned}$

the paper):

i.e., "**average treatment effect of the treated**" in the classical causal literature.

APPLICATION ON REAL DATA

E Law School Admission Council Dataset ◎ 1st year law school grade (FYA) > median? $\mathbf{\hat{T}}$ Race ($s \in \{ \text{Black}, \text{White} \})$

 \star Undergrad. GPA before law school (x_1, UGPA) , Law School Admission Test $(x_2,$ LSAT).

3 Logistic model (aware, i.e., including **S**)

Causal graph of the Law School dataset.

UGPA X_1

 $\operatorname{LSAT} X_2$

race S

FYA Y

We compare predicted values using **factuals**, *ceteris paribus* **counterfactuals**, **optimal transport**, **fairadapt**, and **sequential transport**. The left figure shows results for **a Black individual** (black dot). The right figure shows the densities of estimated scores.

Counterfactual calculations (left) and densities of predicted scores (right).

REFERENCES