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Algorithmic Fairness Through Counterfactual Analysis and Optimal Transport
Context

Motivations
The Biden Administration forced illegal
and immoral discrimination programs,
going by the name “diversity, equity, and
inclusion” (DEI), into virtually all aspects
of the Federal Government, in areas ranging
from airline safety to the military. [. . . ] The
public release of these plans demonstrated
immense public waste and shameful
discrimination. That ends today.
Americans deserve a government committed
to serving every person with equal dignity
and respect [. . . ]

Executive orders 14151 (“Ending Radical and Wasteful Government DEI Programs and Preferencing” Jan 20, 2025) and 14173 (“Ending Illegal
Discrimination And Restoring Merit-Based Opportunity” Jan 21, 2025)
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Context

Broad Framework

We want to make predictions on an outcome
variable (e.g., claim frequency, loan default risk,
recidivism).
To do so, we use a statistical model, or a
machine learning model fed with historical
data.
To comply with regulations, we want to obtain
a model that does not discriminate with
respect to a sensitive attribute.

Digital illustration of fairness and machine learning generated
using DALL-E 3. Retrieved from ChatGPT Interface.
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What is Discrimination? An Economic Perspective

In economics, following Becker (1957), discrimination:
situations in which individuals are treated differently based on
attributes such as race, gender, etc., rather than their
productivity or other relevant characteristics.

Disparate treatment (or taste-based discrimination):
intentional discrimination, where individuals are treated
differently explicitly because of a protected characteristic.
Disparate impact: policy, practice, or decision that appears
neutral on the surface disproportionately affects members of a
protected group, even without intentional discrimination.

From a Law perspective: direct vs. indirect discrimination
(Campbell and Smith, 2023)
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What is Discrimination? A Statistical Perspective
Statistical discrimination (see, e.g., Baldus and Cole,
1980): individuals are treated differently based on group-level
statistical averages, rather than their individual
characteristics. They do not arise from prejudice or bias but
from decision-makers relying on imperfect information
and using group membership as a proxy for individual traits.
Some forms of discrimination are considered unacceptable
(Hellman, 2008).
Fisher (1936): separating or classifying observations into
distinct groups based on measured characteristics. In this
context, discrimination is purely a statistical operation with
no connotation of social bias or inequality.
However, statistical discrimination may lead to:

Reinforcement of Biases (through lack of opportunities).
Legal and Ethical Concerns.
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A Focus on the Actuarial Context: Risk Discrimination

In this talk, we will focus on predictive models rooted in actuarial science.

“To be an actuary is to be a specialist in generalization, and
actuaries engage in a form of decisionmaking that is sometimes
called actuarial. Actuaries guide insurance companies in making
decisions about large categories (teenage males living in
northern New Jersey) that have the effect of attributing to the
entire category certain characteristics (carelessness in driving) that
are probabilistically indicated by membership in the category, but
that still may not be possessed by a particular member of the
category (this particular teenage male living in northern New
Jersey).” (Schauer 2006, p. 4)
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Assessing Risk for Managing Solvency

10% 20% 10% 10% 10% 10% 20% 20% 20% 20%

To cover future claims, insurance companies must set their premiums.

The pricing exercise boils down to a fair allocation problem in Game Theory (Nash,
1950; Shapley, 1953; Harsanyi, 1959)
A solution: actuarially fair premiums Arrow (1963):

individuals with similar risk levels pay similar amounts (horizontal equity),

those with higher risks pay correspondingly higher premiums (vertical equity).
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Actuarial Fairness: Is it “Fair?”

To be actuarially fair, the premiums should be equal to
the expected loss of the insured risks (Arrow, 1963)

“In the insurance industry, the concept of actuarial fairness
serves to establish what could be adequate, fair premiums.
Accordingly, premiums paid by policyholders should match as
closely as possible their risk exposure (i.e. their expected
losses). Such premiums are the product of the probabilities of
losses and the expected losses.” (Landes, 2014)

“Since the insurer assumes the individual insured’s risk of loss,
the premium should be fundamentally based upon the
expected value of an insured’s losses.” (Walters, 1981)
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Toy Example: Risk Estimation

Assume we want to predict claim frequency using a Poisson regression model, using
three predictors.

Further assume that the number of claims y has a Poisson distribution with a conditional
mean that depends on some features X according to the following structural model:

E (yi |X i) = exp (X iβ)

The set of predictors X contains three features :

A binary variable indicating whether the insured lives in an urban area.

The insured’s age.

The insured’s gender.
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Toy Example: Risk Estimation

The predicted value will thus be:ŷ(man) = exp
[
β̂0 + β̂11urban + β̂2age + β̂3

]
ŷ(woman) = exp

[
β̂0 + β̂11urban + β̂2age

]
Hence:

ŷ(man) = exp
[
β̂0 + β̂11urban + β̂2age + β̂3 1man

]
= ŷ(woman) · exp[β3]

×eβ3 ceteris paribus

If β3 is small, eβ3 ≈ 1 + β3. Thus, if β3 = 0.2, it corresponds to +20% for men.
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Toy Example: Risk Estimation

In the toy example, the estimates indicate that men are at higher risks than women:
Gender is a statistical predictor.

With such insight from the data, should the premium paid by men to an insurance
company be higher than that paid by women?
In other words, should the insurance company discriminate by gender in such a
context?

risk-based discrimination

discrimination w.r.t. a sensitive attribute.
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Policymakers Point of View: Europe

Europe: Court of Justice of the European Union – 2011

“At the moment, a careful young male driver pays more for auto insurance just
because he is a man. Under the ruling, insurers can no longer use gender as
the sole determining risk factor to justify differences in individuals’
premiums. But the premiums paid by careful drivers – male and female – will
continue to decrease based on their individual driving behaviour. The ruling does
not affect the use of other legitimate risk-rating factors (such as, for example, age
or health status) and prices will continue to reflect risk.“ (Commission, 2011
through Frezal and Barry, 2019)
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Policymakers Point of View: Québec

Québec: Charte des droits et libertés de la personne (C-12, Article 20.1)

“Dans un contrat d’assurance ou de rente, un régime d’avantages sociaux, de
retraite, de rentes ou d’assurance ou un régime universel de rentes ou d’assurance,
une distinction, exclusion ou préférence fondée sur l’âge, le sexe ou l’état civil est
réputée non discriminatoire lorsque son utilisation est légitime et que le motif
qui la fonde constitue un facteur de détermination de risque, basé sur des
données actuarielles.”
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Fair Discrimination in Insurance: an Oxymoron

“what is unique about insurance is that even statistical discrimination (the act by which
an insurer uses a characteristic of an insured or potential insured as a statistic for the
risk it poses to an insurer), which by definition is absent any malicious intentions, poses
significant moral and legal challenges. Why? Because on the one hand, policy makers
would like insurers to treat their insureds equally, without discriminating based on
race, gender, age, or other characteristics, even if it makes statistical sense to
discriminate. [...] On the other hand, at the core of insurance business lies
discrimination between risky and non-risky insureds. But riskiness often
statistically correlates with the same characteristics policy makers would like to
prohibit insurers from taking into account.” (Avraham, 2017)
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Individual Characteristics

In our example, gender may be a statistical predictor, but from the European
legislation perspective using it leads to a direct discrimination.

Here, gender is not a causal predictor. It does not reflect individual behavior.
In the era of big data and artificial intelligence, a naive solution consists in
hiding the sensitive attribute, and use a machine learning model trained on
additional (hopefully behavioral) data:

explicability issues

proxy discrimination issues (Pedreshi et al., 2008; Dwork et al., 2012).
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Individual Characteristics

“shifting from socialized to individualized risk also
transforms the very purpose of insurance. [...] the most
significant sources of risk—and thus the proper allocation of
responsibility—may lie outside the individual in the natural
or social environment. The fact that these structural forces
cannot easily be measured does not mean that they can be
conveniently ignored. Doing so not only excludes people
unfairly but also threatens the way that insurance systems
can act as a prosaic but intensely practical manifestation of
solidarity.” (Fourcade and Healy, 2024)
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Individualization, Actuarial Fairness and Accuracy

We can also question the “accuracy” of individual predictions.

Recall that following Arrow (1963):
“actuarially fair premiums” = “expected losses”

But, with different models and different portfolio, we can have different premiums.
There is no law of one price in insurance.

“The Law states that identical goods must have identical prices. [...] Economic theory
teaches us to expect the Law to hold exactly in competitive markets with no
transactions costs and no barriers to trade.” (Lamont and Thaler, 2003)
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Individualization, Actuarial Fairness and Accuracy

Premiums are based on an estimation of the expected loss that maximizes
accuracy:

ȳ = arg min
γ∈R


n∑

i=1
(yi − γ)2

 or E[Y ] = arg min
γ∈R

∑
y

(y − γ)2 P[Y = y ]


average loss / empirical losses

least squares

i.e., we want to minimize the error between observed loses y and predictions ŷ .
If the prediction is a binary outcome y ∈ {0, 1} (e.g., accident, default), it is hard to
assess if ŷ = 8.2740164% is accurate or not.
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Individualization, Actuarial Fairness and Accuracy

Does accuracy for a single individual make any sense?

“When we speak of the ‘probability of death’, the exact meaning of this expression can
be defined in the following way only. We must not think of an individual, but of a
certain class as a whole, e.g., ‘all insured men forty-one years old living in a given
country and not engaged in certain dangerous occupations’. A probability of death is
attached to the class of men or to another class that can be defined in a similar way.
We can say nothing about the probability of death of an individual even if we know his
condition of life and health in detail. The phrase ‘probability of death’, when it
refers to a single person, has no meaning at all for us.” (von Mises, 1957) (p. 11)
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Individualization, Actuarial Fairness and Accuracy
Is the predicted value well estimated? “among patients with
an estimated risk of 20% , we expect 20 in 100 to have or
to develop the event” (Van Calster et al., 2019)

If 40 out of 100 in this group are found to have the
disease, the risk is underestimated.
If 10 out of 100 in this group are found to have the
disease, the risk is overestimated.

The prediction m̂(X) of Y is a well-calibrated prediction if:

E
[

Y | Ŷ = ŷ
]

= ŷ , ∀ŷ

20 out of 100 (proportion y = 1)

estimated risk ŷ = 20%
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Individualization, Actuarial Fairness and Accuracy

A model will be:

Globally well balanced if:

E
[

Ŷ
]

= E[ Y ]

premium collected losses paid

Locally well balanced, or well-calibrated if:

E
[

Ŷ | Ŷ = ŷ
]

= E
[

Y | Ŷ = ŷ
]

= ŷ , , ∀ŷ

For more details on calibration see Fernandes Machado et al. (2024a,b)
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Road Map

1 Context

2 Quantifying Unfairness

3 Counterfactuals with Sequential Transport

4 Counterfactuals for Categorical Data
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Quantifying Unfairness

What is Algorithmic Fairness?

Let m : X → Y be a predictive model that predicts an outcome Y (e.g., claims)
w.r.t. a sensitive attribute S ∈ S (e.g., gender, race) using features X .

Regulations may prohibit discrimination on the sensitive attribute, requiring m to
be fair w.r.t. to S.
Approaches to evaluate and, if necessary, mitigate the unfairness of model
predictions Ŷ = m(X) for S:

Group fairness: compare Ŷ between groups defined by S, e.g., salary for males vs.
salary for females (Barocas et al., 2023; Hardt et al., 2016).

Individual fairness: focus on a specific individual in the disadvantaged group (Dwork
et al., 2012).

Counterfactual fairness: causality-based fairness (Plečko and Meinshausen, 2020;
Plečko et al., 2024)
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Mitigation

Some techniques can be used to prevent models from perpetuating biases with respect
to the sensitive attribute. These techniques can be applied at several stages (Hajian and
Domingo-Ferrer, 2013)

1 Preprocessing: transform source data to remove biases before model training.

2 In-processing: modify algorithms to embed fairness constraints during training.

3 Postprocessing: alter models after training to correct unfair outcomes.

Ewen Gallic | � egallic.fr | Séminaire interne CRM-CNRS, Montréal 25 / 72

https://egallic.fr/


Algorithmic Fairness Through Counterfactual Analysis and Optimal Transport
Quantifying Unfairness

How Can Fairness be Quantified?

We would like to quantify unfairness of a supervised model m̂(·) trained on a set
{(yi , x i , si)}n

i=1, where y is the value to predict (i.e., the outcome), x is a set of
(unprotected) predictors, s is a protected attribute, and i ∈ {1, . . . , n} denotes an
individual.

The outcome may be:
Binary (classification task):

ŷi = 1(m̂(x i , si) > threshold) ∈ {0, 1}

Continuous (regression task):
ŷi = m̂(x i , si) ∈ [0, 1]: a score

ŷi = m̂(x i , si) ∈ R: a premium
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Group Fairness Metrics in a Nutshell

Demographic Parity → E
[

Ŷ | S = A
]

= E
[

Ŷ | S = B
]

Equalized Odds → E
[

Ŷ | Y = y , S = A
]

= E
[

Ŷ | Y = y , S = B
]
, ∀y

Calibration → E
[

Y | Ŷ = u , S = A
]

= E
[

Y | Ŷ = u , S = B
]
, ∀u

sensitive sensitive
?

score ŷ
outcome y

?

?
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Illustration With the COMPAS Dataset

The algorithm “Correctional Offender Management Profiling for Alternative
Sanctions” attributes a score to each convicted individual in some states in the
U.S.A, to estimate the likelihood of them committing a crime again if they are
released from prison.

This scoring classifier uses more than 100 predictors.

Race is not one of them. However, when looking at the predicted values of the
model, Angwin et al. (2016) claimed it was biased against Black people.

The dataset they used is now available in an R packages: fairness.
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Equality of False Positive Rates?

Larson et al. (2016) looked at the
Equalized Odds:

For Black people , among those who
did not re-offend (y), 42% were
wrongly classified (ŷ ̸= y).
For White people , among those who
did not re-offend , 22% were
wrongly classified .
Since 42% ≫ 22%: unfair .
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42%
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Did not
 re−offend

P
[

Ŷ = High | Y = no , S = Black
]

= 42%=P
[

Ŷ = High | Y = no , S = White
]

= 22%
?
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Another Metric, Another Result...

Dieterich et al. (2016): predictive parity
(recidivism rate at each risk level)

For Black people , among those who
were classified as high risk (ŷ),
35% did not re-offend (y).
For White people , among those who
were classified as high risk , 40%
did not re-offend .
Since 35% ≈ 40%: fair .
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]
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[

Y = no | Ŷ = High , S = White
]

= 40%
?
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Adjusting the Probability Threshold
We focus on binary decisions (ŷ ∈ {0, 1}).

Demographic Parity → P
[

Ŷ = 1 | S = A
]

= P
[

Ŷ = 1 | S = B
]

These decisions are usually based on scores, using a threshold τ :

Demographic Parity → P
[

m̂(X , S) > τ | S = A
]

= P
[

m̂(X , S) > τ | S = B
]

Demographic Parity can be achieved by setting different threshold in the groups:

Demographic Parity → P
[

m̂(X , S) > τA | S = A
]

= P
[

m̂(X , S) > τB | S = B
]

It is then usually impossible to achieve equalized odds with this strategy.

?

?

binary decision ŷ

score m̂
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Counterfactual Fairness

1 Affirmative actions: “The contractor will not discriminate against any employee
or applicant for employment because of race, creed, color, or national origin. The
contractor will take affirmative action to ensure that applicants are employed,
and that employees are treated during employment, without regard to their race,
creed, color, or national origin” (John F. Kennedy, EO #10925, March 6, 1961)
“In order to get beyond racism, we must first take account of race. There is no
other way. And in order to treat some persons equally, we must treat them
differently.” (Justice Harry Blackmun, Regents of Univ. of Cal. v. Bakke, 438 U.S.
265, 407, via Scalia (1979))

2 Blindness: “The way to stop discrimination on the basis of race is to stop
discriminating on the basis of race.” (Chief Justice John G. Roberts, Jr, Parents
Involved in Community Schools v. Seattle School District No. 1, via Turner
(2015))
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Counterfactual Fairness

1 Ceteris paribus: “We capture fairness by the principle that any two individuals
who are similar with respect to a particular task should be classified similarly”
(Dwork et al., 2012).

Similarity fairness is achieved if for all i ̸= j such that x i = x j and si ̸= sj , then:

m(x i , si = A) = m(x j , sj = B)

2 Mutatis mutandis: build on the idea of counterfactuals: “What would this woman
earnings would have been had she been a man?” (Kusner et al., 2017; Kilbertus
et al., 2017a; De Lara et al., 2021; Charpentier et al., 2023; Fernandes Machado
et al., 2024c)
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Building Counterfactuals

Consider the height of females and males.
What is the counterfactual of a female
with height 170cm (=5’ 7") had she
been a male?
Within the distribution of females, this
corresponds to a quantile level
α = 84.8%.

Ffemale(170) = 84.8%.

84.8%

150 155 160 165 170 175

height distribution (F)
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Building Counterfactuals

The corresponding quantile in the
height distribution of males is:

F−1
male(84.8%) = 184cm (≈ 6′).

84.8%

165 175 185

height distribution (M)
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Building Counterfactuals

Counterfactual of a 170cm (=5’ 7") female
had she been a male?

T ⋆(170) = ( F−1
male ◦ Ffemale )(170)

= 184 cm (≈ 6′).

84.8%
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Optimal Transport and Monge Mapping

Optimal Transport: how to find the best way
to transport mass from one distribution to
another while minimizing a given cost.
It involves constructing a joint distribution
(coupling) between two marginal probability
measures (Villani, 2003, 2009).
Consider a measure µ0 (resp. µ1) on a metric
space X0 (resp. X1). The goal is to move every
elementary mass from µ0 to µ1 in the most
“efficient way.”

From Monge (1781): Mémoire sur
la théorie des déblais et des
remblais.
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Optimal Transport and Monge Mapping

Definition
Let X0 and X1 be two metric spaces. Suppose a map T : X0 → X1.
The push-forward of µ0 by T is the measure µ1 = T#µ0 on X1 s.t.
∀B ⊂ X1, T#µ0(B) = µ0(T−1(B)).

Proposition
For all measurable and bounded φ : X1 → R,∫

X1
φ(x1) dT#µ0(x1) =

∫
X0

φ(T (x0)) dµ0(x0) .
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Optimal Transport and Monge Mapping

Proposition
If X0 = X1 is a compact subset of Rd and µ0 is atomless, then there exists T such that
µ1 = T#µ0.

Definition: Monge problem, Monge (1781)

If we further assume µ0 and µ1 are absolutely continuous w.r.t. Lebesgue measure, then
we can find an “optimal” mapping, satisfying

inf
T#µ0=µ1

∫
X0

c
(
x0, T (x0)

)
dµ0(x0),

for a general cost function c : X0 × X1 → R+.

The optimal mapping is denoted T ∗.
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Optimal Transport plans

In general settings, however, such a deterministic mapping T ∗ between probability
distributions may not exist.

Kantorovich relaxation, Kantorovich (1942)

The Kantorovich relaxation of Monge mapping is defined as

inf
π∈Π(µ0,µ1)

∫
X0×X1

c(x0, x1)π(dx0, dx1),

for a general cost function c : X0 × X1 → R+ and Π(µ0, µ1) the set of all couplings of
µ0 and µ1.

This problem always admits solutions and focuses on couplings rather than deterministic
mappings.
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Univariate Optimal Transport Map

Suppose here that X0 = X1 is a compact subset of R.

As shown in Santambrogio (2015), the optimal Monge map T ⋆ for some strictly convex
cost c such that T ⋆

#µ0 = µ1 is:

T ⋆ = F−1
1 ◦ F0 ,

generalized inverse (quantile function)

cdf associated with µ0
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Counterfactual Fairness in Brief: Links with Causal Inference

Sex Name Treatment Weight (Outcome) Height . . .
ti yi y⋆

i,T←A y⋆
i,T←B TE xi . . .

1 H Alan A 75 75 64 11 172 . . .
2 F Britney B 52 67 52 15 161 . . .
3 F Aya B 57 71 57 14 163 . . .
4 H Amir A 78 78 61 17 183 . . .

Difference in the potential outcomes (or
treatment effect):

TE = y⋆
i ,T←B − y⋆

i ,T←A

If si = A:
the observed value is y⋆

i ,T←A
the counterfactual is y⋆

i ,T←B

For More details on causal inference, see, e.g., Imbens and Rubin (2015); Pearl and
Mackenzie (2018); Cunningham (2021); Chernozhukov et al. (2024)
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Counterfactual Fairness in the ceteris paribus case

Counterfactual fairness is achieved, on average, if:

ATE = E
[

YS←A − YS←B
]

= 0

A decision satisfies counterfactual fairness if “had the protected attributes (e.g., race) of
the individual been different, other things being equal, the decision would have remained
the same.” (Kusner et al., 2017)

Counterfactual fairness for an individual with characteristics x is achieved if:

CATE(x) = E
[

YS←A − YS←B | X = x
]

= 0

Approach based on causal graphs (Plečko and Meinshausen, 2020; Plečko et al., 2024)
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Counterfactual Fairness in the mutatis mutandis case
The protected attribute may affect another variable in a manner accepted as
non-discriminatory (resolving variable, Kilbertus et al., 2017b).

The mutatis mutandis version of the CATE writes:

E
[

YS←A | X = x
]

− E
[

YS←B | X = x⋆
S←B

]

In this version, X | A is transported to X | B (see Plečko and Meinshausen, 2020;
Plečko et al., 2024; De Lara et al., 2021; Charpentier et al., 2023), according to an
assumed causal structure.

In Fernandes Machado et al. (2024c), we propose to unify the causal graph &
optimal transport approaches, using a sequential transport approach.

transported characteristics
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Graphical Models and Causal Networks
A Directed Acyclic Graph (DAG) G = (V , E ) models relationships between
variables as nodes (V ) and edges (E ).

S X1

X2

Y

Such a causal graph imposes some ordering on variables, referred to as
“topological sorting” Ahuja et al. (1993). Here,

S → X2 → X1 → Y .

The joint distribution of X = (X1, . . . , Xd) satisfies the Markov property:

P[x1, · · · , xd ] =
d∏

j=1
P[xj |parents(xj)],

where parents(xi) are the immediate causes of xi .
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Counterfactual for Non Linear Models
From Pearl (2000), let C , X , E be absolutely continuous, and consider i where
Ei = hi(parents(Ei), Ui) with parents(Ei) = x fixed.

Define hi |x(u) = hi(x, u).

ei = hi |x(ui) represents the conditional quantile of Ei at probability level ui .

Its counterfactual counterpart e⋆
i is the conditional quantile (conditioned on x∗)

at the same level ui .

C X E

uC uX uE


C = hc(UC )
X = hx (C , UX )
E = he(C , X , UE ),

c X ⋆ E ⋆

uX uE


C = c (or do(C = c))
X ⋆

c = hx (c, UX )
E ⋆

c = he(c, X ⋆
c , UE ),

where u 7→ hc(·, u), u 7→ hx (·, u) and u 7→ he(·, u) are strictly increasing in u, UC , UX
and UE are independent, supposed to be uniform on [0, 1].
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Topological Ordering (1/4)

Step 1: Assuming a causal graph G.
Step 2: Derive the topological ordering from the DAG:

Knothe-Rosenblatt
rearrangement (Bonnotte,
2013), inspired by the
Rosenblatt chain rule:
provides the “monotone lower
triangular map” (“marginally
optimal” Villani, 2003)

Tkr (x1, · · · , xd) =



T ⋆
1 (x1)

T ⋆
2 (x2|x1)

...
T ⋆

d−1(xd−1|x1, · · · , xd−2)
T ⋆

d (xd |x1, · · · , xd−1)


.

→ Sequentially mapping X|S = 0 to X|S = 1 by conditioning on each preceding node in
the topological order.
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Topological Ordering (2/4)

Sequential Transport extends the Knothe-Rosenblatt map to transport individuals
from X|S = 0 to X|S = 1, while respecting any assumed underlying causal graph.

The sequential conditional transport on graph G writes:

T ⋆
G(x1, · · · , xd) =


T ⋆

1 (x1)
T ⋆

2 (x2| parents(x2))
...

T ⋆
d−1(xd−1| parents(xd−1))

T ⋆
d (xd | parents(xd))

 .
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Topological Ordering (3/4)

sex s

age

job savings

housing

credit

duration

purpose

default

Causal graph in the German Credit dataset from
Watson et al. (2021).

Step 1: Asusming a causal graph G.
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Topological Ordering (4/4)

sex s

age x1

job x2 savings x3

housing x4

credit x5

duration x6

purpose x7

default y

Causal graph in the German Credit dataset from
Watson et al. (2021).

Step 2: sequential conditional
transport based on a topological
ordering:

T ⋆
G(x1, · · · , x7) =



T ⋆
1 (x1)

T ⋆
2 (x2|x1)

T ⋆
3 (x3|x1, x2)

T ⋆
4 (x4|x2, x3)

T ⋆
5 (x5|x1, x2, x4)
T ⋆

6 (x6|x3, x5)
T ⋆

7 (x7|x1, x4, x5, x6)


.
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Transport x1 | s From Group 0 to Group 1
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Sequential Transport (simulated data). Red square: multivariate OT. transport x1 | s .

Ewen Gallic | � egallic.fr | Séminaire interne CRM-CNRS, Montréal 52 / 72

https://egallic.fr/


Algorithmic Fairness Through Counterfactual Analysis and Optimal Transport
Counterfactuals with Sequential Transport

Transport x2 | x1, s From Group 0 to Group 1
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Sequential Transport (simulated data). Red square: multivariate OT. transport x2 | x1, s
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Code

This can be easily done with our I functions from our small package:
remotes::install_github(

repo = "fer-agathe/sequential_transport", subdir = "seqtransfairness")
library(seqtransfairness)
sim_dat <- simul_dataset() # Simulate data
variables <- c("S", "X1", "X2", "Y")
adj <- matrix(

# S X1 X2 Y
c(0, 1, 1, 1,# S

0, 0, 1, 1,# X1
0, 0, 0, 1,# X2
0, 0, 0, 0 # Y

),
ncol = length(variables), byrow = TRUE
dimnames = rep(list(variables), 2))

# Sequential transport according to the causal graph
transported <- seq_trans(data = sim_dat, adj = adj, s = "S", S_0 = 0, y = "Y")
predict(transported) # Transp. values from S=0 to S=1, using the causal graph.
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Interpretable Counterfactual Fairness

Now, assume a logistic regression model was fitted on the simulated data and returned
scores according to:

m(x1, x2, s) =
(
1 + exp

[
−
(
(x1 + x2)/2 + 1(s = 1)

)])−1
.

Observation: (s=0, x1 = −2, x2 = −1)
Prediction : m(0, −2, −1) = 18.24%.

Pred. with Seq. T : m(s = 1, x⋆
1 , x⋆

2 ) = 61.4%

Pred with OT : m(s = 1, x⋆
1 , x⋆

2 ) = 56.5%

S
X2

X1
Y

Assumed causal structure.
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Counterfactual assuming X2 is caused by X1
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Decomposition of the mutatis mutandis difference

The mutatis mutandis difference can be decomposed:

m(s = 1, x⋆
1 , x⋆

2 ) − m(s = 0, x1, x2) = +43.16% (mutatis mutandis diff.)

= m(s = 1, x1, x2) − m(s = 0, x1, x2) : −10.66% (cet. par. diff.)

+ m(s = 1, x⋆
1 , x2) − m(s = 1, x1, x2) : +15.63% (change in x1)

+ m(s = 1, x⋆
1 , x⋆

2 ) − m(s = 1, x⋆
1 , x2) : +38.18% (change in x2|x⋆

1 ) .
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Counterfactual assuming X1 is caused by X2
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What About Transporting Categorical Data?
So far, to build counterfactuals, we have mentioned a quantile interpretation when
the characteristics to transport, x is univariate.
In higher dimensions:

Quantile interpretation (Hallin et al., 2021; Hallin and Konen, 2024)

Mutatis mutandis with DAGs (Plečko and Meinshausen, 2020; Plečko et al., 2024)

or with OT (Black et al., 2020; Charpentier et al., 2023; De Lara et al., 2021)

or with sequential transport (as previously shown).

How can we handle categorical data? What would have been the marital status
of this woman, had she been a man?

In Fernandes Machado et al. (2025), we suggest a method based on transporting
the values of categorical data represented in the simplex.
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In a Nutshell

Consider a categorical feature xj ∈ {xj,1, . . . , xj,dj } (dk categories)
Which can also be denoted, xj ∈ [[dj ]], with [[dj ]] = {1, · · · , dj}.

Our suggested methodology, in two steps:

1 Learn a mapping from X−x (all other features) to Sd (and not the usual [[dj ]]),
using a probabilistic classifier.

2 Build counterfactuals for the data in Sd , using optimal transport,
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Categorical Data to Compositional Data
To predict the labels of x , a probabilistic classifier learns a mapping:

T : X−x → Sd .

For a multinomial logistic regression model, with a softmax loss function:

T̂ (x) = C(1, ex⊤β̂2 , · · · , ex⊤β̂d ) ∈ Sd ,

where β̂2, . . . , β̂d are the estimated coefficients for each category (first category
taken as reference), and where C : Rd

+ → Sd is the closure operator:

C(x) = x
x⊤1 ,

with 1⊤ a row vector of ones.
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Normal Distribution on the Simplex

Let X0 and X1 be random vectors taking
values in S3, both following a “normal
distribution on the simplex”.

Definition
X ∈ Sd follow a “normal distribution on the
simplex” if, for some isomorphism h, the
vector of orthonormal coordinates Z = h(X)
follows a multivariate normal distribution in
Rd−1.

20
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1

Toy data, n = 61 points in S3.
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Optimal Mapping

We consider, e.g., the center log ration transform (h =clr):

clr(x) =
[
log x1

xg
, · · · , log xD

xg

]
,

where xg denotes the geometric mean of x.

Hence, we have Z0 ∼ N (µ0, Σ0) and Z1 ∼ N (µ1, Σ1).

The optimal mapping writes:

z1 = T ⋆(z0) = µ1 + A(z0 − µ0),

where A is a symmetric positive matrix that satisfies AΣ0A = Σ1, which has a
unique solution: A = Σ−1/2

0
(
Σ1/2

0 Σ1Σ1/2
0
)1/2Σ−1/2

0 .
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Gaussian Transport
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Counterfactuals using the clr transformation and Gaussian optimal transports, µ0 7→ µ1 (left),
and µ1 7→ µ0 (right)
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Optimal Transport on the Simplex

Instead of using an isomorphism to represent the data in the Euclidean space an
then apply OT, we can apply OT for measures on Sd using a proper cost function.

In the unit simplex, the Monge-Kantorovitch optimal transport problem can be
expressed using the following cost function Pal and Wong (2020):

c(x, y) = log
(

1
d

d∑
i=1

yi
xi

)
− 1

d

d∑
i=1

log
(yi

xi

)
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Optimal Transport on the Simplex

The discrete version of the Monge-Kantorovitch problem writes:

min
P∈U(n0,n1)


n0∑

i=1

n1∑
j=1

Pi ,j Ci ,j



with U(n0, n1) the set of n0 × n1 matrices (convex transportation polytope):

U(n0, n1) =
{

P : P1n1 = 1n0 and P⊤1n0 = n0
n1

1n1

}
,

n0, n1: number of observations in group 0 and in group 1.

n0 × n1 cost matrix Cij = c(xi , xj)weights
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Counterfactual
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Empirical counterfactual of x0,3 (orange square) and path to the counterfactual obtained with
Gaussian optimal transport on the simplex (shown with the line).
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Conclusion

Without addressing algorithmic fairness issues: having fair model is illusive.

Addressing fairness using a sequential approach provides an explainable method.

We suggest using optimal transport on the simplex to build counterfactuals for
categorical data.

Agathe
Fernandes Machado

Arthur
Charpentier

Marouane
Il Idrissi

Ana María
Patrón Piñerez
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