# Sequential Conditional Transport on Probabilistic Graphs for Interpretable Counterfactual Fairness

| MOTIVATIONS | ) |
|-------------|---|
|             |   |

Individual algorithmic fairness: similar individual should receive similar outcomes, regardless of the **sensitive attribute** [3].

Counterfactual fairness: evaluate whether a model's decision would have remained unchanged under a hypothetical alteration of the sensitive attributes.

| U                              | Ceteris Paribus                                                                 | Mutatis Mutandis [5, 4]                                                                                                                                                                                                                  |
|--------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Idea                           | Change <b>S</b> all other things equal                                          | Some features may be influenced<br>by <b>S</b> via <b>legitimate pathways</b>                                                                                                                                                            |
| Counterfactual of $(s = 0, x)$ | (s = 1, x)                                                                      | $(s=1, \ oldsymbol{x}^{\star}(1)$ )                                                                                                                                                                                                      |
| Fairness                       | $\mathbb{E}[Y^{\star}(1) - Y^{\star}(0)   \boldsymbol{X} = \boldsymbol{x}] = 0$ | $\mathbb{E}[egin{array}{c c c c c } oldsymbol{Y^{\star}(1)} & oldsymbol{X} = oldsymbol{x}^{\star}(1) & oldsymbol{J} = \mathbf{x} \end{bmatrix} = 0$ $\mathbb{E}[oldsymbol{Y^{\star}(0)} & oldsymbol{X} = oldsymbol{x} \end{bmatrix} = 0$ |

Where  $Y^{\star}(1)$  and  $Y^{\star}(0)$  are potential outcomes if S = 1 and S = 0, respectively. The literature looking at *mutatis mutandis* counterfactual fairness has developped two approaches based on: (i) quantile preservation on causal graphs [8,9] (fairadapt), (ii) multivariate optimal transport (OT) [2].

#### Our contribution: Sequential Transport (ST), bridging the two approaches.

| Comparison of mutatis mutandis counterfactual fairness methods. |                                                                                                                                        |                                                                                                            |  |  |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|
| Approach                                                        | Strengths                                                                                                                              | Weaknesses                                                                                                 |  |  |
| Causal Graphs                                                   | <ul><li>Interpretability</li><li>Aligns with causal theory</li></ul>                                                                   | <ul> <li>Computationally intensive for<br/>large models</li> <li>Requires a known causal graph</li> </ul>  |  |  |
| Optimal<br>Transport (OT)                                       | <ul><li>Handles robust distributions</li><li>Computationally efficient</li></ul>                                                       | <ul> <li>Limited interpretability</li> <li>Ignores causal relationships be-<br/>tween variables</li> </ul> |  |  |
| Sequential<br>Transport                                         | <ul> <li>Interpretability: closed-form solutions for counterfactuals using univariate OT</li> <li>Aligns with causal theory</li> </ul> | <ul> <li>Computationally intensive for<br/>large models</li> <li>Requires a known causal graph</li> </ul>  |  |  |

# PROBABILISTIC GRAPHICAL MODELS

**Probabilistic Graphical Models** 

• A Directed Acyclic Graph (DAG)  $\mathcal{G} = \mathbf{\bullet}$  Each edge  $x_i \rightarrow x_j$  represents a causal rela-(V, E) models relationships between variables as nodes (V) and edges (E).

$$S \longrightarrow X_1 \longrightarrow Y$$

• Such a causal graph imposes some ordering on variables, referred to as "topological sorting" [1]. Here,

$$S \to X_2 \to X_1 \to Y_1$$

tionship, where  $x_i$  directly influences  $x_j$ . • The joint distribution of the variables X =

 $(X_1, \ldots, X_d)$  satisfies the Markov property:

$$\mathbb{P}[x_1, \cdots, x_d] = \prod_{j=1}^d \mathbb{P}[x_j | \text{parents}(x_j)],$$

$$b \to X_2 \to X_1 \to Y$$

where parents( $x_i$ ) are the immediate causes of

#### **Counterfactual for Non-Linear Structural Models** [7]



where  $u \mapsto h_c(\cdot, u), u \mapsto h_x(\cdot, u)$  and  $u \mapsto h_e(\cdot, u)$ are strictly increasing in u,  $U_C$ ,  $U_X$  and  $U_E$  are independent, supposed to be uniform on [0, 1].

Let 
$$C, X, E$$
 be absolutely continuous, and  
consider  $i$  where  $E_i = h_i(\text{parents}(E_i), U_i)$   
with  $\text{parents}(E_i) = x$  fixed. Define  
 $h_{i|x}(u) = h_i(x, u)$ . Then,  $e_i = h_{i|x}(u_i)$   
represents the conditional quantile of  $E_i$   
at probability level  $u_i$ . Its **counterfactual**  
**counterpart**  $e_i^*$  is the conditional quantile  
(conditioned on  $x^*$ ) at the same level  $u_i$ .







**Agathe FERNANDES MACHADO**<sup>*a*</sup>, Arthur CHARPENTIER<sup>*a*</sup>, and Ewen GALLIC<sup>*b*</sup>

<sup>a</sup>Université du Québec à Montréal (fernandes\_machado.agathe@courrier.uqam.ca), <sup>b</sup>AMSE, Aix-Marseille Université

# OPTIMAL TRANSPORT (OT)

Given two distributions  $\mu_0$  and  $\mu_1$  over spaces  $\mathcal{X}_0$  and  $\mathcal{X}_1$ , OT finds a mapping  $T : \mathcal{X}_0 \to \mathcal{X}_1$ that minimizes the cost of moving mass from  $\mu_0$  to  $\mu_1$ . If we consider  $\mathcal{X}_0 = \mathcal{X}_1$  as a compact subset of  $\mathbb{R}^d$ , there exists T such that  $\mu_1 = T_{\#}\mu_0$  (push-forward of  $\mu_0$  by T) when  $\mu_0$  and  $\mu_1$ are two measures, and  $\mu_0$  is atomless. If  $\mu_0$  and  $\mu_1$  are absolutely continuous w.r.t. Lebesgue measure, we can find an "optimal" mapping  $T^*$  satisfying Monge's problem [6]. For some positive cost function  $c : \mathcal{X}_0 \times \mathcal{X}_1 \to \mathbb{R}_+$ ,

$$T^* := \inf_{T_{\#}\mu_0 = \mu_1} \int_{\mathcal{X}_0} c(\boldsymbol{x}_0, T(\boldsymbol{x}_0)) \mu_0(\mathrm{d}\boldsymbol{x}_0).$$

Univariate OT for Gaussian distributions.





 $T^{\star} = F_1^{-1} \circ F_0$ 

**Multivariate Case**: with strictly convex cost in  $\mathbb{R}^d \times \mathbb{R}^d$ , the Jacobian matrix  $\nabla T^*$ , even if not necessarily nonnegative symmetric, is diagonalizable with nonnegative eigenvalues. But, it is generally difficult to give an analytic expression for  $T^{\star}$ .

# SEQUENTIAL TRANSPORT

Let  $X_1, X_2$  and  $X_3$  be continuous variables, with continuous conditionals. We aim to transport an individual  $(S = 0, x_1, x_2, x_3)$  from group  $\{S = 0\}$  to  $\{S = 1\}$ , following the **topological** order of a DAG.

Knothe-Rosenblatt (KR) Conditional Transport Example of Sequential Transport (ST). The KR rearrangement, inspired by the Rosen- ST extends the KR map to transport inblatt chain rule, provides the "monotone lower dividuals from X|S = 0 to X|S = 1, triangular map" ("marginally optimal" [10]), se- while respecting any assumed underlyquentially mapping  $\mathbf{X}|S = 0$  to  $\mathbf{X}|S = 1$  by condi- ing causal graph. tioning on each preceding node in the topological order. 

$$T_{\underline{kr}}(x_1, x_2, x_3) = \begin{pmatrix} T_1^{\star}(x_1 | S = 0) \\ T_{\underline{2}|1}^{\star}(x_2 | x_1, S = 0) \\ T_{3|1,2}^{\star}(x_3 | x_2, x_1, S = 0) \end{pmatrix}$$

Algorithm 1: Sequential transport on causal graph **Require:** graph  $\mathcal{G}$  on  $(s, \boldsymbol{x})$ , with adjacency matrix  $\boldsymbol{A}$ **Require:** dataset  $(s_i, \boldsymbol{x}_i)$  and one individual  $(s = 0, \boldsymbol{a})$ **Require:** bandwidths h and  $b_i$ 's

 $(s, v) \leftarrow A$  the topological ordering of vertices (DFS)  $T_s \leftarrow \text{identity}$ 

for  $j \in v$  do  $p(j) \leftarrow \text{parents}(j)$  $T_j(\boldsymbol{a}_{\boldsymbol{p}(j)}) \leftarrow (T_{\boldsymbol{p}(j)_1}(\boldsymbol{a}_{\boldsymbol{p}(j)}), \cdots, T_{\boldsymbol{p}(j)_{k}}(\boldsymbol{a}_{\boldsymbol{p}(j)}))$  $(x_{i,j|s}, \boldsymbol{x}_{i,\boldsymbol{p}(j)|s}) \leftarrow \text{subsets when } s \in \{0, 1\}$  $w_{i,j|0} \leftarrow \phi(\boldsymbol{x}_{i,\boldsymbol{p}(j)|0}; \boldsymbol{a}_{\boldsymbol{p}(j)}, \boldsymbol{b}_j)$  (Gaussian kernel)  $w_{i,j|1} \leftarrow \phi(\boldsymbol{x}_{i,\boldsymbol{p}(j)|1};T_j(\boldsymbol{a}_{\boldsymbol{p}(j)}),\boldsymbol{b}_j)$  $\hat{f}_{h_j|s} \leftarrow \text{density estimator of } x_{\cdot,j|s}, \text{ weights } w_{\cdot,j|s}.$  $\hat{F}_{h_j|s}(\cdot) \leftarrow \int \hat{f}_{h_j|s}(u) \mathrm{d}u, \mathrm{c.d.f.}$  $\hat{Q}_{h_j|s} \leftarrow \hat{F}_{h_j|s}^{-1}$ , quantile  $\hat{T}_j(\cdot) \leftarrow \hat{Q}_{h_j|1} \circ \hat{F}_{h_j|0}(\cdot)$ end for  $\boldsymbol{a}^{\star} \leftarrow (T_1(\boldsymbol{a}_1), \cdots, T_d(\boldsymbol{a}_d))$ return ( $s = 1, a^*$ ), counterfactual of (s = 0, a)

First step. (Red square: multivariate OT of the bottom-left point.) -4 0 4 distribution (group 0) Second step.

 $T_{\underline{st}}(x_1, x_2) = \begin{pmatrix} T_{\underline{1}}^{\star}(x_1 | S = 0) \\ T_{2|1}^{\star}(x_2 | x_1, S = 0) \end{pmatrix}$ 



Observ 18.24%. **Counterfactual** prediction  $m(s = 1, x_1^{\star}, x_2^{\star})$  is constructed using Algo. 1, assuming either  $X_1 \rightarrow X_2$  (bottom right path, predicted 61.4%) or  $X_2 \rightarrow X_1$  (top left path, predicted 56.3%). The *mutatis mutandis* difference can be decomposed,

Fairness metric. Demographic Parity can be extended -4 -2 0 2 4 to Counterfactual Demographic Parity, allowing fairness Red dot: multivariate OT assessment within subgroup s = 0 (more fairness criteria in the paper): *i.e.,* "average treatment effect of the treated" CL in the classical causal literature.





| [1]  | Ahuja, I       |
|------|----------------|
| [2]  | De Lara        |
| [3]  | Dwork,         |
| S    | cience con     |
| [4]  | Kilbertu       |
| 1    | Advances       |
| [5]  | Kusner,        |
| 9    | S., and G      |
| [6]  | Monge,         |
| [7]  | Pearl, J.      |
| [8]  | Plečko, I      |
| [9]  | Plečko, I      |
| [10] | <b>X7:11</b> : |







#### INTERPRETABLE COUNTERFACTUAL FAIRNESS

Consider a predictive model m with iso scores shown in the figures on the right for **group 0** (top) and **group 1** (bottom):  $m(s, x_1, x_2) = (1 + \exp\left[-((x_1 + x_2)/2 + s)\right])^{-1}$ .

| vation | $(s=0, x_1 = -2, x_2 = -1)$ with $m(0, -2, -1) =$ |
|--------|---------------------------------------------------|
|        |                                                   |

using the *ceteris paribus* difference , the change in  $x_1$  ,

#### and the change in $x_2$ conditional on the change in $x_1$ :

$$m(s = 1, x_1^*, x_2^*) - m(s = 0, x_1, x_2) = +43.16\%$$

$$= m(s = 1, x_1, x_2) - m(s = 0, x_1, x_2) : -10.66\%$$

$$+ m(s = 1, x_1^*, x_2) - m(s = 1, x_1, x_2) : +15.63\%$$

+ 
$$m(s = 1, x_1^{\star}, x_2^{\star}) - m(s = 1, x_1^{\star}, x_2) :+38.18\%$$

$$DP = \frac{1}{n_0} \sum_{i \in \mathcal{D}_0} m(1, \boldsymbol{x}_i^{\star}) - m(0, \boldsymbol{x}_i),$$

# APPLICATION ON REAL DATA

**Set School Admission Council Dataset** Ist year law school grade (FYA) > median? **T** Race ( $s \in \{\text{Black}, \text{White}\}$ )

**X** Undergrad. GPA before law school ( $x_1$ , UGPA),

Law School Admission Test ( $x_2$ , LSAT).

**C** Logistic model (aware, i.e., including **S**)

We compare predicted values using factuals, ceteris paribus counterfactuals, optimal transport, fairadapt, and sequential transport. The left figure shows results for a Black individual (black dot). The right figure shows the densities of estimated scores.

race S

*Counterfactual calculations (left) and densities* of predicted scores (right).

CDP for Black individuals comparing classifier predictions over original features x (resp. (s = 0, x)) and their counterfactuals  $x^*$  (resp.

| $(s=1, oldsymbol{x}^{\star})$ ). |        |        |        |  |
|----------------------------------|--------|--------|--------|--|
| Fairadapt multi. OT seq. T       |        |        |        |  |
| Aware model                      | 0.3810 | 0.3727 | 0.3723 |  |
| Unaware model                    | 0.1918 | 0.1821 | 0.1817 |  |
|                                  |        |        |        |  |

### REFERENCES

- R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network flows: Theory, algorithms, and applications. Prentice Hall.
- a, L., González-Sanz, A., Asher, N., and Loubes, J.-M. (2021). Transport-based counterfactual models. C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. (2012). Fairness through awareness. In Proceedings of the 3rd innovations in theoretical computer nference, pages 214–226.

us, N., Rojas Carulla, M., Parascandolo, G., Hardt, M., Janzing, D., and Schölkopf, B. (2017). Avoiding discrimination through causal reasoning. s in neural information processing systems, 30. ; M. J., Loftus, J., Russell, C., and Silva, R. (2017). Counterfactual fairness. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,

Garnett, R., editors, Advances in Neural Information Processing Systems 30, pages 4066–4076. NIPS. , G. (1781). Mémoire sur la théorie des déblais et des remblais. *Histoire de l'Académie Royale des Sciences de Paris*.

. (2000). Comment. Journal of the American Statistical Association, 95(450):428–431.

D. and Meinshausen, N. (2020). Fair data adaptation with quantile preservation. Journal of Machine Learning Research, 21(242):1–44.

D., Bennett, N., and Meinshausen, N. (2024). fairadapt: Causal reasoning for fair data preprocessing. *Journal of Statistical Software*, 110(4):1–35. [10] Villani, C. (2003). Topics in optimal transportation, volume 58. American Mathematical Society.







Observed prediction.





-4 -2 0 2 4



Causal graph of the Law School dataset.

 $\bigcup$ GPA  $X_1$ 

FYA Y