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FOOTER

MOTIVATIONS
Individual algorithmic fairness: similar individual should receive similar outcomes, regard-
less of the sensitive attribute [3].
Counterfactual fairness: evaluate whether a model’s decision would have remained un-
changed under a hypothetical alteration of the sensitive attributes.

Ceteris Paribus Mutatis Mutandis [5, 4]

Idea Change S all other things equal Some features may be influenced
by S via legitimate pathways

Counterfactual
of (s = 0, x)

(s = 1, x) (s = 1, x⋆(1) )

Fairness E[ Y ⋆(1) − Y ⋆(0) |X = x] = 0
E[ Y ⋆(1) | X = x⋆(1) ]−
E[ Y ⋆(0) |X = x] = 0

Where Y ⋆(1) and Y ⋆(0) are potential outcomes if S = 1 and S = 0, respectively. The
literature looking at mutatis mutandis counterfactual fairness has developped two approaches
based on: (i) quantile preservation on causal graphs [8, 9] (fairadapt), (ii) multivariate optimal
transport (OT) [2].

Our contribution: Sequential Transport (ST), bridging the two approaches.

Comparison of mutatis mutandis counterfactual fairness methods.
Approach Strengths Weaknesses

Causal Graphs • Interpretability
• Aligns with causal theory

• Computationally intensive for
large models

• Requires a known causal graph

Optimal
Transport (OT)

• Handles robust distributions
• Computationally efficient

• Limited interpretability
• Ignores causal relationships be-

tween variables

Sequential
Transport

• Interpretability: closed-form
solutions for counterfactuals
using univariate OT

• Aligns with causal theory

• Computationally intensive for
large models

• Requires a known causal graph

PROBABILISTIC GRAPHICAL MODELS
Probabilistic Graphical Models

• A Directed Acyclic Graph (DAG) G =
(V,E) models relationships between
variables as nodes (V ) and edges (E).

S X1

X2

Y

• Such a causal graph imposes some
ordering on variables, referred to as
“topological sorting” [1]. Here,

S → X2 → X1 → Y .

• Each edge xi → xj represents a causal rela-
tionship, where xi directly influences xj .

• The joint distribution of the variables X =
(X1, . . . , Xd) satisfies the Markov property:

P[x1, · · · , xd] =
d∏

j=1

P[xj |parents(xj)],

where parents(xi) are the immediate causes of
xi.

Counterfactual for Non-Linear Structural Models [7]

C X E

uC uX uE

c X⋆ E⋆

uX uE


C = hc(UC)

X = hx(C,UX)

E = he(C,X,UE),


C = c (or do(C = c))

X⋆
c = hx(c, UX)

E⋆
c = he(c,X

⋆
c , UE),

where u 7→ hc(·, u), u 7→ hx(·, u) and u 7→ he(·, u)
are strictly increasing in u, UC , UX and UE are
independent, supposed to be uniform on [0, 1].

Let C,X,E be absolutely continuous, and
consider i where Ei = hi(parents(Ei), Ui)
with parents(Ei) = x fixed. Define
hi|x(u) = hi(x, u). Then, ei = hi|x(ui)
represents the conditional quantile of Ei

at probability level ui. Its counterfactual
counterpart e⋆i is the conditional quantile
(conditioned on x∗) at the same level ui.

OPTIMAL TRANSPORT (OT)
Given two distributions µ0 and µ1 over spaces X0 and X1, OT finds a mapping T : X0 → X1

that minimizes the cost of moving mass from µ0 to µ1. If we consider X0 = X1 as a compact
subset of Rd, there exists T such that µ1 = T#µ0 (push-forward of µ0 by T ) when µ0 and µ1

are two measures, and µ0 is atomless. If µ0 and µ1 are absolutely continuous w.r.t. Lebesgue
measure, we can find an “optimal” mapping T ∗ satisfying Monge’s problem [6]. For some
positive cost function c : X0 ×X1 → R+,

T ∗ := inf
T#µ0=µ1

∫
X0

c
(
x0, T (x0)

)
µ0(dx0).

Univariate OT for
Gaussian distributions.
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Univariate Case: the optimal Monge map T ⋆ for some strictly
convex cost c such that T ⋆

#µ0 = µ1 is

T ⋆ = F−1
1 ◦ F0

quantile function cumul. distrib. function

Multivariate Case: with strictly convex cost in Rd ×Rd, the Jaco-
bian matrix ∇T ⋆, even if not necessarily nonnegative symmetric,
is diagonalizable with nonnegative eigenvalues. But, it is gener-
ally difficult to give an analytic expression for T ⋆.

SEQUENTIAL TRANSPORT

Let X1, X2 and X3 be continuous variables, with continuous conditionals. We aim to transport
an individual (S = 0, x1, x2, x3) from group {S = 0} to {S = 1}, following the topological
order of a DAG.

Knothe-Rosenblatt (KR) Conditional Transport
The KR rearrangement, inspired by the Rosen-
blatt chain rule, provides the “monotone lower
triangular map” (“marginally optimal” [10]), se-
quentially mapping X|S = 0 to X|S = 1 by condi-
tioning on each preceding node in the topological
order.

S X1 X2 X3

Tkr(x1, x2, x3) =

 T ⋆
1 (x1|S = 0)

T ⋆
2|1(x2|x1, S = 0)

T ⋆
3|1,2(x3|x2, x1, S = 0)


Algorithm 1: Sequential transport on causal graph
Require: graph G on (s,x), with adjacency matrix A
Require: dataset (si,xi) and one individual (s = 0,a)
Require: bandwidths h and bj ’s

(s,v)← A the topological ordering of vertices (DFS)
Ts ← identity
for j ∈ v do

p(j)← parents(j)
Tj(ap(j))← (Tp(j)1(ap(j)), · · · , Tp(j)kj

(ap(j)))

(xi,j|s,xi,p(j)|s)← subsets when s ∈ {0, 1}
wi,j|0 ← ϕ(xi,p(j)|0;ap(j), bj) (Gaussian kernel)
wi,j|1 ← ϕ(xi,p(j)|1;Tj(ap(j)), bj)

f̂hj |s ← density estimator of x·,j|s, weights w·,j|s.

F̂hj |s(·)←
∫ ·

−∞
f̂hj |s(u)du, c.d.f.

Q̂hj |s ← F̂−1
hj |s

, quantile

T̂j(·)← Q̂hj |1 ◦ F̂hj |0(·)
end for
a⋆ ← (T1(a1), · · · , Td(ad))
return (s = 1,a⋆), counterfactual of (s = 0,a)

Example of Sequential Transport (ST).
ST extends the KR map to transport in-
dividuals from X|S = 0 to X|S = 1,
while respecting any assumed underly-
ing causal graph.

S X2

X1

Y

Tst(x1, x2) =

(
T ⋆
1 (x1|S = 0)

T ⋆
2|1(x2|x1, S = 0)

)

First step. (Red square: multivariate OT
of the bottom-left point.)
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Second step.
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INTERPRETABLE COUNTERFACTUAL FAIRNESS
Consider a predictive model m with iso scores shown in the
figures on the right for group 0 (top) and group 1 (bottom):

m(s, x1, x2) =
(
1 + exp

[
−
(
(x1 + x2)/2 + s

)])−1
.

Observation (s=0, x1 = −2, x2 = −1) with m(0,−2,−1) =
18.24%.
Counterfactual prediction m(s = 1, x⋆

1, x
⋆
2) is constructed us-

ing Algo. 1, assuming either X1 → X2 (bottom right path,
predicted 61.4%) or X2 → X1 (top left path, predicted 56.3%).
The mutatis mutandis difference can be decomposed,
using the ceteris paribus difference , the change in x1 ,

and the change in x2 conditional on the change in x1 :

m(s = 1, x⋆
1, x

⋆
2)−m(s = 0, x1, x2) = +43.16%

= m(s = 1, x1, x2)−m(s = 0, x1, x2) : −10.66%

+ m(s = 1, x⋆
1, x2)−m(s = 1, x1, x2) : +15.63%

+ m(s = 1, x⋆
1, x

⋆
2)−m(s = 1, x⋆

1, x2) : +38.18% .

Fairness metric. Demographic Parity can be extended
to Counterfactual Demographic Parity, allowing fairness
assessment within subgroup s = 0 (more fairness criteria in
the paper):

Observed prediction.
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Red dot: multivariate OT.

CDP =
1

n0

∑
i∈D0

m(1,x⋆
i )−m(0,xi),

i.e., “average treatment effect of the treated”
in the classical causal literature.

APPLICATION ON REAL DATA

 Law School Admission Council Dataset
◎ 1st year law school grade (FYA) > median?
: Race (s ∈ {Black,White})
é Undergrad. GPA before law school (x1, UGPA),

Law School Admission Test (x2, LSAT).
3 Logistic model (aware, i.e., including S)

Causal graph of the Law School dataset.

race S
LSAT X2

UGPA X1

FYA Y

We compare predicted values using factuals, ceteris paribus counterfactuals, optimal trans-
port, fairadapt, and sequential transport. The left figure shows results for a Black individual
(black dot). The right figure shows the densities of estimated scores.

Counterfactual calculations (left) and densities
of predicted scores (right).
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CDP for Black individuals comparing classifier
predictions over original features x (resp.

(s = 0,x)) and their counterfactuals x⋆ (resp.
(s = 1,x⋆)).
Fairadapt multi. OT seq. T

Aware model 0.3810 0.3727 0.3723
Unaware model 0.1918 0.1821 0.1817
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