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Mathematics Meets Morality:Fairness Through a Mathematical Lens
Context

An Introductory Example: Risk Prediction with a Poisson Model

We want to make predictions on an outcome
variable (e.g., claim frequency, loan default risk,
recidivism).
To do so, we use a statistical model, or a
machine learning model fed with historical
data.
To comply with regulations, we want to obtain
a model that does not discriminate with
respect to a sensitive attribute.

Digital illustration of fairness and machine learning generated
using DALL-E 3. Retrieved from ChatGPT Interface.
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Context

An Introductory Example: Risk Prediction with a Poisson Model

Assume for example that we want to predict claim frequency using a Poisson regression
model, using three predictors.

Let us assume that the number of claims y has a Poisson distribution with a conditional
mean that depends on some features X according to the following structural model:

E (yi |X i) = exp (X iβ)

The set of predictors X contains three features :

A binary variable indicating whether the insured lives in an urban area.

The insured’s age.

The insured’s gender.
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An Introductory Example: Risk Prediction with a Poisson Model

The predicted value will thus be:ŷ(man) = exp
[
β̂0 + β̂11urban + β̂2age + β̂3

]
ŷ(woman) = exp

[
β̂0 + β̂11urban + β̂2age

]
Hence:

ŷ(man) = exp
[
β̂0 + β̂11urban + β̂2age + β̂3 1man

]
= ŷ(woman) · exp[β3]

×eβ3 ceteris paribus

If β3 is small, eβ3 ≈ 1 + β3. Thus, if β3 = 0.2, it corresponds to +20% for men.
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An Introductory Example: Risk Prediction with a Poisson Model

In the previous example, the estimates indicate that men are at higher risks than
women.

With such insight from the data, should the premium paid by men to an insurance
company be higher than that paid by women?

In other words, should the insurance company discriminate by gender in such a
context?
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A Sketch of Insurance Business

Assume the following overly simplistic situation (adapted form Landes, 2014):

A pool of insured made of 10 people: 5 women and 5 men.

Equal individual probability of having an accident in the upcoming year of 10%.

In the event of an accident, the insurance will pay the insured $1,000.
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Actuarial Fairness

To be actuarially fair, the premiums should be equal to
the expected loss of the insured risks (Arrow, 1963)

“In the insurance industry, the concept of actuarial fairness
serves to establish what could be adequate, fair premiums.
Accordingly, premiums paid by policyholders should match as
closely as possible their risk exposure (i.e. their expected
losses). Such premiums are the product of the probabilities of
losses and the expected losses.” (Landes, 2014)

“Since the insurer assumes the individual insured’s risk of loss,
the premium should be fundamentally based upon the
expected value of an insured’s losses.” (Walters, 1981)
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Expected Annual Loss

10% 10% 10% 10% 10% 10% 10% 10% 10% 10%

In such a situation, the expected global loss is: 10 × .1 × $1, 000 = $1, 000.

Since all the individuals have equal risks, they should be charged with a $100
premium each.

For questions on fair allocation in Game Theory, see, e.g., Nash et al. (1950);
Shapley (1953); Harsanyi (1959)
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Unequal Risks

Now, assume that among the 10 insured, 5 of them engage in riskier driving behaviors
(speeding, aggressive overtaking) which doubles their probability of having an
accident.

10% 20% 10% 10% 10% 10% 20% 20% 20% 20%

The expected annual loss becomes: (5 × .1 + 5 × .2 ) × $1, 000 = $1, 500
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Unequal Risks

If premiums remain at $100, the insurance company will not be able to indemnify
the unlucky drivers: the collected resources will be insufficient to cover the losses.

How should the premiums be adjusted?
If the premium is increased by $50 for each insured:

Actuarially sound, account for the general increase in risk exposure in the population.

But, actuarially unfair: low-risk drivers subsidize high-risks.

May entail moral hazard and adverse selection (Akerlof, 1978)
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Actuarially Fair Prices

10% 20% 10% 10% 10% 10% 20% 20% 20% 20%

The premium paid by low-risk drivers may remain unchanged ($100) but be
doubled ($200) for high-risk drivers:

Actuarially sound solution: risk-based, allows the insurer to cover the expected annual
loss.

Actuarially fair solution:

individuals with similar risk levels pay similar amounts (horizontal equity),

those with higher risks pay correspondingly higher premiums (vertical equity).
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Risk Classification

In that previous toy example, the insurer needs to correctly evaluate risk and risk
classification.

“the ratio between risk and premiums should be exactly the
same for all members of the pool. Those with lower risk also
pay less. Behind this idea, there is the technical capacity to
calculate levels of risk for categories of insureds. If taken
to its extreme, risk classification could mean that each
insured could constitute his or her own separate risk class.
Still, in most forms of insurance, whether private or social,
premium levels are allocated to large groups of people,
or risk classes.” (Lehtonen and Liukko, 2015)
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Risk Classification

Now, let us assume that the insurer no longer observe risk, and uses gender to estimate
the risk of the insured. They obtain the following estimates:

10% 20% 10% 10% 10% 10% 20% 20% 20% 20%

Estimated risk: 12% Estimated risk: 18%
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Risk Classification

The pool of insured is thus segmented into two groups:
Women: low-risk, with a $120 premium,

Men: high-risk, with $180 premium.

While this solution allows the insurer to cover the expected annual loss, it is no
longer actuarially fair: individuals in each segment do not pay a premium
according to their risk.

Note that if the insurer knew the individual risks and still decided to charge women
a $120 premium and men a $180 premium, this would correspond to an
equalization of pool members’ risk premiums, also termed risk solidarity in
Lehtonen and Liukko (2015).
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Policymakers Point of View: Europe

Europe: Court of Justice of the European Union – 2011

“At the moment, a careful young male driver pays more for auto insurance just
because he is a man. Under the ruling, insurers can no longer use gender as
the sole determining risk factor to justify differences in individuals’
premiums. But the premiums paid by careful drivers – male and female – will
continue to decrease based on their individual driving behaviour. The ruling does
not affect the use of other legitimate risk-rating factors (such as, for example, age
or health status) and prices will continue to reflect risk.“ (Commission, 2011
through Frezal and Barry, 2019)
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Policymakers Point of View: Québec

Québec: Charte des droits et libertés de la personne (C-12, Article 20.1)

“Dans un contrat d’assurance ou de rente, un régime d’avantages sociaux, de
retraite, de rentes ou d’assurance ou un régime universel de rentes ou d’assurance,
une distinction, exclusion ou préférence fondée sur l’âge, le sexe ou l’état civil est
réputée non discriminatoire lorsque son utilisation est légitime et que le motif
qui la fonde constitue un facteur de détermination de risque, basé sur des
données actuarielles.”
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Policymakers Point of View: Colorado

The Colorado Division of Insurance issued a regulation (effective November 14,
2023) titled: “Governance and risk management framework requirements for life
insurers’ use of external consumer data and information sources, algorithms, and
predictive models”. Section 5-A. writes:

Life insurers that use ECDIS [External Consumer Data and Information Source], as
well as algorithms and predictive models that use ECDIS in any insurance
practice, must establish a risk-based governance and risk management framework
that facilitates and supports policies, procedures, systems, and controls designed to
determine whether the use of such ECDIS, algorithms, and predictive models
potentially result in unfair discrimination with respect to race and remediate
unfair discrimination, if detected.
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Policymakers Point of View: Definition of (Un)fair Discrimination

Colorado Revised Statutes (10-3-1104.9):

“‘Unfairly discriminate’ and ‘unfair discrimination’ include the use of one or
more external consumer data and information sources, as well as algorithms or
predictive models using external consumer data and information sources, that have
a correlation to race, color, national or ethnic origin, religion, sex, sexual
orientation, disability, gender identity, or gender expression, and that use results in
a disproportionately negative outcome for such classification or classifications,
which negative outcome exceeds the reasonable correlation to the underlying
insurance practice, including losses and costs for underwriting.”
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Is Risk Classification Fair?
One might ask if discriminating based on gender in our toy
example is fair or not.

On the one hand, governments enacted legislation
prohibiting insurance discrimination based on some
protected characteristics
On the other hand, insurers argue they need to know
people’s risk in advance.

“governments must recognise that there is a difference
between unfair discrimination and insurers differentiating
prices according to risk,” (Swiss Re, 2015 through Meyers and
Van Hoyweghen, 2017)
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Fair Discrimination in Insurance: an Oxymoron

“what is unique about insurance is that even statistical discrimination (the act by which
an insurer uses a characteristic of an insured or potential insured as a statistic for the
risk it poses to an insurer), which by definition is absent any malicious intentions, poses
significant moral and legal challenges. Why? Because on the one hand, policy makers
would like insurers to treat their insureds equally, without discriminating based on
race, gender, age, or other characteristics, even if it makes statistical sense to
discriminate. [...] On the other hand, at the core of insurance business lies
discrimination between risky and non-risky insureds. But riskiness often
statistically correlates with the same characteristics policy makers would like to
prohibit insurers from taking into account.” (Avraham, 2017)
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Some Definitions: Discrimination

In economics, following Becker (1957), discrimination:
situations in which individuals are treated differently based on
attributes such as race, gender, etc., rather than their
productivity or other relevant characteristics.

Disparate treatment (or taste-based discrimination):
intentional discrimination, where individuals are treated
differently explicitly because of a protected characteristic.
Disparate impact: policy, practice, or decision that appears
neutral on the surface disproportionately affects members of a
protected group, even without intentional discrimination.
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Some Definitions: Statistical Discrimination
Statistical discrimination (see, e.g., Baldus and Cole,
1980): individuals are treated differently based on group-level
statistical averages, rather than their individual
characteristics. They do not arise from prejudice or bias but
from decision-makers relying on imperfect information
and using group membership as a proxy for individual traits.
Some forms of discrimination are considered unacceptable
(Hellman, 2008).
Fisher (1936): separating or classifying observations into
distinct groups based on measured characteristics. In this
context, discrimination is purely a statistical operation with
no connotation of social bias or inequality.
However, statistical discrimination may lead to:

Reinforcement of Biases (through lack of opportunities).
Legal and Ethical Concerns.
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Some Definitions: Algorithmic Fairness

Let m : X → Y be a predictive model that predicts an outcome Y (e.g., claims)
w.r.t. a sensitive attribute S ∈ S (e.g., gender, race) using features X .

Regulations may prohibit discrimination on the sensitive attribute, requiring m to
be fair w.r.t. to S.
Approaches to evaluate and, if necessary, mitigate the unfairness of model
predictions Ŷ = m(X) for S:

Group fairness: compare Ŷ between groups defined by S, e.g., salary for males vs.
salary for females (Barocas et al., 2023; Hardt et al., 2016).

Individual fairness: focus on a specific individual in the disadvantaged group (Dwork
et al., 2012).
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Actuarial Fairness and Accuracy

Recall that following Arrow (1963):
“actuarially fair premiums” = “expected losses”

But, with different models and different portfolio, we can have different premiums.
There is no law of one price in insurance.

“The Law states that identical goods must have identical prices. [...] Economic theory
teaches us to expect the Law to hold exactly in competitive markets with no
transactions costs and no barriers to trade.” (Lamont and Thaler, 2003)
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Actuarial Fairness and Accuracy

Premiums are based on an estimation the expected loss that maximizes
accuracy:

ȳ = arg min
γ∈R


n∑

i=1
(yi − γ)2

 or E[Y ] = arg min
γ∈R

 ∑
y

(y − γ)2 P[Y = y ]


average loss / empirical losses

least squares

i.e., we want to minimize the error between observed loses y and predictions ŷ .
If the prediction is a binary outcome y ∈ {0, 1} (e.g., accident, default), it is hard to
assess if ŷ = 8.2740164% is accurate or not.
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Actuarial Fairness and Accuracy

Does accuracy for a single individual make any sense?

“When we speak of the ‘probability of death’, the exact meaning of this expression can
be defined in the following way only. We must not think of an individual, but of a
certain class as a whole, e.g., ‘all insured men forty-one years old living in a given
country and not engaged in certain dangerous occupations’. A probability of death is
attached to the class of men or to another class that can be defined in a similar way.
We can say nothing about the probability of death of an individual even if we know his
condition of life and health in detail. The phrase ‘probability of death’, when it
refers to a single person, has no meaning at all for us.” (von Mises, 1957) (p. 11)
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Actuarial Fairness and Accuracy
Is the predicted value well estimated? “among patients with
an estimated risk of 20% , we expect 20 in 100 to have or
to develop the event” (Van Calster et al., 2019)

If 40 out of 100 in this group are found to have the
disease, the risk is underestimated.
If 10 out of 100 in this group are found to have the
disease, the risk is overestimated.

The prediction m̂(X) of Y is a well-calibrated prediction if:

E
[

Y | Ŷ = ŷ
]

= ŷ , ∀ŷ

20 out of 100 (proportion y = 1)

estimated risk ŷ = 20%
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Actuarial Fairness and Accuracy

A model will be:

Globally well balanced if:

E
[

Ŷ
]

= E[ Y ]

premium collected losses paid

Locally well balanced, or well-calibrated if:

E
[

Ŷ | Ŷ = ŷ
]

= E
[

Y | Ŷ = ŷ
]

= ŷ , , ∀ŷ

For more details on calibration see Fernandes Machado et al. (2024a,b)
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Quantifying Unfairness

How Can Fairness be Quantified?

We would like to quantify unfairness of a supervised model m̂(·) trained on a set
{(yi , x i , si)}n

i=1, where y is the value to predict (i.e., the outcome), x is a set of
(unprotected) predictors, s is a protected attribute, and i ∈ {1, . . . , n} denotes an
individual.

The outcome may be:
Binary (classification task):

ŷi = 1(m̂(x i , si) > threshold) ∈ {0, 1}

Continuous (regression task):
ŷi = m̂(x i , si) ∈ [0, 1]: a score

ŷi = m̂(x i , si) ∈ R: a premium
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How Can Fairness be Quantified?

As mentioned earlier, algorithmic fairness can be defined in multiple ways (see Veale and
Binns, 2017 for a brief overview, or Charpentier, 2024).

Most metrics focus on differences in treatment between protected and
non-protected groups.

Here, we focus on three metrics: demographic parity, equalized odds, and
calibration.

Individual fairness will be briefly mentioned later.
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Group Fairness: Demographic Parity

A model m satisfies the independence property if m(X , S) ⊥⊥ S, with respect to the
distribution P of the triplet (X , S, Y ) (Dwork et al., 2012).

Demographic Parity → E
[

Ŷ | S = A
]

= E
[

Ŷ | S = B
]

sensitive sensitive

?

score ŷ

Ewen Gallic | � egallic.fr | SUMM 2025, Montréal 32 / 58

https://egallic.fr/


Mathematics Meets Morality:Fairness Through a Mathematical Lens
Quantifying Unfairness

Group Fairness: Equalized Odds

A model m satisfies the separation property if m(X , S) ⊥⊥ S | Y , with respect to the
distribution P of the triplet (X , S, Y ) (Hardt et al., 2016).

Equalized Odds → E
[

Ŷ | Y = y , S = A
]

= E
[

Ŷ | Y = y , S = B
]
, ∀y

outcome y

?

score ŷ
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Group Fairness: Calibration

A model m satisfies the sufficiency property if Y ⊥⊥ S | m(X , S), with respect to the
distribution P of the triplet (X , S, Y ) (Chouldechova, 2017).

Calibration → E
[

Y | Ŷ = u , S = A
]

= E
[

Y | Ŷ = u , S = B
]
, ∀u

outcome y

?

score ŷ
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Illustration With the COMPAS Dataset

The algorithm “Correctional Offender Management Profiling for Alternative
Sanctions” attributes a score to each convicted individual in some states in the
U.S.A, to estimate the likelihood of them committing a crime again if they are
released from prison.

This scoring classifier uses more than 100 predictors.

Race is not one of them. However, when looking at the predicted values of the
model, Angwin et al. (2016) claimed it was biased against Black people.

The dataset they used is now available in an R packages: fairness.
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Equality of False Positive Rates?

Larson et al. (2016) looked at the
Equalized Odds:

For Black people , among those who
did not re-offend (y), 42% were
wrongly classified (ŷ ̸= y).
For White people , among those who
did not re-offend , 22% were
wrongly classified .
Since 42% ≫ 22%: unfair .

Black White

42%
22%

Low High Low High

0
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00
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Risk Category

To
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Re−offended
Did not
 re−offend

P
[

Ŷ = High | Y = no , S = Black
]

= 42%=P
[

Ŷ = High | Y = no , S = White
]

= 22%
?
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Another Metric, Another Result...

Dieterich et al. (2016): predictive parity
(recidivism rate at each risk level)

For Black people , among those who
were classified as high risk (ŷ),
35% did not re-offend (y).
For White people , among those who
were classified as high risk , 40%
did not re-offend .
Since 35% ≈ 40%: fair .
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Y = no | Ŷ = High , S = White
]

= 40%
?
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Mitigation

Some techniques can be used to prevent models from perpetuating biases with respect
to the sensitive attribute. These techniques can be applied at several stages (Hajian and
Domingo-Ferrer, 2013)

1 Preprocessing: transform source data to remove biases before model training.

2 In-processing (not addressed here): modify algorithms to embed fairness
constraints during training.

3 Postprocessing: alter models after training to correct unfair outcomes.

Ewen Gallic | � egallic.fr | SUMM 2025, Montréal 39 / 58

https://egallic.fr/


Mathematics Meets Morality:Fairness Through a Mathematical Lens
Mitigation

Group Fairness: Adjusting the Probability Threshold
We focus on binary decisions (ŷ ∈ {0, 1}).

Demographic Parity → P
[

Ŷ = 1 | S = A
]

= P
[

Ŷ = 1 | S = B
]

These decisions are usually based on scores, using a threshold τ :

Demographic Parity → P
[

m̂(X , S) > τ | S = A
]

= P
[

m̂(X , S) > τ | S = B
]

Demographic Parity can be achieved by setting different threshold in the groups:

Demographic Parity → P
[

m̂(X , S) > τA | S = A
]

= P
[

m̂(X , S) > τB | S = B
]

It is then usually impossible to achieve equalized odds with this strategy.

?

?

binary decision ŷ

score m̂
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For a Scoring Classifier

When facing a score rather than a binary decision:

Demographic Parity → P
[

m̂(X , S) | S = A
]

= P
[

m̂(X , S) | S = B
]

We can look at the quantile level of that score in the protected group and replace it
with the quantile at that level in the unprotected group.

This strategy corresponds to transporting the score from the protected group to the
unprotected one.

?

score ŷ
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Optimal Transport and Monge Mapping

Optimal Transport: how to find the best way
to transport mass from one distribution to
another while minimizing a given cost.
It involves constructing a joint distribution
(coupling) between two marginal probability
measures (Villani, 2003, 2009).
Consider a measure µ0 (resp. µ1) on a metric
space X0 (resp. X1). The goal is to move every
elementary mass from µ0 to µ1 in the most
“efficient way.”

From Monge (1781): Mémoire sur
la théorie des déblais et des
remblais.
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Optimal Transport and Monge Mapping

Definition
Let X0 and X1 be two metric spaces. Suppose a map T : X0 → X1.
The push-forward of µ0 by T is the measure µ1 = T#µ0 on X1 s.t.
∀B ⊂ X1, T#µ0(B) = µ0(T−1(B)).

Proposition
For all measurable and bounded φ : X1 → R,∫

X1
φ(x1) dT#µ0(x1) =

∫
X0

φ(T (x0)) dµ0(x0) .
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Optimal Transport and Monge Mapping

Proposition
If X0 = X1 is a compact subset of Rd and µ0 is atomless, then there exists T such that
µ1 = T#µ0.

Definition: Monge problem, Monge (1781)

If we further assume µ0 and µ1 are absolutely continuous w.r.t. Lebesgue measure, then
we can find an “optimal” mapping, satisfying

inf
T#µ0=µ1

∫
X0

c
(
x0, T (x0)

)
dµ0(x0),

for a general cost function c : X0 × X1 → R+.

The optimal mapping is denoted T ∗.
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Optimal Transport plans

In general settings, however, such a deterministic mapping T ∗ between probability
distributions may not exist.

Kantorovich relaxation, Kantorovich (1942)

The Kantorovich relaxation of Monge mapping is defined as

inf
π∈Π(µ0,µ1)

∫
X0×X1

c(x0, x1)π(dx0, dx1),

for a general cost function c : X0 × X1 → R+ and Π(µ0, µ1) the set of all couplings of
µ0 and µ1.

This problem always admits solutions and focuses on couplings rather than deterministic
mappings.
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Univariate Optimal Transport Map

Suppose here that X0 = X1 is a compact subset of R.

As shown in Santambrogio (2015), the optimal Monge map T ⋆ for some strictly convex
cost c such that T ⋆

#µ0 = µ1 is:

T ⋆ = F−1
1 ◦ F0 ,

generalized inverse (quantile function)

cdf associated with µ0
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Mitigation for a Scoring Classifier (2)

Score distribution
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Individual in group A with
score ŷ(A) = 60% :
corresponding to quantile α

(here F̂Ŷ |S=A(.6) = .47 )

In group B , this corresponds
to
ŷ(B) = .41 = F̂−1

Ŷ |S=B(.47) .
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Mitigating Discrimination with (Wasserstein) Barycenters
To get a fair model w.r.t. the sensitive attribute, we can consider an average:

ŷ⋆ = P[S = A] · ŷ(A) + P[S = B] · F̂−1
Ŷ |S=B

[
F̂Ŷ |S=A(ŷ(A))

]

Score distribution
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Counterfactual Fairness

1 Ceteris paribus: “We capture fairness by the principle that any two individuals
who are similar with respect to a particular task should be classified similarly”
(Dwork et al., 2012).

Similarity fairness is achieved if for all i ̸= j such that x i = x j and si ̸= sj , then:

m(x i , si = A) = m(x j , sj = B)

2 Mutatis mutandis: build on the idea of counterfactuals: “What would this woman
earnings would have been had she been a man?” (De Lara et al., 2021; Charpentier
et al., 2023; Fernandes Machado et al., 2024c)
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Counterfactual Fairness in Brief: Links with Causal Inference

Sex Name Treatment Weight (Outcome) Height . . .
ti yi y⋆

i,T←A y⋆
i,T←B TE xi . . .

1 H Alan A 75 75 64 11 172 . . .
2 F Britney B 52 67 52 15 161 . . .
3 F Aya B 57 71 57 14 163 . . .
4 H Amir A 78 78 61 17 183 . . .

Difference in the potential outcomes (or
treatment effect):

TE = y⋆
i ,T←B − y⋆

i ,T←A

If si = A:
the observed value is y⋆

i ,T←A
the counterfactual is y⋆

i ,T←B

For More details on causal inference, see, e.g., Imbens and Rubin (2015); Pearl and
Mackenzie (2018); Cunningham (2021); Chernozhukov et al. (2024)
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Counterfactual Fairness in the ceteris paribus case

Counterfactual fairness is achieved, on average, if:

ATE = E
[

YS←A − YS←B
]

= 0

A decision satisfies counterfactual fairness if “had the protected attributes (e.g., race) of
the individual been different, other things being equal, the decision would have remained
the same.” (Kusner et al., 2017)

Counterfactual fairness for an individual with characteristics x is achieved if:

CATE(x) = E
[

YS←A − YS←B | X = x
]

= 0
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Counterfactual Fairness in the mutatis mutandis case

The protected attribute may affect another variable in a manner accepted as
non-discriminatory (resolving variable, Kilbertus et al., 2017).

The mutatis mutandis version of the CATE writes:

E
[

YS←A | X = x
]

− E
[

YS←B | X = x⋆
S←B

]

In this version, X | A is transported to X | B (see Plečko and Meinshausen, 2020;
Plečko et al., 2024; De Lara et al., 2021; Charpentier et al., 2023), according to an
assumed causal structure.

transported characteristics
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Three Situations

We can consider three situations where the sensitive attribute is not fed to the model:

1 The variable is deliberately excluded from the model: fairness through
unawareness → usually a bad idea (see the following example).

2 The sensitive attribute is not observable: we can try to infer it in a separate
model: e.g., “Bayesian Improved Surname Geocoding” (BISG) algorithm (Elliott
et al., 2009; Imai and Khanna, 2016).

3 Opting out: people decide to voluntarily prevent some of their characteristics to be
used: may result in strong biases (not explored in this talk).
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Why not Removing the Variable?

Why not removing the sensitive attribute (e.g., race) and make the model blind
to it?

If other variables in the model are correlated with it (proxy variables), the model may
still exhibit disparities with respect to the sensitive attribute.

And in the context of “big data,” it is easy to get proxies for the sensitive attributes.

y urban age race
...

...
...

...
...

...
...

...

y urban age zip lastname credit
...

...
...

...
...

...
...

...
...

...
...

...
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Illustration
Let illustrate this with an example from Charpentier (2024).

On a French motor dataset, average claim frequencies
are 8.94% (men), 8.20% (women).
Consider some logistic regression to estimate annual
claim frequency, on k explanatory variables excluding
gender.

Men Women

k = 0 8.68% 8.68%
k = 2 8.85% 8.37%
k = 8 8.87% 8.33%
k = 15 8.94% 8.20%

empirical 8.94% 8.20%
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Fairness With Uncollected Attribute

Sometimes, the information about a sensitive attribute is not known by the modeler
(often for legitimate reasons, such as privacy).

Race is often infrequently or incompletely collected by insurers (Haley et al., 2022).

However, to assess the fairness of a model w.r.t. some sensitive attribute, access to
that sensitive attribute is required:

“What we can’t measure, we can’t understand.” Andrus et al. (2021)

Bayesian methods for predicting race have emerged (Elliott et al., 2009; Imai
et al., 2022; Baeder et al., 2024), using surname, first name, and geolocation data
from an aggregate source (the USA Census data).
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Conclusion

Certain forms of discrimination, even if they have predictive value, are not socially
acceptable.

Protected attributes evolve with societal changes.

Without addressing algorithmic fairness issues: having fair model is illusive.

Not collecting and not using protected attributes is clearly not a good strategy.

This field still requires substantial further research!

Agathe
Fernandes Machado

Arthur
Charpentier

Marouane
Il Idrissi

Ana María
Patrón Piñerez
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