Weather Shocks

Ewen Gallic^{1,2} and Gauthier Vermandel^{3,4}

¹Aix Marseille Univ, AMSE, CNRS, Marseille, France
 ²CNRS – Université de Montréal CRM - CNRS
 ³PSL Research – Paris Dauphine University
 ⁴Ecole Polytechnique – Institut Polytechnique de Paris

NGFS Workstream on Monetary Policy, May 15, 2025

General Information

Paper : Gallic, E & Vermandel, G. (2020). Weather Shocks. European Economic Review, 124, 103409. doi : 10.1016/j.euroecorev.2020.103409
 Replication materials : R and dynare with matlab [Link]

Ewen GALLIC Environmental economics, data science, machine learning, algorithmic fairness thttps://egallic.fr/

Gauthier VERMANDEL Quantitative macroeconomics, climate change, inference of nonlinear structural models, and business cycle theory thtps://vermandel.fr/ Aims of the paper

Some macro questions at hand:

- What are the transmission mechanisms of a weather shock both at sectoral and international levels?
- What are the short run and long run implications of weather shocks ?
- How costly are weather fluctuations for households in terms of welfare?

Methodology: 4 Steps

1 Data pre-processing

- from daily weather data (grid/stations) to quarterly national values
- drought index → narrow view of the weather (droughts and heat waves).
- 2 **Empirical Facts**
 - characterization a weather shock through the lens of a VAR model

3 Theoretical Model

- design and estimation of a DSGE model for a small open-economy
- analysis of the propagation of a weather shock and its implications in terms of business cycle statistics.

4 Scenarios

• we measure the implications of climate change on aggregate fluctuations by

increasing the variance of

weather shocks .

A Model for a Small Open Economy

In the paper, we focus on **New-Zealand** :

- New-Zealand has experienced weather-driven recessions:
 - 2013 North Island + West of the South Island drought (cost: \$1.3 billion / 0.5% of GDP)
 - 2008 national drought (cost: \$2.8 billion / 1.5% of GDP)
 - 2004 lower North Island floods (cost: \$185–\$219 millions).
- New Zealand provides

very good quality data (both for weather and agriculture).

New Zealand is small enough to be subject to fairly homogeneous weather.

Veather	Shocks
-Introd	uction

Our main results

- 1 Our model suggests that weather shocks play an important role in explaining macroeconomic fluctuations.
- 2 Propagation of a weather shock :
 - A weather shock (drought event) acts as a standard negative supply shock that hits the agricultural sector and spreads to the entire economy.

3 Welfare costs :

- **Today**: welfare cost of weather shocks represents 0.40% of households consumption.
- Tomorrow: this cost would reach up 0.59% of household consumption because of climate change.

Outline

1 Introduction

- 2 Building a Weather Index
- 3 Empirical Evidence with a VAR
- 4 An Estimated DSGE Model
 - Estimation
 - Business Cycle Analysis
 - Climate Change
- 5 Opening remarks

2. Building a Weather Index

Measuring the Weather

- Challenge: computing at a macro level a weather index strongly correlated with real agricultural production.
- Solution : create soil moisture deficit index :
 - **1** Collect **soil water deficit** data from weather stations (on a monthly basis).
 - 2 Compute **percentage deviation from monthly median** as in Narasimhan and Srinivasan (2005): $D_{t,m} = \frac{SWD_{t,m} - Med(SWD_m)}{Med(SWD_m)}$ and include persistence of deficits, $SMDI_{t,m} = 0.5 \times SMDI_{t,m-1} + \frac{D_{t,m}}{50}$ that captures the evatransporation.
 - **3** Aggregation: compute an average per region, get national index by a weighting each region by its relative size in national agricultural production.
- ▶ In Crofils et al. (2025), we provide R codes to handle daily gridded weather data

Fig a: Weather stations in New Zealand

Fig b: Seasonality of Weather

Fig c: Historical vs Normal times (2012:1) vs Drought (2013:1)

3. Empirical Evidence with a VAR

Gathering Empirical Evidence from a VAR

- How does the weather affect the economy?
- Some empirical facts collected from a VAR
- Some (fair) assumptions :

 - Weather is exogenous.
- Data: New Zealand 1994Q2 to 2016Q4 detrended using the HP filter with 7 variables.

Restricted VAR

The VAR reads as:

$$\begin{bmatrix} X_t^{W} \\ X_t^{\star} \\ X_t^{D} \end{bmatrix} = C + \sum_{l=1}^{p} \begin{bmatrix} A_l^{11} & 0 & 0 \\ 0 & A_l^{22} & 0 \\ A_l^{31} & A_l^{32} & A_l^{33} \end{bmatrix} \begin{bmatrix} X_{t-l}^{W} \\ X_{t-l}^{\star} \\ X_{t-l}^{D} \end{bmatrix} + \begin{bmatrix} \eta_t^{W} \\ \eta_t^{\star} \\ \eta_t^{D} \end{bmatrix},$$
(1)

weather: $X_t^W = \hat{\omega}_t$; foreign variable: $X_t^{\star} = \hat{y}_t^{\star}$; domestic block :

$$X_t^D = \begin{bmatrix} \hat{y}_t & \hat{y}_t^A & \hat{\imath}_t & \hat{h}_t & \hat{q}_t & \widehat{rer}_t \end{bmatrix}$$
(2)

The restrictions reflect the assumptions (small open economy, exogeneity of weather).

Weather Shocks Lempirical Evidence with a VAR

Propagation of a Weather Shock (1/2)

Notes: Green line: **IRF**. Gray band: **95% error band** obtained from 10,000 Monte-Carlo simulations. Response horizon in quarters. Y-axis: percent deviation from the steady state.

Figure 1: SVAR impulse response to a 1% weather shock (drought) in New Zealand. Ewen Gallic, Gauthier Vermandel | NGFS Workstream on Monetary Policy

Propagation of a Weather Shock (2/2)

Business cycles facts :

- **1** A weather shock (a drought) generates a recession...
- **2** But hours worked remains acyclical (\neq a sectoral TFP shock).
- 3 Internationally, weather depresses the domestic real exchange rate (NZ).
- **Next step** : build a macro-model which features these business cycle facts.

4. An Estimated DSGE Model

A Sketch of the Model (1/3)

- **DSGE model** in an RBC framework (no nominal effects+rational expectations)
- Small open economy (home vs world)
- ► Two sectors:
 - weather-dependent agricultural sector (original feature)
 - standard non-agricultural sector
- Weather shocks affect the agricultural sector (original feature)

A Sketch of the Model (2/3)

1. Farmers face exogenous weather .

2. They can **offset** bad weather conditions by purchasing goods in the non-agricultural sector.

3. This leads to **spillover effects** between the two sectors.

A Sketch of the Model (3/3)

Figure 2: The Model.

Weather Shocks An Estimated DSGE Model

Agricultural sector and the weather

The weather follows an univariate stochastic exogenous process:

$$\log(\varepsilon_t^{W}) = \rho_W \log(\varepsilon_{t-1}^{W}) + \sigma_W \eta_t^{W}, \qquad \eta_t^{W} \sim \mathcal{N}(0, 1)$$
(3)

where $\varepsilon_t^W > 1$ features a drought.

► Each farmer i ∈ [n, 1] has a land endowment l_{it} whose time-varying productivity (or efficiency) writes:

$$\ell_{it} = (1 - \delta_{\ell}) \Omega\left(\varepsilon_t^{W}\right) \ell_{it-1} + x_{it}, \qquad (4)$$

- δ_ℓ ∈ (0, 1) is the rate of decay of land efficiency;
- x_{it} are intermediate goods to maintain land efficiency (crops, water, fertilizers...);

•
$$\Omega\left(\varepsilon_t^W\right)$$
 is a **weather damage function** (discussed after)

Agricultural sector and the weather (1/3)

We opt for a simple functional form for this damage function :

$$\Omega\left(\varepsilon_{t}^{W}\right) = \left(\varepsilon_{t}^{W}\right)^{-\theta}, \qquad (5)$$

where θ is the **elasticity of land productivity** with respect to the weather variations.

- Following IAMs models pioneered by Nordhaus (1991), the damage function bridges the weather with economic conditions.
- ► To avoid concerns from Pindyck (2017):
 - **1** Our setup is linear (i.e., we don't exploit the non-linearity of the damage function).
 - **2** θ is estimated agnostically (through a very diffuse prior).

Weather Shocks └─An Estimated DSGE Model

Agricultural sector and the weather (2/3)

Profits of the farmer :

$$\frac{d_{it}^{A}}{d_{it}} = p_{t}^{A} y_{it}^{A} - p_{t}^{N} \left(i_{it}^{A} + S \left(\varepsilon_{t}^{i} \frac{i_{it}^{A}}{i_{it-1}^{A}} \right) i_{it-1}^{A} \right) - w_{t}^{A} h_{it}^{A} - p_{t}^{N} v \left(x_{it} \right),$$

For the land cost function $v(x_{it})$, we opt for an unopiniated form:

$$v(x_{it}) = \frac{\tau}{1+\phi} x_{it}^{1+\phi}$$

 $\tau > 0$: scale parameter; ϕ : elasticity of intermediate input to land:

- $\phi > 0$ land costs exhibits increasing returns, $\phi = 0$ linear returns and $\phi < 0$ decreasing returns.
- Data favors $\phi \ge 0$ (as weather shocks generate recessions).

Agricultural sector and the weather (3/3)

Lastly, the optimization of profits is given by:

$$\max_{\left\{h_{it}^{A}, i_{it}^{A}, k_{it}^{A}, \ell_{it}\right\}} E_{t} \sum_{\tau=0}^{\infty} \left\{\Lambda_{t, t+\tau} d_{it+\tau}^{A}\right\}$$

s.t. $y_{it}^{A} = \varepsilon_{t}^{Z} \ell_{it-1}^{\omega} \left[\left(k_{it-1}^{A}\right)^{\alpha} \left(\kappa_{A} h_{it}^{A}\right)^{1-\alpha}\right]^{1-\omega}$
s.t. $i_{it}^{A} = k_{it}^{A} - (1 - \delta_{K}) k_{it-1}^{A}$

FOC on land ℓ_{it} :

cu

$$\underbrace{p_{t}^{N} v'(x_{it})}_{\text{rrent marginal land cost}} = \underbrace{E_{t} \left\{ \Lambda_{t,t+1} \left[\omega p_{t+1}^{A} \frac{y_{it+1}^{N}}{\ell_{it}} + (1 - \delta_{\ell}) \Omega\left(\varepsilon_{t+1}^{W}\right) p_{t+1}^{N} v'(x_{it+1}) \right] \right\}}_{\text{expected marginal gains}}$$

Estimation

	Prior distributions		ions	Posterior distribution	
	Shape	Mean	Std.	Mean [5%:95%]	
σ_H Labor disutility	\mathcal{B}	2	0.75	1.87 <i>[1.32:2.40]</i>	
b Consumption habits	${\mathcal B}$	0.7	0.10	0.82 [0.74:0.90]	
ι Labor sectoral cost	${\mathcal G}$	2	1	2.32 [1.36:3.31]	
κ Investment cost	\mathcal{N}	4	1.50	1.83 [0.77:2.91]	
μ Subst. by type of goods	${\mathcal G}$	1.5	0.8	4.93 [3.53:6.26]	
μ_N Subst. home/foreign	${\mathcal G}$	1.5	0.8	1.91 [0.86:2.94]	
μ_A Subst. home/foreign	${\mathcal G}$	1.5	0.8	0.41 [0.26:0.56]	
ϕ Land expenditures cost	${\mathcal G}$	1	0.60	0.76 [0.02:1.51]	
heta Land-weather elasticity	U	0	10	8.62 [2.3:15.78]	
Marginal log-likelihood				-1012.83	

Table 1: Prior and posterior distributions of structural parameters.

Weather shock propagation

Figure 3: System response to an estimated weather shock η_t^W (pp dev ss).

Variance decomposition

Figure 4: Forecast error variance decomposition at the posterior mean for different time horizons (one, ten, forty and unconditional) for four observable variables.

Climate change and Business Cycles

A change in the state of the climate that can be identified (*e.g.*, by using statistical tests) by changes in the **mean and/or the variability** of its properties, and that persists for an extended period, typically decades or longer IPCC (2014)

Climate is supposed to be stationary in our framework: our set-up is irrelevant for analyzing changes in mean climate values.

However, it allows for changes in the variance of climate.

Climate change and business cycles (1/2)

How much is the weather variance expected to increase?

Notes: (a) represents historical CO_2 emissions as well as their projections up to 2100 under each scenario. The estimation of the standard errors of projected precipitations σ_t^W for each representative concentration pathway is represented in panel (b). Their linear trend from 2013 to 2100 is depicted in panel (c). Ewen Gallic, Gauthier Vermandel | NGFS Workstream on Monetary Policy 2

28 / 32

Climate change and business cycles (2/2)

		1994-2016 2100 (projections)				
		Benchmark	RCP 2.6	RCP 4.5	RCP 6.0	RCP 8.5
$sd(\eta^W_t)$	Weather shock	100	95.90	106.82	109.30	123.25
$sd(Y_t)$	GDP	100	99.82	100.15	100.23	100.72
$sd(Y_t^A)$	Agriculture	100	96.89	102.54	103.86	111.53
$E(\mathcal{W}_t)$	Welfare	-158.02	-158.00	-158.04	-158.06	-158.13
λ (%)	Welfare cost	0.4023	0.3562	0.4417	0.4623	0.5873

Table 2: Changes in Standard-Errors of Simulated Observables Under Climate Change Scenarios.

5. Opening remarks

Opening remarks (1/2)

The analysis of weather shocks can be seamlessly integrated into the existing macroeconomic modelling frameworks used by central banks and policymakers.

SVAR Integration:

- The identification strategy used in this paper—a Cholesky decomposition with exogenous weather shocks identified at business cycle frequencies—can be directly embedded into standard SVAR models of any central bank.
- This approach requires minimal adjustments to existing forecasting tools, making it a pragmatic option for central banks seeking to monitor the impact of climate-related shocks on economic fluctuations.

Weather Shocks Opening remarks

Opening remarks (2/2)

- DSGE Integration: On the structural side, the framework can be extended to enrich baseline DSGE forecasting models:
 - By incorporating a simple **agricultural sector affected by weather shocks**, we can quantify their contribution to aggregate fluctuations and assess their impact on *GDP-at-risk*.
 - The model is implemented in Dynare and can be adapted to various settings, with or without nominal rigidities, providing **flexibility** for different institutional needs.
 - Fast solution for assessing the variance effects of climate change.

Both approaches (DSGE/VAR) are highly **modular** and can be tailored to the specific objectives of the NGFS macroeconomic workstream. Whether for **short-term forecasting** or **long-term risk assessment**, this framework offers a robust and operational tool to evaluate the macroeconomic implications of weather shocks.

6. Appendix

References I

- Crofils, C., Gallic, E., and Vermandel, G. (2025). The dynamic effects of weather shocks on agricultural production. *Journal of Environmental Economics and Management*, 130:103078.
- Narasimhan, B. and Srinivasan, R. (2005). Development and evaluation of soil moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI) for agricultural drought monitoring. *Agricultural and Forest Meteorology*, 133(1):69–88. doi:10.1016/j.agrformet.2005.07.012.
- Nordhaus, W. D. (1991). To slow or not to slow: the economics of the greenhouse effect. *The economic journal*, 101(407):920–937. doi:10.2307/2233864.
- Pindyck, R. S. (2017). The use and misuse of models for climate policy. *Review of Environmental Economics and Policy*, 11(1):100–114. doi:10.1093/reep/rew012.

Weather Shocks Appendix

Households (1/2)

There are j households maximizing welfare index:

$$E_t \sum_{\tau=0}^{\infty} \beta^{\tau} \left[\frac{1}{1 - \sigma_C} C_{jt+\tau}^{1 - \sigma_C} - \frac{\chi}{1 + \sigma_H} h_{jt+\tau}^{1 + \sigma_H} \right] C_{t-1+\tau}^{b\sigma_C}, \tag{6}$$

With an imperfect substitutability of labor supplies between the agricultural and non-agricultural sectors:

$$h_{jt} = \left[\left(h_{jt}^{N} \right)^{1+\iota} + \left(h_{jt}^{A} \right)^{1+\iota} \right]^{1/(1+\iota)}.$$
(7)

And real budget constraint:

$$\sum_{s=N,A} w_t^s h_{jt}^s + r_{t-1} b_{jt-1} + rer_t r_{t-1}^* b_{jt-1}^* - T_t \ge C_{jt} + b_{jt} + rer_t b_{jt}^* + p_t^N rer_t \Phi(b_{jt}^*).$$
(8)

Weather Shocks Appendix

Households (2/2)

The CES consumption bundle between non-agricultural and agricultural goods is determined by :

$$C_{jt} = \left[(1-\varphi)^{\frac{1}{\mu}} (C_{jt}^{N})^{\frac{\mu-1}{\mu}} + \left(\varphi \varepsilon_{t}^{A}\right)^{\frac{1}{\mu}} (C_{jt}^{A})^{\frac{\mu-1}{\mu}} \right]^{\frac{\mu}{\mu-1}},$$
(9)

with $P_t = [(1 - \varphi) (P_{C,t}^N)^{1-\mu} + \varphi (P_{C,t}^A)^{1-\mu}]^{1/(1-\mu)}.$

▶ In addition, each C_{jt}^N and C_{jt}^A are themselves sub-indexes between home and foreign goods:

$$C_{jt}^{s} = \left[(1 - \alpha_{s})^{\frac{1}{\mu_{s}}} (c_{jt}^{s})^{\frac{(\mu_{s}-1)}{\mu_{s}}} + (\alpha_{s})^{\frac{1}{\mu_{s}}} (c_{jt}^{s*})^{\frac{(\mu_{s}-1)}{\mu_{s}}} \right]^{\frac{\mu_{s}}{(\mu_{s}-1)}}, \ s = N, A$$

with $P_{C,t}^{s} = [(1 - \alpha_{s})(P_{t}^{s})^{1-\mu_{s}} + \alpha_{s}(e_{t}P_{t}^{s*})^{1-\mu_{s}}]^{1/(1-\mu_{s})}.$

Weather Shocks

Non-agricultural sector

▶ There is a continuum of firms indexed by $i \in [0, n]$ maximizing profits:

$$d_{it}^{N} = p_{t}^{N} y_{it}^{N} - p_{t}^{N} \left(i_{it}^{N} + S \left(\varepsilon_{t}^{i} \frac{i_{it}^{N}}{i_{it-1}^{N}} \right) i_{it-1}^{N} \right) - w_{t}^{N} h_{it}^{N},$$
(10)

$$y_{it}^{N} = \varepsilon_{t}^{Z} \left(k_{it-1}^{N} \right)^{\alpha} \left(h_{it}^{N} \right)^{1-\alpha}, \qquad (11)$$

Law of motion of physical capital

$$i_{it}^{N} = k_{it}^{N} - (1 - \delta_{K}) k_{it-1}^{N}, \qquad (12)$$

Weather Shocks Appendix

Foreign Economy

Endowment economy with exogenous consumption:

$$\log\left(c_{jt}^*
ight) = (1-
ho_*)\log\left(ar{c}_j^*
ight) +
ho_*\log\left(c_{jt-1}^*
ight) + \sigma_*\eta_t^*,$$

Foreign households solve:

$$\max_{\substack{\{c_{jt}^*, b_{jt}^*\}}} \sum_{\tau=0}^{\infty} \beta^{\tau} E_t \left\{ \mathcal{U} \left(c_{jt+\tau}^*, c_{t-1+\tau}^* \right) \right\},\\ s.t. : r_{t-1}^* b_{jt-1}^* = c_{jt}^* + b_{jt}^* \end{cases}$$

So that foreign consumption shocks affect the domestic country through imports and the real exchange rate.

Market Clearing (1/3)

Non agricultural sector clears:

$$nY_t^N = (1 - \varphi) \left(1 - \alpha_N\right) \left(\frac{P_t^N}{P_{C,t}^N}\right)^{-\mu_N} \left(\frac{P_{C,t}^N}{P_t}\right)^{-\mu} C_t$$
$$+ \left(1 - \varphi\right) \alpha_N \left(\frac{1}{e_t} \frac{P_t^N}{P_{C,t}^{N*}}\right)^{-\mu_N} \left(\frac{P_{C,t}^{N*}}{P_t^*}\right)^{-\mu} C_t^*$$
$$+ G_t + I_t + v \left(x_t\right) + \Phi(b_t^*)$$

where $I_t = nI_t^N + (1 - n) I_t^A$..

Weather Shocks - Appendix

Market Clearing (2/3)

► Agricultural sector clears:

$$(1-n)Y_t^A = \varphi \left(1-\alpha_A\right) \left(\frac{P_t^A}{P_{C,t}^A}\right)^{-\mu_A} \left(\frac{P_{C,t}^A}{P_t}\right)^{-\mu} C_t$$
$$+ \varphi \alpha_A \left(\frac{1}{e_t} \frac{P_t^A}{P_{C,t}^{A*}}\right)^{-\mu_A} \left(\frac{P_{C,t}^{A*}}{P_t^*}\right)^{-\mu} C_t^*$$

► Total production reads as:

$$Y_t = np_t^N Y_t^N + (1-n) p_t^A Y_t^A$$

Market Clearing (3/3)

The law of motion of motion of foreign debt is given by:

$$b_t^* = r_{t-1}^* \frac{rer_t}{rer_{t-1}} b_{t-1}^* + tb_t,$$
(13)

And the trade balance reads as:

$$egin{aligned} tb_t &= p_t^N \left[nY_t^N - G_t - I_t - v\left(x_t
ight) - \Phi(b_t^*)
ight] \ &+ p_t^A (1-n)Y_t^A - C_t. \end{aligned}$$

Weather Shocks L Appendix

Calibration (1/2)

Variable	Interpretation	Value
β	Discount factor	0.9883
δ_K	Capital depreciation rate	0.025
α	Share of capital in output	0.33
g	Share of spending in GDP	0.22
arphi	Share of good in consumption basket	0.15
$ar{H}^{\scriptscriptstyle N}=ar{H}^{\scriptscriptstyle A}$	Hours worked	1/3
σ_{C}	Risk aversion	1.5
$\overline{\ell}$	Land per capita	0.40
ω	Share of land in agricultural output	0.15
δ_ℓ	Rate of decay of land efficiency	0.10
α_N	Openness of non-agricultural market	0.25
α_A	Openness of agricultural market	0.45
χ_B	International portfolio cost	0.007
σ^*_{C}	Foreign risk aversion	1.5
<i>b</i> *	Foreign consumption habits	0.7

Table 3: Calibrated parameters.

Calibration (2/2)

Variable	Interpretation	Model	Data
		0.50	0.57
$\underline{C}/\underline{Y}$	consumption-to-GDP	0.56	0.57
I/Y	investment to GDP	0.22	0.22
400 imes (ar r-1)	real interest rate	4.74	4.75
$(1 - \varphi) lpha_{N} + \varphi lpha_{A}$	goods market openness	0.28	0.29
$n\bar{Y}^A/\bar{Y}$	farming production-to-GDP	0.08	0.07

Table 4: Steady state ratios (empirical ratios are computed using data between 1990 to 2017).

Estimation (1/3)

The model is estimated using Bayesian techniques which combine likelihood estimation with prior information via Dynare.

- We estimate 6 sequences of shocks
- ► We estimate 21 structural parameters
- Parameters related to weather conditions are estimated agnostically with diffuse prior.

Weather Shocks Appendix

Estimation (2/3)

Figure 5: Observable variables used to estimate the DSGE model.

Weather Shocks - Appendix

Estimation (3/3)

Figure 6: Prior and posterior distrib. of structural params for New Zealand (excluding shocks).

Weather Shocks L Appendix

Do weather shocks matter?

	No Weather-Driven	Weather-Driven
	Business Cycles	Business Cycles
	$\mathcal{M}\left(heta=0 ight)$	$\mathcal{M}\left(heta eq 0 ight)$
Prior probability	1/2	1/2
Laplace approximation	-1016.853	-1012.835
Posterior odds ratio	1.000000	55.626
Posterior model probability	0.018	0.982

Table 5: Prior and posterior model probabilities.