
Machine Learning Training: Hands-on Sessions

Ewen Gallic

December 2021

2

Contents

List of Tables 5

List of Figures 7

Hands-on 9
Required packages . 9

1 Install R 13
1.1 Windows Users . 13

1.1.1 Install R . 13
1.1.2 Install RStudio . 13
1.1.3 Install Rtools . 14
1.1.4 Once installed . 14
1.1.5 Troubleshooting . 14

1.2 Mac OS Users . 14
1.2.1 Install R . 14
1.2.2 Install RStudio . 14
1.2.3 Once installed . 15
1.2.4 Troubleshooting . 15

1.3 Linux Users . 15
1.3.1 Install RStudio . 15
1.3.2 Once installed . 15

2 Gradient Descent 17
2.1 Vanilla Gradient Descent . 17

2.1.1 Concept . 17
2.1.2 A First Example in Dimension 1 . 18
2.1.3 Moving to Higher Dimensions Optimisation Problems 33
2.1.4 Case Study: Linear Regression . 49

2.2 Variants of the Gradient Descent Algorithm 55

3

4 CONTENTS

2.2.1 Frequency of Updates & Samples Used 56
2.2.1.1 Stochastic Gradient Descent 56
2.2.1.2 Batch Gradient Descent . 64
2.2.1.3 Mini-Batch Gradient Descent 70

2.2.2 Varying the Learning Rate . 79
2.2.2.1 Linear Decaying Rate . 79
2.2.2.2 Quadratic Decaying Rate . 79
2.2.2.3 Exponential Decaying Rate 79

2.3 Other Algorithms . 79
2.3.1 Newton’s Method . 80
2.3.2 Coordinate Descent Algorithm . 85

2.3.2.1 When the Function to Optimize is not Differentiable in all Points 97

3 Overfitting 101
3.1 First Example: Default of Credit Card . 101

3.1.1 Somme Summary Statistics on the Whole Dataset 104
3.1.2 Fitting the Model . 112
3.1.3 Randomly Assigning the Classes . 115
3.1.4 Performances on Unseen Data . 119
3.1.5 K-fold Cross Validation . 126
3.1.6 Leave-one-out Cross Validation . 130

3.2 Second Example: Selling Price of Cars . 132
3.2.1 Predicting the Price with a Random Forest 137
3.2.2 Cross-validation to Select the Hyperparameters 142

3.3 Third Example: Choice of Lambda in Lasso Regression 145
3.3.1 First Method: Without Cross-Validation 148
3.3.2 Second Method: With Cross-Validation 150
3.3.3 Comparing the Capacities of the Models on Unseen Data 154
3.3.4 Repeating the Comparison 100 times 155

4 Trees 161
4.1 Data Used in the Notebook . 161
4.2 Training and Test Sets . 180
4.3 Decision Trees . 181

4.3.1 Regression Trees . 181
4.3.2 Stopping the Recursive Splitting Process 196

4.3.2.1 Pruning . 206
4.3.3 Classification Trees . 217
4.3.4 Variable Importance . 234

4.4 Ensemble Methods . 243
4.4.1 Bagging . 243

CONTENTS 5

4.4.1.1 Number of Trees . 247
4.4.1.2 Out-of-bag estimations . 251
4.4.1.3 Variable Importance Measures 256
4.4.1.4 Pre-built Function . 258

4.4.2 Random Forests . 261
4.4.2.1 A First Example with {randomForest} 262
4.4.2.2 Varying the hyperparameters 270
4.4.2.3 Variable importance . 278
4.4.2.4 Fine Tuning . 287

5 Support Vector Machines 293
5.1 Maximal Margin Classifier . 293

5.1.1 Hyperplane . 293
5.1.2 Margin . 301

5.2 Support Vector Classifiers . 307
5.3 Support Vector Machines . 323

5.3.1 Polynomial Kernel . 327
5.3.2 Radial kernel . 332

6 Deep Learning 335
6.1 Neural Networks . 336

6.1.1 Neural Network with a Single Hidden Layer 336
6.1.2 Multilayer Perception . 341

Input Layer . 347
First Hidden Layer . 347
Second Hidden Layer . 347
Output Layer . 347
6.1.2.1 Practice With Keras: classifier 348
6.1.2.2 Practice With Keras: Regression 364
6.1.2.3 Regularisation techniques . 373

6.2 Recurrent Neural Networks . 391
6.2.1 Practice with Keras . 394

6.2.1.1 Preparing Training, Validation and Test Datasets 396
6.2.1.2 Naive Benchmark . 403
6.2.1.3 A Densely Connected Model 404
6.2.1.4 Recurrent Network without Dropout 409
6.2.1.5 Recurrent Network with Dropout 414

References 421

6 CONTENTS

List of Tables

3.1 Driving habits before and after the claim . 111
3.2 Variables of the dataset used for the second example. 133

4.1 Rented bike count depending on the week days. 168
4.2 Summary statistics. 176
4.3 Summary statistics depending on the binary response variable. 178

7

8 LIST OF TABLES

List of Figures

2.1 Minimising a simple loss function with a single input. 19
2.2 Function with a single input: minimum. 19
2.3 Function with a single input: a more complex function. 21
2.4 Function with a single input: start at a random point. 22
2.5 Compute the derivative of the function at that point. 23
2.6 Second iteration. 24
2.7 At the last step of the iteration process. 27
2.8 At the last step of the iteration process, with another starting value. 29
2.9 Ending up in a local minimum. 32
2.10 Surface of a function in R2. 33
2.11 Starting point. 34
2.12 Updated value after the first iteration. 38
2.13 At the end of the iterative process. 40
2.14 A more complex function in R2. 42
2.15 Interative process We end up in a local minimum. 45
2.16 Another grapghical representation: contour plot. 47
2.17 Getting stuck in a plateau. 48
2.18 Contour plot: getting stuck in a plateau. 49
2.19 Data Generating Process and synthetic data. 51
2.20 Quick convergence of the MSE to the variance of the error. 54
2.21 Updated values at each iteration. 55
2.22 Singular Gradient Descent. 62
2.23 Batch Gradient Descent. 70
2.24 Mini-Batch Gradient Descent. 77
2.25 Optimisation with different algorithms. 78
2.26 Surface of the illustrative function. 82
2.27 Newton’s algorithm: steps of the iterative process. 84
2.28 Newton’s algorithm: contour plot of the iterative process. 85
2.29 Surface of the illustrative spherical function. 87
2.30 Starting point. 88

9

10 LIST OF FIGURES

2.31 Optimisation in a single dimension (dashed blue line). 89
2.32 Updated value after the first step. 91
2.33 Optimisation in another dimension. 92
2.34 Updated value agter the second step. 94
2.35 Coordinate descent algorithm: iterative process. 96
2.36 Coordinate descent: iterative process if the function is not differentiable in all

points. 100

3.1 Default payment the next month. 105
3.2 Overall error rate over 100 repetitions. 119
3.3 Model performance on 100 random draws of the data. 125
3.4 Mean Squared Error on Train/Test data.. 142
3.5 Mean Squared Error depending on the value of lambda. 150
3.6 Average MSE computed on the left-aside fold. 154
3.7 MSE on the replications depending on how lambda was selected. 160

4.1 Distribution of rented bike count. 165
4.2 Distribution of rented bike count by month. 166
4.3 Distribution of rented bike count by weekday. 167
4.4 Rented bike count per hour. 169
4.5 Rented bike count per hour and per season. 170
4.6 Relationship between the rented count and the numeric predictors. 173
4.7 Correlation plot. 175
4.8 A first decision tree. 183
4.9 The same first decision tree. 191
4.10 The same (again) first decision tree. 195
4.11 Decision tree where splits are made if there is at least 1000 obs. in the node and

if the number of obs. in the resulting leaves are at least 500. 197
4.12 Growing the tree stopped earlier as we imposed restrictions on the improvement

needed to make split. 198
4.13 Decision tree when constraining its depth. 199
4.14 Generating Data Process and generated data. 200
4.15 Decision tree built on the synthetic data with a maximum depth of 1. 201
4.16 Decision boundary of the grown tree. 202
4.17 Varying the parameters affect the decision boundary and may lead to overfitting. 205
4.18 Relative error depending on the complexity parameter (10-fold cross-validation

results), for the Seoul bike data. 207
4.19 Synthetic data. 211
4.20 Unpruned tree. 212
4.21 Relative error depending on the complexity parameter, for the synthetic data. . . 212
4.22 Pruned tree, synthetic data. 214

LIST OF FIGURES 11

4.23 Decision boundaries are different after the tree was pruned. 216
4.24 A first classification tree grown on Seoul bike data. 219
4.25 Showing the classification rate at the node. 223
4.26 Classification tree build using entropy instead of gini to measure impurity index. 224
4.27 Decrease in the impurity design. 230
4.28 Variable importance for the Classification Tree. 243
4.29 Bagging with 100 bootstrap training sets. 247
4.30 Predictions made from the aggregations. 250
4.31 MSE vs number of trees. 251
4.32 Out-of-bag MSE - Bagging. 255
4.33 Variable relative importance. 258
4.34 Variable relative importance. 261
4.35 Trees may be correlated when use bagging. 262
4.36 Goodness of fit depending on the number of trees. 270
4.37 Varying the number of variables samples to perform a split. 272
4.38 Varying the minimum size of terminal nodes. 275
4.39 Varying the maximum number of terminal nodes trees. 278
4.40 Tree-wise permutation importance. 285
4.41 Variable importance: default method computed using the increase in node purity. 286
4.42 Permutation importance returned by randomForest: percent increase in MSE. . 287

5.1 In two dimensions (p = 2), a hyperplane is a one-dimensional subspace, a line. . 294
5.2 In three dimensions (p = 3), a hyperplane is a flat two-dimensional subspace

(p = 2), a plane. 295
5.3 Hyperplane x1 − 2x2 + 0.1. The blue region corresponds to the set of points for

which x1 − 2x2 + 0.1 > 0, the red region corresponds to the set of points for
which x1 − 2x2 + 0.1 < 0. 297

5.4 Data in two dimensions with two classes, where a separating line can perfectly
separate the data. 298

5.5 A first line of equation x2 = 1.4x1 − 5 that perfectly separates the data. 299
5.6 Two lines of equations x2 = 1.4x1 − 5 and x2 = x1 − 2.5 that perfectly separate

the data. 300
5.7 Margin obtained using the following separating hyperplane: x2 = 1.4x1 − 5. . . 303
5.8 Margin obtained using the following separating hyperplane: x2 = x1 − 2.5. . . . 304
5.9 Maximum margin classifier for a perfectly separable binary outcome variable. . . 306
5.10 The new observations violate the previous margin. 308
5.11 Maximal margin classifier for the initial dataset with linearly separable observation.313
5.12 Simulated almost linearly-separable data. 315
5.13 Support vector classifier with c = 100. 317
5.14 Support vector classifier with c = .1. 319
5.15 Support vector classifier with the cost parameter obtained by cross-validation. . . 322

12 LIST OF FIGURES

5.16 Non linearly-separable data. 324
5.17 Decision boundary of the Support Vector Classifier trained on non linearly-

separable data. 326
5.18 Polynomial Kernel, degree 10. 329
5.19 Polynomial Kernel, degree 2. 332
5.20 Radial Kernel, γ = .1. 334

6.1 A simple Neural Network with 4 predictors and a single hidden layer. 336
6.2 Different activation functions. 340
6.3 The first observation in the training set is a 5. 345
6.4 The first 10 observations from the MNIST dataset. 346
6.5 A Neural Network with p predictors, two hidden layer, and 10 outputs. 346
6.6 Accuracy and loss after each epoch, both on the training and validation sets. . . 354
6.7 Accuracy and loss after each epoch, custom made graph. 355
6.8 Percentage of predicted classes for each observed class. 360
6.9 Percentage of correctly or incorrectly predicted observations by observed class. . 361
6.10 Accuracy and loss after each epoch, custom made graph. 363
6.11 Mean Absolute Error (MAE) computed on the validation samples, over the epochs372
6.12 Accuracy with or without regularisation. 381
6.13 Estimated parameters of the model before applying the droupout. 382
6.14 Dropout regularisation: each unit of the hidden layer has a probability to be

dropped out. 383
6.15 Accuracy with or without regularisation (L2 or dropout) 391
6.16 A simple recurrent neural network which processes sequences of length 3. . . . 392
6.17 The more compact schematic of the simple recurrent neural network which pro-

cesses sequences of length 3. 393
6.18 Training and validation MAE on bike data, with the densely connected network. 406
6.19 Predictions for the densely connected network, by month. 408
6.20 Residuals for the densely connected network, estimations made on the test sample. 409
6.21 Training and validation MAE on bike data, with the first recurrent network. . . 411
6.22 Predictions for the first recurrent network, by month. 413
6.23 Residuals with the first recurrent network. 414
6.24 Training and validation MAE on bike data, with the regularised recurrent network.416
6.25 Predictions for the regularised recurrent network, by month. 418
6.26 Residuals with the regularised recurrent network. 419

Hands-on

This notebook provides hands-on sessions for the European Central Bank Machine Learning
Training: “Machine learning for econometricians.”

The hands-on session use the programming language R. To run the codes you will need to down-
load and install R and RStudio. More details on how to install R are available in the next chapter.

The schedule is the following:

Session Subject Schedule

Session 1 Gradient descent and overfitting 1 December 9.30-11.30
Session 2 Random forest and SVM 17 December 15.30-17.30
Session 3 Deep learning 21 December 14.30-16.30

Required packages

After you have successfully installed R, you will need to install a few packages.

• Session 1:

– Optimisation:

Required packages: tidyverse, numDeriv, plot3D

If these are not installed, please run the following instructions in R:

install.packages("tidyverse", "numDeriv", "plot3D")

– Overfitting:

Required packages: tidyverse, readxl, kableExtra, randomForest, ISLR, glmnet

If these are not installed, please run the following instructions in R:

13

14 LIST OF FIGURES

install.packages(
c("tidyverse", "readxl", "kableExtra",

"randomForest", "ISLR", "glmnet")
)

• Session 2: Random forest and SVM: 17 December 15.30-17.30

– Trees and Ensemble Methods:

Required packages: tidyverse, lubridate, arsenal, cowplot, corrplot, rpart, rpart.plot,
ggtext, foreach

If these are not installed, please run the following instructions in R:

install.packages(c("tidyverse", "lubridate", "arsenal", "cowplot",
"corrplot", "rpart", "rpart.plot", "ggtext", "foreach",
"ipred", "lattice", "caret", "randomForest"))

– Support Vector Machines:

Required packages: tidyverse, e1071

If these are not installed, please run the following instructions in R:

install.packages(c("tidyverse", "e1071"))

• Session 3: Deep learning: 21 December 14.30-16.30

– Single notebook:

Required packages: tidyverse, fastDummies, reshape2, keras

install.packages("tidyverse")
install.packages("fastDummies")
install.packages("reshape2")

To install Keras: please run the following instructions in R:

install.packages("tensorflow")
install.packages("keras")
library(keras)
tensorflow::install_tensorflow()

LIST OF FIGURES 15

tensorflow::tf_config()
install_keras()

On one of my machines, I had to install Miniconda:

unlink(reticulate::miniconda_path(), recursive = TRUE)
reticulate::install_miniconda(path = reticulate::miniconda_path(),

update = TRUE, force = FALSE)
keras::install_keras()

16 LIST OF FIGURES

Chapter 1

Install R

The hands-on sessions will use R and the integrated development environment RStudio.

There are at least two software to install:

• r
• RStudio.

The installation of R depends on your operating system (OS). First pick a mirror site at the
following address: https://cran.biotools.fr/.

The installation process is described on each mirror site. Here are some key points you should
focus on, depending on your OS.

1.1 Windows Users

1.1.1 Install R

You need to install the latest version of R by going to the following address:

https://cran.your_mirror/bin/windows/base/

by replacing your_mirror by the mirror you picked. For example, if your mirror is “Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU)”: https://ftp.fau.de/cran/bin/windows/
base/.

1.1.2 Install RStudio

To install RStudio, go to the following address: https://www.rstudio.com/products/rstudio/
download/#download.

17

https://cran.biotools.fr/
https://ftp.fau.de/cran/bin/windows/base/
https://ftp.fau.de/cran/bin/windows/base/
https://www.rstudio.com/products/rstudio/download/#download
https://www.rstudio.com/products/rstudio/download/#download

18 CHAPTER 1. INSTALL R

Then, pick RStudio Desktop.

1.1.3 Install Rtools

If at any point when using R you encounter an error mentioning Rtools, you can install it:

https://cran.your_mirror/bin/windows/Rtools/

Once again, you need to replace your_mirror by the mirror you selected, e.g., https://ftp.fau.
de/cran/bin/windows/Rtools/.

1.1.4 Once installed

Once the software is installed, you can launch RStudio.

1.1.5 Troubleshooting

Sometimes you can’t install packages on windows; you will get this kind of error:
‘lib = “C:/Program Files/R/R-4.0.2/library”‘ is not writable “Error in
install.packages : unable to install packages”

In such a case, close RStudio, and open it again in administrator mode (right-click on the icon
of the file allowing to launch RStudio, choose “Run as administrator”). To avoid doing this
every time, you can set the software to run in administrator mode by default (see this tutorial on
cnet.com).

1.2 Mac OS Users

1.2.1 Install R

You need to install the latest version of R by going to the following address:

https://cran.your_mirror/bin/macosx

by replacing your_mirror by the mirror you picked. For example, if your mirror is “Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU)”: https://ftp.fau.de/cran/bin/macosx.

1.2.2 Install RStudio

To install RStudio, go to the following address: https://www.rstudio.com/products/rstudio/
download/#download.

Then, pick RStudio Desktop.

https://ftp.fau.de/cran/bin/windows/Rtools/
https://ftp.fau.de/cran/bin/windows/Rtools/
https://www.cnet.com/tech/services-and-software/always-run-a-program-in-administrator-mode-in-windows-10/
https://www.cnet.com/tech/services-and-software/always-run-a-program-in-administrator-mode-in-windows-10/
https://ftp.fau.de/cran/bin/macosx
https://www.rstudio.com/products/rstudio/download/#download
https://www.rstudio.com/products/rstudio/download/#download

1.3. LINUX USERS 19

1.2.3 Once installed

Once the software is installed, you can launch RStudio.

1.2.4 Troubleshooting

It is possible that some packages will not install and require the prior installation of libraries
outside of R. You must go case by case and search for solutions on a web search engine. Think
also of installing the xcode software (and running it at least once) if you have enough space on
your computer. If you continue to use R, you will have to install this software sooner or later.

1.3 Linux Users

If you have a Linux distribution, the installation depends on the distribution of Linux that you
have:

• Debian: https://cran.r-project.org/bin/linux/debian
• Fedora/Redhat: https://cran.r-project.org/bin/linux/fedora
• Ubuntu : https://cran.r-project.org/bin/linux/ubuntu

1.3.1 Install RStudio

To install RStudio, go to the following address: https://www.rstudio.com/products/rstudio/
download/#download

Then, pick RStudio Desktop.

1.3.2 Once installed

Once the software is installed, you can launch RStudio.

https://cran.r-project.org/bin/linux/debian
https://cran.r-project.org/bin/linux/fedora
https://cran.r-project.org/bin/linux/ubuntu
https://www.rstudio.com/products/rstudio/download/#download
https://www.rstudio.com/products/rstudio/download/#download

20 CHAPTER 1. INSTALL R

Chapter 2

Gradient Descent

This chapter presents the gradient descent algorithm used to optimise functions. It begins with
the vanilla version of the gradient descent algorithm, then moves to variants (stochastic gradient
descent, batch gradient descent, mini-batch gradient descents). It end with two other techniques:
Newton’s method and coordinate descent algorithm.

2.1 Vanilla Gradient Descent

2.1.1 Concept

Let us consider a very general model:

y = m(X) + ε,

where y is a variable to predict (or target variable, or response variable), m(·) is an unknown
model, X is a set of p predictors (or features, or inputs, or explanatory variables) and ε is an
error term.

Let us assume that the response variable is linearly dependent on the set of explanatory variables:

y = Xβ + ε,

We do not know the true generating data process and only observe some realizations of y and
X for n examples (or observations, or individuals). We need to make an assumption on the
distribution of the error term to estimate the vector of coefficientsβ.

With linear least squares, we assume that the error term is normally distributed with zero mean
and standard error σ. The vector of coefficients β can be estimated with Ordinary Least Squares

21

22 CHAPTER 2. GRADIENT DESCENT

(OLS). The OLS estimates are such that they minimise the the sum of squared residuals, i.e., the
squared difference between the observed values yi and the values predicted by the model f(Xi):

RSS =
n∑

i=1
(yi − f(Xi))2 ,

where i = 1, . . . , n denotes the examples (or individuals, or observations).

The problem boils down to estimating the coefficients of vector β which minimise an objective
function:

arg min
β

n∑
i=1

L (yi, f(Xi)) ,

where here:

L (yi, f(Xi)) = (yi − f(Xi))2

Here, with OLS, an analytical solution exists:

β̂ =
(
XtX

)−1
Xty.

In a more general case, if we do not assume that the response variable is linearly dependent on
the set of explanatory variables, the aim is to find the solution m̂ to the following optimization
problem:

minimisem

n∑
i=1

L (yi, m(Xi)) .

The Gradient Descent algorithm is a popular technique that performs this kind of optimisation
task, when the function to optimize is convex and differentiable.

2.1.2 A First Example in Dimension 1

If we know the functional form of the objective function, it is easy to find its minimum. As an
illustration, consider the following function L(x) = 3x2 − 2x + 5.

2.1. VANILLA GRADIENT DESCENT 23

10

20

30

−2 0 2
x

y

Figure 2.1: Minimising a simple loss function with a single input.

The value of x that minimises this function is obtained by canceling the first derivative of L(·)
with respect to x, i.e.:

∂L
∂x

(x) = 6x − 2 = 0,

which is x = 1/3:

0

10

20

30

−2 0 2
x

y

Figure 2.2: Function with a single input: minimum.

24 CHAPTER 2. GRADIENT DESCENT

But with more complex functions, finding the minimum is not always feasible. Let us illustrate
this with a simple example.

Let us consider the following function: f(x) = (x+3)×(x−2)2 ×(x+1). The global minimum
of that function is reached in x = −1 −

√
3
2 . Let us generate some values from this process, for

x ∈ [−3, 3].

x <- seq(-3, 3, by = .1)
f <- function(x) (x+3)*(x-2)ˆ2*(x+1)
y <- f(x)
df <- tibble(x = x, y = y)
df

A tibble : 61 x 2
x y
<dbl > <dbl >
1 -3 0
2 -2.9 -4.56
3 -2.8 -8.29
4 -2.7 -11.3
5 -2.6 -13.5
6 -2.5 -15.2
7 -2.4 -16.3
8 -2.3 -16.8
9 -2.2 -16.9
10 -2.1 -16.6
... with 51 more rows

Here is a graph of this function.

ggplot(data = df, aes(x=x, y=y)) +
geom_line() +
geom_segment(

data = tibble(x = -1-sqrt(3/2), xend = -1-sqrt(3/2),
y = -Inf, yend = f(-1-sqrt(3/2))),

mapping = aes(x = x, y=y, xend=xend, yend = yend),
colour = "red", linetype = "dashed") +

geom_point(x=-1-sqrt(3/2), y = f(-1-sqrt(3/2)), colour = "red")

2.1. VANILLA GRADIENT DESCENT 25

−10

0

10

20

−2 0 2
x

y

Figure 2.3: Function with a single input: a more complex function.

If we want to minimise this function using gradient descent, we can proceed as follows. In a first
step, we start at a random point:

starting_value <- -.5
f(starting_value)

[1] 7.8125

ggplot(data = df, aes(x=x, y=y)) +
geom_line() +
geom_point(x=starting_value, y = f(starting_value), colour = "red")

26 CHAPTER 2. GRADIENT DESCENT

−10

0

10

20

−2 0 2
x

y

Figure 2.4: Function with a single input: start at a random point.

Then, from that point, we need to decide on two things so as to reduce the objective
function:

1. in which direction to go next (left or right)
2. and how far we want to go.

To decide the direction, wan can compute the derivative of the function at this specific
point of interest. The slope of the derivative will guide us:

• if it is positive: we need to shift to the left
• if it is negative: we need to shift to the right.

The first derivative can be obtained by numerical approximation, using the grad() function from
{numDeriv}.

library(numDeriv)
grad <- grad(func = f, x = c(starting_value))
grad

[1] 12.5

The intercept of the derivative can be computed as follows. We need it for the graph only, we
could avoid computing it during the minimisation process.

2.1. VANILLA GRADIENT DESCENT 27

(intercept <- -grad*starting_value + f(starting_value))

[1] 14.0625

ggplot(data = df, aes(x=x, y=y)) +
geom_line() +
geom_point(x=starting_value, y = f(starting_value), colour = "red") +
geom_abline(slope = grad, intercept = intercept, colour = "blue")

−10

0

10

20

−2 0 2
x

y

Figure 2.5: Compute the derivative of the function at that point.

Here, the slope is positive We thus need to go left We still need to decide how far we want
to go, i.e., we must decide the size of the step we will take. This step is called the learning
rate. On the one hand, if this learning rate is too small, we increase the risk of ending
up in a local minimum; on the other hand, if we pick a too large value for the learning
rate, we face a risk of overshooting the minimum and keeping bouncing around a (local)
minimum forever.

Let us first pick a small value for the learning rate:

learning_rate <- 10ˆ-2

28 CHAPTER 2. GRADIENT DESCENT

Once we have both the direction and the magnitude of the step, we can update our parameter:

(x_1 <- starting_value - learning_rate * grad)

[1] -0.625

ggplot(data = df, aes(x=x, y=y)) +
geom_line() +
geom_point(x=starting_value, y = f(starting_value), colour = "red") +
geom_point(x=x_1, y = f(x_1), colour = "green")

−10

0

10

20

−2 0 2
x

y

Figure 2.6: Second iteration.

Then, we can repeat the procedure mulltiple times. Let us do it through a loop. We will update
our parameter from one iteration to the other and will stop either when a maximum number of
iterations is reached or when the improvement (reduction in the objective function from one step
to the next) is too small (below a threshold we will call tolerance).

nb_max_iter <- 100
tolerance <- 10ˆ-5

x_1 <- -.5
To keep track of the values through the iterations

2.1. VANILLA GRADIENT DESCENT 29

x_1_values <- x_1
y_1_values <- f(x_1)
gradient_values <- NULL
intercept_values <- NULL

for(i in 1:nb_max_iter){
Steepest ascent:
grad <- grad(func = f, x = c(x_1))

intercept_value <- -grad*x_1 + f(x_1)
Keeping track
gradient_values <- c(gradient_values, grad)
intercept_values <- c(intercept_values, intercept_value)

Updating the value
x_1 <- x_1 - learning_rate * grad
y_1 <- f(x_1)

Keeping track
x_1_values <- c(x_1_values, x_1)
y_1_values <- c(y_1_values, y_1)

Stopping if no improvement (decrease of the cost function too small)
if(abs(y_1_values[i] - y_1 < tolerance)) break

}

If we exit the loop before the maximum number of iterations has been reached, we can suppose
we ended up in a (at least local) minimum. Otherwise, the algorithm did not converge.

i

[1] 22

ifelse(i < nb_max_iter,
"The algorithm converged.",
"The algorithm did not converge.")

30 CHAPTER 2. GRADIENT DESCENT

[1] "The algorithm converged ."

Let us put the computed derivative and intercept at each step in a tibble, to have a look at a
graphical representation of the iterations:

df_plot <-
tibble(x_1 = x_1_values[-length(x_1_values)],

y = f(x_1),
gradient = gradient_values,
intercept = intercept_values

)
df_plot

A tibble : 22 x 4
x_1 y gradient intercept
<dbl > <dbl > <dbl > <dbl >
1 -0.5 7.81 12.5 14.1
2 -0.625 6.14 14.3 15.1
3 -0.768 3.97 16.0 16.3
4 -0.928 1.28 17.5 17.5
5 -1.10 -1.88 18.5 18.5
6 -1.29 -5.33 18.6 18.7
7 -1.47 -8.73 17.7 17.4
8 -1.65 -11.7 15.7 14.2
9 -1.81 -14.0 12.9 9.35
10 -1.94 -15.4 9.79 3.52
... with 12 more rows

ggplot() +
geom_line(data = df, aes(x = x, y = y)) +
geom_point(data = df_plot, aes(x = x_1, y= f(x_1)),

colour = "red", size = 2) +
coord_cartesian(ylim = c(-20, 20))

2.1. VANILLA GRADIENT DESCENT 31

−20

−10

0

10

20

−2 0 2
x

y

Figure 2.7: At the last step of the iteration process.

Now, let us run the same algorithm, but picking a larger value for the learning rate. Let us also
increase the number of maximum iterations.

learning_rate <- 0.05
nb_max_iter <- 1000
tolerance <- 10ˆ-5
Starting value
x_1 <- -.5
To keep track of the values through the iterations
x_1_values <- x_1
y_1_values <- f(x_1)
gradient_values <- NULL
intercept_values <- NULL

for(i in 1:nb_max_iter){
Steepest ascent:
grad <- grad(func = f, x = c(x_1))

intercept_value <- -grad*x_1 + f(x_1)
Keeping track
gradient_values <- c(gradient_values, grad)
intercept_values <- c(intercept_values, intercept_value)

32 CHAPTER 2. GRADIENT DESCENT

Updating the value
x_1 <- x_1 - learning_rate * grad
y_1 <- f(x_1)

Keeping track
x_1_values <- c(x_1_values, x_1)
y_1_values <- c(y_1_values, y_1)

Stopping if no improvement (decrease of the cost function too small)
if(abs(y_1_values[i] - y_1) < tolerance) break

}

i

[1] 1000

ifelse(i < nb_max_iter,
"The algorithm converged.",
"The algorithm did not converge.")

[1] "The algorithm did not converge ."

df_plot <-
tibble(x_1 = x_1_values[-length(x_1_values)],

y = f(x_1),
gradient = gradient_values,
intercept = intercept_values

)
df_plot

A tibble : 1 ,000 x 4
x_1 y gradient intercept
<dbl > <dbl > <dbl > <dbl >
1 -0.5 7.81 12.5 14.1
2 -1.12 -2.29 18.6 18.6
3 -2.05 -16.4 6.35 -3.34

2.1. VANILLA GRADIENT DESCENT 33

4 -2.37 -16.5 -6.60 -32.1
5 -2.04 -16.3 6.76 -2.52
6 -2.38 -16.4 -6.98 -33.0
7 -2.03 -16.2 7.12 -1.78
8 -2.38 -16.4 -7.32 -33.8
9 -2.02 -16.1 7.43 -1.15
10 -2.39 -16.3 -7.60 -34.5
... with 990 more rows

ggplot() +
geom_line(data = df, aes(x = x, y = y)) +
geom_point(data = df_plot, aes(x = x_1, y= f(x_1)),

colour = "red", size = .2) +
coord_cartesian(ylim = c(-20, 20)) +
labs(title = str_c("Step ", i))

−20

−10

0

10

20

−2 0 2
x

y

Step 1000

Figure 2.8: At the last step of the iteration process, with another starting value.

We can have a look at what happens iteratively with the following animated graph:

saveGIF({

for(i in c(rep(1,5), 2:14, rep(15, 10))){
p <-

34 CHAPTER 2. GRADIENT DESCENT

ggplot() +
geom_line(data = df, aes(x = x, y = y)) +
geom_point(data = df_plot %>% slice(i),

mapping = aes(x = x_1, y= f(x_1)),
colour = "red", size = 2) +

geom_abline(data = df_plot %>% slice(i),
aes(slope = gradient, intercept = intercept),
colour = "blue") +

coord_cartesian(ylim = c(-20, 20)) +
labs(title = str_c("Step ", i))

print(p)
}

}, movie.name = "example_single_var_bounce.gif", interval = 0.5,
ani.width = 720, ani.height = 480)

The animated graph is not available in the PDF version of the hands-on session. Check to HTML
version.

We jumped around the minimum and never reached it.

The algorithm is also sensitive to the starting point.

learning_rate <- 0.01
nb_max_iter <- 1000
tolerance <- 10ˆ-5
Starting value
x_1 <- .5
To keep track of the values through the iterations
x_1_values <- x_1
y_1_values <- f(x_1)
gradient_values <- NULL
intercept_values <- NULL

for(i in 1:nb_max_iter){
Steepest ascent:
grad <- grad(func = f, x = c(x_1))

intercept_value <- -grad*x_1 + f(x_1)

2.1. VANILLA GRADIENT DESCENT 35

Keeping track
gradient_values <- c(gradient_values, grad)
intercept_values <- c(intercept_values, intercept_value)

Updating the value
x_1 <- x_1 - learning_rate * grad
y_1 <- f(x_1)

Keeping track
x_1_values <- c(x_1_values, x_1)
y_1_values <- c(y_1_values, y_1)

Stopping if no improvement (decrease of the cost function too small)
if(abs(y_1_values[i] - y_1) < tolerance) break

}

Let us check whether we converged:

i

[1] 33

ifelse(i < nb_max_iter,
"The algorithm converged.",
"The algorithm did not converge.")

[1] "The algorithm converged ."

Yes. But let us look at where.

df_plot <-
tibble(x_1 = x_1_values[-length(x_1_values)],

y = f(x_1),
gradient = gradient_values,
intercept = intercept_values

36 CHAPTER 2. GRADIENT DESCENT

)
df_plot

A tibble : 33 x 4
x_1 y gradient intercept
<dbl > <dbl > <dbl > <dbl >
1 0.5 11.8 -4.50 14.1
2 0.545 11.6 -5.16 14.4
3 0.597 11.3 -5.89 14.8
4 0.656 10.9 -6.67 15.3
5 0.722 10.5 -7.49 15.9
6 0.797 9.87 -8.32 16.5
7 0.880 9.15 -9.12 17.2
8 0.972 8.28 -9.82 17.8
9 1.07 7.29 -10.4 18.4
10 1.17 6.20 -10.7 18.7
... with 23 more rows

ggplot() +
geom_line(data = df, aes(x = x, y = y)) +
geom_point(data = df_plot, aes(x = x_1, y= f(x_1)), colour = "red") +
coord_cartesian(ylim = c(-20, 20)) +
labs(title = str_c("Step ", i))

−20

−10

0

10

20

−2 0 2
x

y

Step 33

Figure 2.9: Ending up in a local minimum.

2.1. VANILLA GRADIENT DESCENT 37

This time, we ended up in a local minimum.

Now let us increase the dimension of our problem, and move on to a function defined with two
parameters. We will consider more afterwards, but then we will not be able to visualize as easily
what happens using graphs.

2.1.3 Moving to Higher Dimensions Optimisation Problems

Let us consider the following data generating process: f(x1, x2) = x2
1 + x2

2.

x_1 <- x_2 <- seq(-2, 2, by = 0.3)
z_f <- function(x_1,x_2) x_1ˆ2+x_2ˆ2
z <- outer(x_1, x_2, z_f)

The representative surface of that function can be visualized as follows:

library(plot3D)
par(mar = c(1, 1, 1, 1))
flip <- 1 # 1 or 2
th = c(-300,120)[flip]
pmat <-

persp3D(x = x_1, y = x_2, z = z, colkey=F, contour=T, ticktype = "detailed",
asp = 1, phi = 30, theta = th, border = "grey10", alpha=.4,
d = .8,r = 2.8,expand = .6,shade = .2,axes = T,box = T,cex = .1)

x

−2
−1

0

1
y

−2

−1
0

1

z

2
4

6

8

Figure 2.10: Surface of a function in R2.

38 CHAPTER 2. GRADIENT DESCENT

Once again, we need to initialise the algorithm by picking starting values. Let us pick θ = (2, 2).

theta <- c(x_1 = 1.5, x_2 = 1.5)

Let us look at this point on the graph:

zz <- z_f(theta[["x_1"]], theta[["x_2"]])
new_point <- trans3d(theta[["x_1"]], theta[["x_2"]], zz,

pmat = pmat)

par(mar = c(1, 1, 1, 1))
flip <- 1 # 1 or 2
th = c(-300,120)[flip]
pmat <-

persp3D(x = x_1, y = x_2, z = z, colkey=F, contour=T, ticktype = "detailed",
asp = 1, phi = 30, theta = th, border = "grey10", alpha=.4,
d = .8,r = 2.8,expand = .6,shade = .2,axes = T,box = T,cex = .1)

points(new_point,pch = 20,col = "red", cex=2)

x

−2
−1

0

1
y

−2

−1
0

1

z

2
4

6

8

Figure 2.11: Starting point.

From that point, we need to decide the direction to go to and the magnitude of the step to
take in that direction. The direction is obtained by computing the first derivative of the objective
function f(·) with respect to each argument x1 and x2, at point θ. In other words, we need to

2.1. VANILLA GRADIENT DESCENT 39

evaluate the gradient of the function at point θ.

∇f(θ) =
[

∂f
∂x1

(θ)
∂f
∂x2

(θ)

]

The values will give us the steepest ascent. Once the learning rate is decided, we just need to
update each argument by moving in the opposite direction of the steepest ascent. The updated
value of the parameters after the end of the tth step will be as follows:

[
x

(t+1)
1

x
(t+1)
2

]
=
[
x

(t)
1

x
(t)
2

]
− η

 ∂f
∂x1

(x(t)
1 , x

(t)
2)

∂f
∂x2

(x(t)
1 , x

(t)
2)

 ,

where
[
x

(t+1)
1

x
(t+1)
2

]
is the updated vector of parameters,

[
x

(t)
1

x
(t)
2

]
is the current value of the vector of

parameters, η ∈ R+ is the learning rate, and

 ∂f
∂x1

(x(t)
1 , x

(t)
2)

∂f
∂x2

(x(t)
1 , x

(t)
2)

 is the gradient of the function at

point θ =
(
x

(t)
1 , x

(t)
2

)
.

In a more general context, when at a point θ ∈ Rp, at any step t ≤ 0, the gradient descent
algorithm tries to move in a direction δθ such that L

(
θ(t) + δθ

)
< L

(
θ(t)
)
. The choice

of δθ is made such that δθ = −η · ∇L
(
θ(t)
)
:

θ(t+1) = θ(t) − η · ∇L
(
θ(t)
)

40 CHAPTER 2. GRADIENT DESCENT

Note : the choice of δθ is made based on the first-order Taylor approximation. If L : Rp →
R is differentiable at point θ, for any small change δθ, the best linear approximation to L
is given by:

L(θ + δθ) = L(θ) + ∇L(θ)⊤δθ + O(∥δ2θ∥)

We want to get :

∇L(θ)⊤δθ < 0

L(θ + δθ) < L(θ)
⇔L(θ) + ∇L(θ)⊤δθ < L(θ)
⇔∇L(θ)⊤δθ < 0.

This dot product takes its minimum value when δθ = −∇L(θ). This gives the direction
to go to. This does not tell us, however, the magnitude of the step that we should take.

Let us rewrite our function f(·) so that we can calculate its gradient by numerical approximation
at a given point θ using grad() from {numDeriv}.

z_f_to_optim <- function(theta){
x_1 <- theta[["x_1"]]
x_2 <- theta[["x_2"]]
x_1ˆ2 + x_2ˆ2

}

Let us set a learning rate:

learning_rate <- 10ˆ-2

The steepest ascent can be obtained as follows:

grad <- grad(func = z_f_to_optim, x = theta)
grad

[1] 3 3

The values can then be updated:

2.1. VANILLA GRADIENT DESCENT 41

updated_x_1 <- theta[["x_1"]] - learning_rate * grad[1]
updated_x_2 <- theta[["x_2"]] - learning_rate * grad[2]
updated_theta <- c(x_1 = updated_x_1, x_2 = updated_x_2)
updated_theta

x_1 x_2
1.47 1.47

On the graph:

par(mar = c(1, 1, 1, 1))
flip <- 1 # 1 or 2
th = c(-300,120)[flip]
pmat <-

persp3D(x = x_1, y = x_2, z = z, colkey=F, contour=T,
ticktype = "detailed", asp = 1, phi = 30, theta = th,
border = "grey10", alpha=.4, d = .8,r = 2.8,
expand = .6,shade = .2,axes = T,box = T,cex = .1)

updated_zz <- z_f(updated_theta[["x_1"]], updated_theta[["x_2"]])
new_point_2 <- trans3d(updated_theta[["x_1"]],

updated_theta[["x_2"]],
updated_zz,
pmat = pmat)

points(new_point,pch = 20,col = "red", cex=2)
points(new_point_2,pch = 20,col = "darkgreen", cex=2)

42 CHAPTER 2. GRADIENT DESCENT

x

−2
−1

0

1
y

−2

−1
0

1

z

2
4

6

8

Figure 2.12: Updated value after the first iteration.

Then, we need to repeat the updating process. The full algorithm can be written this way:

learning_rate <- 10ˆ-1
nb_max_iter <- 100
tolerance <- 10ˆ-5

Starting values
theta <- c(x_1 = 1.5, x_2 = 1.5)

To keep track of what happens at each iteration
theta_values <- list(theta)
y_values <- z_f_to_optim(theta)

for(i in 1:nb_max_iter){
Steepest ascent
grad <- grad(func = z_f_to_optim, x = theta)

Updating the parameters
updated_x_1 <- theta[["x_1"]] - learning_rate * grad[1]
updated_x_2 <- theta[["x_2"]] - learning_rate * grad[2]
theta <- c(x_1 = updated_x_1, x_2 = updated_x_2)

Keeping track

2.1. VANILLA GRADIENT DESCENT 43

theta_values <- c(theta_values, list(theta))

Checking for improvement
y_updated <- z_f_to_optim(theta)
y_values <- c(y_values, y_updated)
if(abs(y_values[i] - y_updated) < tolerance) break

}

Let us check at which iteration the algorithm stopped:

i

[1] 28

ifelse(i < nb_max_iter,
"The algorithm converged.",
"The algorithm did not converge.")

[1] "The algorithm converged ."

Graphically:

par(mar = c(1, 1, 1, 1))
flip <- 1 # 1 or 2
th = c(-300,120)[flip]
pmat <-

persp3D(x = x_1, y = x_2, z = z, colkey=F, contour=T,
ticktype = "detailed", asp = 1, phi = 30, theta = th,
border = "grey10", alpha=.4, d = .8,r = 2.8,
expand = .6,shade = .2,axes = T,box = T,cex = .1)

xx <- map_dbl(theta_values, "x_1")
yy <- map_dbl(theta_values, "x_2")
zz <- y_values
new_point <- trans3d(xx,yy,zz,pmat = pmat)

44 CHAPTER 2. GRADIENT DESCENT

lines(new_point,pch = 20,col = "red", cex=2, lwd=2)
points(new_point,pch = 20,col = "red", cex=2)

x

−2
−1

0

1
y

−2

−1
0

1

z

2
4

6

8

Figure 2.13: At the end of the iterative process.

To have a look, step by step:

library(animation)
saveGIF({

for(j in c(rep(1,5), 2:(i-1), rep(i, 10))){

par(mar = c(1, 1, 1, 1))
flip <- 1 # 1 or 2
th = c(-300,120)[flip]
pmat <-

persp3D(x = x_1, y = x_2, z = z, colkey=F, contour=T,
ticktype = "detailed", asp = 1, phi = 30, theta = th,
border = "grey10", alpha=.4, d = .8,r = 2.8,
expand = .6,shade = .2,axes = T,box = T,cex = .1)

xx <- map_dbl(theta_values, "x_1")[1:j]
yy <- map_dbl(theta_values, "x_2")[1:j]
zz <- y_values[1:j]

2.1. VANILLA GRADIENT DESCENT 45

new_point <- trans3d(xx,yy,zz,pmat = pmat)
lines(new_point,pch = 20,col = "red", cex=2, lwd=2)
points(new_point,pch = 20,col = "red", cex=2)

}

}, movie.name = "descent_2D_sphere.gif", interval = 0.01,
ani.width = 720, ani.height = 480)

The animated graph is not available in the PDF version of the hands-on session. Check to HTML
version.

With this example, we quickly converged to a solution. But the surface can be a bit more complex.
Let us consider another data generating process, Mishra’s Bird function:

f(x1, x2) = sin(x2) ∗ exp(1 − cos(x1))2 + cos(x1) ∗ exp(1 − sin(x2))2 + (x1 − x2)2.

First, let us generate some data:

x_1 <- seq(-6.5, 0, by = 0.3)
x_2 <- seq(-10, 0, by = 0.3)
z_f <- function(x_1,x_2){

sin(x_2)*exp(1-cos(x_1))ˆ2 + cos(x_1)*exp(1-sin(x_2))ˆ2 + (x_1-x_2)ˆ2
}
z <- outer(x_1, x_2, z_f)

A graphical representation of the surface:

par(mar = c(1, 1, 1, 1))
flip <- 2 # 1 or 2
theta = c(-300,120)[flip]
pmat <-

persp3D(x = x_1, y = x_2, z = z, colkey=F, contour=T,
ticktype = "detailed", asp = 1, phi = 30, theta = th,
border = "grey10", alpha=.4, d = .8,r = 2.8,
expand = .6,shade = .2,axes = T,box = T,cex = .1)

46 CHAPTER 2. GRADIENT DESCENT

x

−6

−4

−2
y

−10
−8

−6
−4

−2

z

−100
−50
0

50
100

Figure 2.14: A more complex function in R2.

The function that needs to be optimized need to be rewritten so that the first argument is the
vector of parameters over which minimisation is to take place.

z_f_to_optim <- function(theta){
x_1 <- theta[1]
x_2 <- theta[2]
sin(x_2) * exp(1-cos(x_1))ˆ2 + cos(x_1) * exp(1-sin(x_2))ˆ2 +

(x_1-x_2)ˆ2
}

Let us create a function that uses the gradient descent algorithm to try find the minimum.

#' @param par Initial values for the parameters to be optimized over.
#' @param fn A function to be minimized, with first argument the vector
#' of parameters over which minimisation is to take place.
#' It should return a scalar result.
#' @param learning_rate Learning rate.
#' @param nb_max_iter The maximum number of iterations (default to 100).
#' @param tolerance The absolute convergence tolerance (default to 10ˆ-5).
gradient_descent <- function(par, fn, learning_rate,

nb_max_iter = 100, tolerance = 10ˆ-5){

To keep track of what happens at each iteration

2.1. VANILLA GRADIENT DESCENT 47

par_values <- list(par)
y_values <- fn(par)

for(i in 1:nb_max_iter){
Steepest ascent
grad <- grad(func = fn, x = par)

Updating the parameters
par <- par - learning_rate * grad

Keeping track
par_values <- c(par_values, list(par))

Checking for improvement
y_updated <- fn(par)
y_values <- c(y_values, y_updated)
rel_diff <- abs(y_values[i] - y_updated)
if(rel_diff < tolerance) break

}

Has the algorithm converged?
convergence <- i < nb_max_iter | (rel_diff < tolerance)

structure(
list(

par = par,
value = y_updated,
pars = do.call("rbind", par_values),
values = y_values,
convergence = convergence,
nb_iter = i,
nb_max_iter = nb_max_iter,
tolerance = tolerance

))

}

Now this optimisation function can be called. Let us start at θ = (−6, −2), and try to find the
minimum with a learning rate of 10−2 over at most 100 iterations.

48 CHAPTER 2. GRADIENT DESCENT

res_optim <-
gradient_descent(par = c(-6, -2), fn = z_f_to_optim,

learning_rate = 10ˆ-2,
nb_max_iter = 100,
tolerance = 10ˆ-5)

Let us check whether the algorithm converged:

res_optim$convergence

[1] TRUE

res_optim$nb_iter

[1] 41

The algorithm has converged. Let us look at the point we ended up with:

res_optim$par

[1] -3.122755 -1.589316

res_optim$value

[1] -106.7877

And graphically:

par(mar = c(1, 1, 1, 1))
pmat <-

persp3D(x = x_1, y = x_2, z = z, colkey=F, contour=T,
ticktype = "detailed", asp = 1, phi = 30, theta = 120,
border = "grey10", alpha=.4, d = .8,r = 2.8,
expand = .6,shade = .2,axes = T,box = T,cex = .1)

2.1. VANILLA GRADIENT DESCENT 49

xx <- res_optim$pars[,1]
yy <- res_optim$pars[,2]
zz <- res_optim$values
new_point <- trans3d(xx,yy,zz,pmat = pmat)
lines(new_point,pch = 20,col = "red", cex=2, lwd=2)
points(new_point,pch = 20,col = "red", cex=2)

x

−6

−4

−2y

−10
−8

−6
−4

−2

z

−100
−50
0

50

100

Figure 2.15: Interative process We end up in a local minimum.

saveGIF({
for(j in c(rep(1,5), 2:(res_optim$nb_iter-1), rep(res_optim$nb_iter, 10))){

par(mar = c(1, 1, 1, 1))
pmat <-

persp3D(x = x_1, y = x_2, z = z, colkey=F, contour=T,
ticktype = "detailed", asp = 1, phi = 30, theta = 120,
border = "grey10", alpha=.4, d = .8,r = 2.8,
expand = .6, shade = .2,axes = T,box = T,cex = .1,
main = str_c("Step ", j))

xx <- res_optim$pars[1:j,1]
yy <- res_optim$pars[1:j,2]
zz <- res_optim$values[1:j]
new_point <- trans3d(xx,yy,zz,pmat = pmat)

50 CHAPTER 2. GRADIENT DESCENT

lines(new_point,pch = 20,col = "red", cex=2, lwd=2)
points(new_point,pch = 20,col = "red", cex=2)

}

}, movie.name = "descent_3D_Mishra.gif", interval = 0.01,
ani.width = 720, ani.height = 480)

The animated graph is not available in the PDF version of the hands-on session. Check to HTML
version.

We ended up in the minimum.

Another way to look at the gradient descent is through the following contour plot. At each
iteration, we decide in which direction to go:

d <- tibble(x = res_optim$pars[,1],
y = res_optim$pars[,2],
z = res_optim$values)

contour2D(x=x_1, y=x_2, z=z, colkey=F, main="Contour plot",
xlab="x_1", ylab="x_2")

points(x=d$x, y=d$y, t="p", pch=19, col = "red")
for(k in 2:(nrow(d+1)))

segments(x0 = d$x[k-1], y0 = d$y[k-1],
x1 = d$x[k], y1 = d$y[k], col= 'red')

2.1. VANILLA GRADIENT DESCENT 51

Contour plot

x_1

x_
2

 −100

 −80

 −60

 −60

 −40

 −40 −20

 −20 0

 0

 20

 20

 20
 20

 40

 40

 40

 40

 4
0

 60

 60

 80

 100

−6 −5 −4 −3 −2 −1 0

−
10

−
8

−
6

−
4

−
2

0

Figure 2.16: Another grapghical representation: contour plot.

Let us change the starting point to begin with θ = (−6, −4) (let us also increase the maximum
number of iterations).

res_optim <-
gradient_descent(par = c(-6, -4), fn = z_f_to_optim,

learning_rate = 10ˆ-2,
nb_max_iter = 1000,
tolerance = 10ˆ-5)

Let us check whether the algorithm converged:

res_optim$convergence

[1] TRUE

res_optim$nb_iter

52 CHAPTER 2. GRADIENT DESCENT

[1] 141

The algorithm has also converged. Let us look at the point we ended up with:

par(mar = c(1, 1, 1, 1))
pmat <-

persp3D(x = x_1, y = x_2, z = z, colkey=F, contour=T,
ticktype = "detailed", asp = 1, phi = 30, theta = 120,
border = "grey10", alpha=.4, d = .8,r = 2.8,
expand = .6, shade = .2,axes = T,box = T,cex = .1)

xx <- res_optim$pars[,1]
yy <- res_optim$pars[,2]
zz <- res_optim$values
new_point <- trans3d(xx,yy,zz,pmat = pmat)
lines(new_point,pch = 20,col = "red", cex=2, lwd=2)
points(new_point,pch = 20,col = "red", cex=2)

x

−6

−4

−2y

−10
−8

−6
−4

−2

z

−100
−50
0

50

100

Figure 2.17: Getting stuck in a plateau.

We reached a local minimum.

d <- tibble(x = res_optim$pars[,1],
y = res_optim$pars[,2],

2.1. VANILLA GRADIENT DESCENT 53

z = res_optim$values)
contour2D(x=x_1, y=x_2, z=z, colkey=F, main="Contour plot",

xlab="x_1", ylab="x_2")
points(x=d$x, y=d$y, t="p", pch=19, col = "red")
for(k in 2:(nrow(d+1)))

segments(x0 = d$x[k-1], y0 = d$y[k-1], x1 = d$x[k],
y1 = d$y[k], col= 'red')

Contour plot

x_1

x_
2

 −100

 −80

 −60

 −60

 −40

 −40 −20

 −20 0

 0

 20

 20

 20
 20

 40

 40

 40

 40

 4
0

 60

 60

 80

 100

−6 −5 −4 −3 −2 −1 0

−
10

−
8

−
6

−
4

−
2

0

Figure 2.18: Contour plot: getting stuck in a plateau.

2.1.4 Case Study: Linear Regression

Let us generate some data.

yi = 3xi − 2 + εi, i = 1, . . . , n,

where ε is normally distributed with zero mean and variance σ2 = 4.

set.seed(123)
Number of observations

54 CHAPTER 2. GRADIENT DESCENT

n <- 50
x randomly drawn from a continuous uniform distribution with bounds [0,10]
x <- runif(min = 0, max = 10, n = n)
Error term from Normal distribution with zero mean and variance 4
error <- rnorm(n = n, mean = 0, sd = 2)
Response variable
beta_0 <- 3
beta_1 <- -2
y <- beta_0*x + beta_1 + error

Let us put the data in a table:

df <- tibble(x = x, y = y)
df

A tibble : 50 x 2
x y
<dbl > <dbl >
1 2.88 3.25
2 7.88 23.3
3 4.09 10.6
4 8.83 22.2
5 9.40 28.7
6 0.456 0.220
7 5.28 13.3
8 8.92 26.6
9 5.51 16.3
10 4.57 13.3
... with 40 more rows

ggplot(data = df, aes(x = x, y = y)) + geom_point() +
geom_abline(slope = 3, intercept = -2) +
labs(title = "y = f(x)")

2.1. VANILLA GRADIENT DESCENT 55

0

10

20

30

0.0 2.5 5.0 7.5 10.0
x

y

y = f(x)

Figure 2.19: Data Generating Process and synthetic data.

Now, let us suppose that we do not know anymore the parameters β0 and β1. The only things
we assume are that there exists a linear relationship between y and x and that the error term is
normally distributed with zero mean and (unknown) variance σ2.

In other words, we would like to estimate the following model:

yi = β0 + β1xi + εi, i = 1, . . . , n,

where ε N (0, σ2), and where β0, β1 (and σ2) are unknown and need to be estimated.

We would like to obtain estimates of β0 and β1 such that the loss function (our objective function)
is the smallest. The loss function we will use is the mean squared error:

L(β) = 1
n

n∑
i=1

(yi − ŷi))2 ,

where ŷi = β̂0 + β̂1xi, and where β̂0 and β̂1 are the estimates of β0 and β1, respectively.

We will use the gradient descent algorithm to estimate these parameters so as to minimise this loss
function.

The function to optimise:

56 CHAPTER 2. GRADIENT DESCENT

obj_function <- function(theta, y){
y_pred <- theta[1] + theta[2]*x
mean((y - y_pred)ˆ2)

}

We need some starting values for β0 and β1:

beta <- c(0, 0)

Let us keep track of the updated values throughout the iterations:

beta_values <- beta
mse_values <- NULL

We need to pick a learning rate:

learning_rate <- 10ˆ-2

Let us set a maximum number of iterations:

nb_max_iter <- 1000

And an absolute tolerance:

abstol <- 10ˆ-5

for(i in 1:nb_max_iter){
Predctions with the current values:
y_pred <- beta[1] + beta[2]*x

Just for keeping track
mse <- mean((y - y_pred)ˆ2)
mse_values <- c(mse_values, mse)

gradient <- grad(func = obj_function, x = beta, y=y)

We could also use the exact expression here:
deriv_loss_beta <- -2/n * sum(y - y_pred)
deriv_loss_beta_0 <- -2/n * sum(x*(y - y_pred))

2.1. VANILLA GRADIENT DESCENT 57

Updating the value
beta <- beta - learning_rate * gradient

Keeping track of the changes
beta_values <- rbind(beta_values, beta)

if(i>1){
rel_diff <- abs(mse_values[i] - mse_values[i-1])
if(rel_diff < abstol) break

}

}

Has the algorithm converged?

print(str_c("Number of iterations: ", i))

[1] " Number of iterations : 790"

convergence <- i < nb_max_iter | (rel_diff < abstol)
convergence

[1] TRUE

The estimated values:

beta

[1] -2.218623 3.066613

For comparison, the OLS estimates are as follows:

lm(y~x)

58 CHAPTER 2. GRADIENT DESCENT

##
Call:
lm(formula = y ~ x)
##
Coefficients :
(Intercept) x
-2.285 3.076

We can notice that the MSE quickly converges to the variance of the error:

ggplot(data = tibble(mse = mse_values) %>%
mutate(iteration = row_number()) %>%
filter(iteration > 1),

aes(x = iteration, y = mse)) +
geom_line()

5

10

15

20

25

0 200 400 600 800
iteration

m
se

Figure 2.20: Quick convergence of the MSE to the variance of the error.

We can have a look at the updates throughout the iterative process:

as_tibble(beta_values, .name_repair = "minimal") %>%
magrittr::set_colnames(c("beta_0", "beta_1")) %>%

2.2. VARIANTS OF THE GRADIENT DESCENT ALGORITHM 59

mutate(iteration = row_number()) %>%
ggplot(data = ., aes(x = beta_0, y = beta_1)) +
geom_point(aes(colour = iteration), size = .1)

0

1

2

3

−2.0 −1.5 −1.0 −0.5 0.0
beta_0

be
ta

_1

200

400

600

iteration

Figure 2.21: Updated values at each iteration.

2.2 Variants of the Gradient Descent Algorithm

So far, we have estimated the p parameters that minimise an objective function L(θ), where θ is
a vector of the p parameters to be estimated.

We have seen that the gradient descent algorithm updates the value of the ith parameter using the
following rule:

θ(t+1) = θ(t) − η · ∇L
(
θ(t))

In the previous example, to compute the gradient of the objective function L, we have used the
whole dataset. The learning rate eta was a constant. In this section, we will consider different
ways of updating the parameters. First, we will focus on the frequency of updates and on the
samples used to update the parameters. Then, we will have a glance at ways used to make the
learning rate vary along the iteration process.

Before jumping to those aspects, let us sum up how the gradient descent algorithm works:

60 CHAPTER 2. GRADIENT DESCENT

Gradient Descent Algorithm
1. Randomly pick starting values for the parameters
2. Compute the gradient of the objective function at the current value of the parameters

using all the observations from the training sample
3. Update the parameters
4. Repeat from step 2 until a fixed number of iteration or until convergence.

2.2.1 Frequency of Updates & Samples Used

2.2.1.1 Stochastic Gradient Descent

Actually, multiple ways can be used to compute the gradient of the objective function. Instead
of updating the parameters using all the observations, the former can be updated using a single
observation from the dataset at each iteration. Each sample observation is used in turn to evaluate
the objective function and to update the parameters. Once all the observations have been used
to update the parameters, we say that we have passed an epoch. The overall procedure in which
a single observation (as opposed to the whole dataset) is used to update the parameters is called
Stochastic Gradient Descent (SGD).

As opposed to Gradient Descent, Stochastic Gradient Descent do not require to train over the
entire dataset, which may not be feasible depending on the size of the data at hand, or may be
very slow. Imagine having a large dataset with a high number of features p and a large number
of observations N . At each iteration, with Gradient Descent, we need to compute p first-order
derivative for N observations. With Stochastic Gradient Descent, instead of computing the first-
order derivative for all N observations, a single randomly drawn observation is used. The iteration
is thus faster with Stochastic Gradient Descent. However, the update process becomes noisier and
the algorithm converges at a lower rate. But the fact that the update process becomes noisier may
not be a curse: it can allow us to avoid ending up in a local minimum.

As the update of the parameters is done for each observation, it is not possible to rely on vectorized
or parallel implementation of this process.

To sum up, the algorithm works as follows:

2.2. VARIANTS OF THE GRADIENT DESCENT ALGORITHM 61

Stochastic Gradient Descent Algorithm
1. Randomly pick starting values for the parameters
2. Select an observation
3. Compute the gradient of the objective function using the observation from step 2
4. Update the parameters
5. Repeat from step 2 until all the observations from the training sample have been

used: this constitutes an epoch
6. Repeat the procedure from 2 to 5 to complete multiple epochs.

At iteration t, the parameters are updated using the ith observation:

θ(t+1) = θ
(t)
i − η · ∇L

(
θ(t); Xi

)
Let us apply this algorithm to estimate the parameters of a linear model. We can generate 1000
observations from the following process:

yi = β0 + β1x1,i + β2x2,i + εi, i = 1, . . . , N

where x1 and x2 are randomly drawn from a U(0, 10) distribution and ε ∼ N (0, 2).

Let us generate some data:

set.seed(123)
Number of observations
n <- 1000
x randomly drawn from a continuous uniform distribution with bounds [0,10]
x_1 <- runif(min = 0, max = 10, n = n)
x_2 <- runif(min = 0, max = 10, n = n)
Error term from Normal distribution with zero mean and variance 4
error <- rnorm(n = n, mean = 0, sd = 2)
Response variable
beta_0 <- 3
beta_1 <- -2
beta_2 <- .5
true_beta <- c(beta_0=beta_0, beta_1=beta_1, beta_2=beta_2)
y <- beta_0 + beta_1*x_1 + beta_2*x_2 + error

The objective function is the Mean Squared Error:

obj_function <- function(theta, y, X){
y_pred <- X%*%theta

62 CHAPTER 2. GRADIENT DESCENT

mean((y - y_pred)ˆ2)
}

We can construct the matrix of predictors as follows:

X <- cbind(rep(1, n), x_1, x_2)
colnames(X) <- c("Intercept", "x_1", "x_2")
head(X)

Intercept x_1 x_2
[1,] 1 2.875775 2.736227
[2,] 1 7.883051 5.938669
[3,] 1 4.089769 1.601848
[4,] 1 8.830174 8.534302
[5,] 1 9.404673 8.477392
[6,] 1 0.455565 4.778868

We need some initial values for the vector of parameters:

beta <- c(1,1,1)

We can set the learning rate to 10−2. We will only consider 10 epochs here,

learning_rate <- 10ˆ-2
nb_epoch <- 20

To keep track of the process:

mse_values <- NULL

We will compute the MSE after each epoch, on the whole dataset.

pb <- txtProgressBar(min = 1, max=nb_epoch, style=3)
for(i_epoch in 1:nb_epoch){

cat("\n----------\nEpoch: ", i_epoch, "\n")

Shuffle the order of observations
index <- sample(1:n, size = n, replace=TRUE)

2.2. VARIANTS OF THE GRADIENT DESCENT ALGORITHM 63

for(i in 1:n){
The gradient is estimated using a single observation: the ith
gradient <- grad(func = obj_function, x=beta,

y=y[index[i]], X = X[index[i],])
Updating the value
beta <- beta - learning_rate * gradient

}

Just for keeping track (not necessary to run the algorithm)
(Significantly slows down the algorithm)
cost <- obj_function(beta, y, X)
cat("MSE : ", cost, "\n")
mse_values <- c(mse_values, cost)
End of keeping track

setTxtProgressBar(pb, i_epoch)
}

##

Epoch: 1
MSE : 60.61677
##

Epoch: 2
MSE : 14.27008
##

Epoch: 3
MSE : 21.85282
##

Epoch: 4
MSE : 4.317547
##

Epoch: 5
MSE : 12.04292
##

Epoch: 6
MSE : 7.704181

64 CHAPTER 2. GRADIENT DESCENT

##

Epoch: 7
MSE : 16.23794
##

Epoch: 8
MSE : 6.016237
##

Epoch: 9
MSE : 28.43145
##

Epoch: 10
MSE : 10.1408
##

Epoch: 11
MSE : 5.436552
##

Epoch: 12
MSE : 8.876291
##

Epoch: 13
MSE : 144.3951
##

Epoch: 14
MSE : 7.522555
##

Epoch: 15
MSE : 26.61209
##

Epoch: 16
MSE : 5.29168
##

Epoch: 17
MSE : 57.37272
##

2.2. VARIANTS OF THE GRADIENT DESCENT ALGORITHM 65

Epoch: 18
MSE : 4.390237
##

Epoch: 19
MSE : 11.97248
##

Epoch: 20
MSE : 5.225995

Here are the estimated parameters:

True values:
true_beta

beta_0 beta_1 beta_2
3.0 -2.0 0.5

Estimates values:
(beta_sgd <- beta)

[1] 2.6187446 -2.1165051 0.8039565

Looking at the MSE value at each epoch:

ggplot(data = tibble(epoch = 1:length(mse_values),
MSE = mse_values)) +

geom_line(mapping = aes(x = epoch, y = MSE))

66 CHAPTER 2. GRADIENT DESCENT

0

50

100

150

5 10 15 20
epoch

M
S

E

Figure 2.22: Singular Gradient Descent.

We can see that the MSE quickly falls but does not smoothly decreases with the epochs.

Let us create, for convenience, a simple function that performs the Stochastic Gradient Descent
for a linear model:

#' Performs Stochastic Gradient Descent for a Linear Model.
#' @param par Initial values for the parameters.
#' @param fn A function to be minimized, with first argument the vector of
#' parameters over which minimisation is to take place.
#' It should return a scalar result.
#' @param y Target variable.
#' @param X Matrix of predictors.
#' @param learning_rate Learning rate.
#' @param nb_epoch Number of epochs.
#' @param silent If TRUE (default), progress information
#' not printed in the console.
f_sgd <- function(par, fn, y, X, learning_rate=10ˆ-2, nb_epoch=10, silent=TRUE){

mse_values <- NULL
for(i_epoch in 1:nb_epoch){

if(!silent) cat("\n----------\nEpoch: ", i_epoch, "\n")
n <- nrow(X)
index <- sample(1:n, size = n, replace=TRUE)

2.2. VARIANTS OF THE GRADIENT DESCENT ALGORITHM 67

for(i in 1:n){
gradient <- grad(func = fn, x=par, y=y[index[i]], X = X[index[i],])
Updating the value
par <- par - learning_rate * gradient

}

Just for keeping track (not necessary to run the algorithm)
Significantly slows down the algorith
cost <- fn(par, y, X)
if(!silent) cat("MSE : ", cost, "\n")
mse_values <- c(mse_values, cost)
End of keeping track

}
structure(list(par = par, mse_values = mse_values,

nb_epoch = nb_epoch,
learning_rate = learning_rate))

}

It can then be applied as follows:

start_time_sgd <- Sys.time()
estim_sgd <- f_sgd(par = c(1,1,1), fn = obj_function, y = y, X = X,

silent=TRUE, nb_epoch = 20)
end_time_sgd <- Sys.time()

The time that elapsed to run through the 20 epochs:

Time elapsed
end_time_sgd-start_time_sgd

Time difference of 20.01073 secs

estim_sgd

$par
[1] 3.3837401 -1.4333884 0.5377486
##
$mse_values

68 CHAPTER 2. GRADIENT DESCENT

[1] 26.254430 20.623584 5.261876 14.536654 5.021757 36.114059
15.058143

[8] 7.031129 19.488286 5.029290 21.690363 17.232837 14.928142
9.019636

[15] 17.868784 6.077928 16.709309 16.596630 11.279380 17.557011
##
$nb_epoch
[1] 20
##
$learning_rate
[1] 0.01

2.2.1.2 Batch Gradient Descent

Another variant of the Gradient Descent algorithm is the Batch Gradient Descent. Again, the
gradient of the objective function is computed separately for each observation rather than on the
whole dataset. In contrast with what is done with Stochastic Gradient Descent, the parameters are
not updated after each observation. The average of the gradients computed for each observation
is used to update the parameters only once at each epoch.

As there are fewer updates with this solution than with Stochastic Gradient Descent, the update
process is less computationally expensive and less subject to noise. While a less noisy learning
process can lead to more stable solutions, they also increase the risk of landing in a local minimum.

To sum up, the algorithm works as follows:

Batch Gradient Descent Algorithm
1. Randomly pick starting values for the parameters
2. For each observation, compute the gradient of the objective function
3. Compute the mean of the gradients computed in step 2
4. Update the parameters with the mean gradient from step 3
5. Repeat from step 2 a given number of times.

At iteration t, the parameters are updated as follows:

θ(t+1) = θ(t) − η · 1
n

n∑
i=1

∇L
(
θ(t); Xi

)
,

where n is the size of the training sample.

Let us use the same data as earlier, and use this time the Batch Gradient algorithm instead of the
Stochastic Gradient algorithm.

2.2. VARIANTS OF THE GRADIENT DESCENT ALGORITHM 69

We need starting values for the parameters:

beta <- c(1,1,1)

The learning rate and the number of epochs are the same:

learning_rate <- 10ˆ-2
nb_epoch <- 20

And let us keep track of the MSE through the epochs:

mse_values <- NULL

pb <- txtProgressBar(min = 1, max=nb_epoch, style=3)
for(i_epoch in 1:nb_epoch){

cat("\n----------\nEpoch: ", i_epoch, "\n")
For each observation, we need to compute the gradient
gradients <- rep(0, ncol(X))
for(i in 1:n){

gradient_current <- grad(func = obj_function, x=beta, y=y[i], X = X[i,])
gradients <- gradients+gradient_current

}
Then we divide by the number of observations to get the average
avg_gradients <- gradients/n

Updating the value
beta <- beta - learning_rate * avg_gradients

Just for keeping track (not necessary to run the algorithm)
Significantly slows down the algorith
cost <- obj_function(beta, y, X)
cat("MSE : ", cost, "\n")
mse_values <- c(mse_values, cost)
End of keeping track

setTxtProgressBar(pb, i_epoch)
}

##

70 CHAPTER 2. GRADIENT DESCENT

Epoch: 1
MSE : 30.67738
##

Epoch: 2
MSE : 17.55995
##

Epoch: 3
MSE : 13.37346
##

Epoch: 4
MSE : 10.64122
##

Epoch: 5
MSE : 8.778509
##

Epoch: 6
MSE : 7.506044
##

Epoch: 7
MSE : 6.636364
##

Epoch: 8
MSE : 6.041603
##

Epoch: 9
MSE : 5.634493
##

Epoch: 10
MSE : 5.355469
##

Epoch: 11
MSE : 5.163874
##

Epoch: 12
MSE : 5.03196

2.2. VARIANTS OF THE GRADIENT DESCENT ALGORITHM 71

##

Epoch: 13
MSE : 4.940786
##

Epoch: 14
MSE : 4.877425
##

Epoch: 15
MSE : 4.833054
##

Epoch: 16
MSE : 4.80165
##

Epoch: 17
MSE : 4.779102
##

Epoch: 18
MSE : 4.762605
##

Epoch: 19
MSE : 4.750244
##

Epoch: 20
MSE : 4.740712

The estimated values:

True values:
true_beta

beta_0 beta_1 beta_2
3.0 -2.0 0.5

72 CHAPTER 2. GRADIENT DESCENT

Estimated values:
(beta_batch <- beta)

[1] 0.8526963 -1.7735736 0.6632453

These codes can be wrapped up in a simple function:

#' Performs Batch Gradient Descent for a Linear Model
#' @param par Initial values for the parameters.
#' @param fn A function to be minimized, with first argument the vector of
#' parameters over which minimisation is to take place.
#' It should return a scalar result.
#' @param y Target variable.
#' @param X Matrix of predictors.
#' @param learning_rate Learning rate.
#' @param nb_epoch Number of epochs.
#' @param silent If TRUE (default), progress information
#' not printed in the console.
batch_gd <- function(par, fn, y, X, learning_rate=10ˆ-2,

nb_epoch=10, silent=TRUE){
mse_values <- NULL
n <- nrow(X)
for(i_epoch in 1:nb_epoch){

if(!silent) cat("\n----------\nEpoch: ", i_epoch, "\n----------")
For each observation in the batch, we need to compute the gradient
gradients <- rep(0, ncol(X))
for(i in 1:n){

gradient_current <- grad(func = fn, x=par, y=y[i], X = X[i,])
gradients <- gradients+gradient_current

}
Then we divide by the number of observations to get the average
avg_gradients <- gradients/n

Updating the value
par <- par - learning_rate * avg_gradients

Just for keeping track (not necessary to run the algorithm)
Significantly slows down the algorithm

2.2. VARIANTS OF THE GRADIENT DESCENT ALGORITHM 73

cost <- fn(par, y, X)
if(!silent) cat("MSE : ", cost, "\n")
mse_values <- c(mse_values, cost)
End of keeping track

}
structure(list(par = par, mse_values = mse_values,

nb_epoch = nb_epoch,
learning_rate = learning_rate))

}

This function can be used as follows:

To keep time
start_time_batch <- Sys.time()
estim_batch <-

batch_gd(par = c(1,1,1), fn = obj_function, y = y, X = X, silent=TRUE,
nb_epoch = 20)

end_time_batch <- Sys.time()

The time that has elapsed to run through the 20 epochs:

end_time_batch-start_time_batch

Time difference of 20.70484 secs

We notice that this is not very different from the time used to estimate the parameters on 20
epochs with the Stochastic Gradient Descent algorithm: the number of predictors is very small
in this example.

Looking at the MSE:

tibble(MSE = estim_batch$mse_values, epoch = 1:estim_batch$nb_epoch) %>%
ggplot(data = ., mapping = aes(x=epoch, y = MSE)) +
geom_line() +
labs(x = "Epoch", y = "MSE")

74 CHAPTER 2. GRADIENT DESCENT

10

20

30

5 10 15 20
Epoch

M
S

E

Figure 2.23: Batch Gradient Descent.

We can see that the decrease in the objective function is smoother with Batch Gradient
Descend.

2.2.1.3 Mini-Batch Gradient Descent

Even if vectorised implementation can be used to fasten computing with Batch Gradient Descent
(which is not possible with Stochastic Gradient Descent), the whole dataset is usually required to
be loaded in memory, which can be time consuming.

Another approach, called Mini-Batch Gradient Descent, combines the idea of both Stochastic
Gradient Descent and Batch Gradient Descent. In its first step, it consists in creating a batch
of observations of smaller size than the entire dataset, called a mini-batch (usually, 64, 128, or
256 observations are used to create a mini batch). Then, the gradient of the objective function
is calculated for each observation in the mini batch. The gradients are then averaged and used to
update the parameters. A new iteration can then begin with a new mini-batch.

For a given mini-batch, the computations can be vectorised and does not require to have the entire
dataset loaded in memory. However, the size of the mini-batches need to be decided on prior the
algorithm is launched.

To sum up, the algorithm works as follows:

2.2. VARIANTS OF THE GRADIENT DESCENT ALGORITHM 75

Mini-Batch Descent Algorithm
1. Randomly pick n observations from the training sample
2. For each observation, compute the gradient of the objective function
3. Compute the mean of the gradients computed in step 2
4. Update the parameters with the mean gradient from step 3
5. Repeat from step 1 a given number of times.

At iteration t, the parameters are updated as follows:

θ(t+1) = θ
(t)
i − η · 1

n

n∑
i=1

∇L
(
θ(t); Xi

)
,

where n is the size of the mini-batch.

Again, let us implement this algorithm with the linear model from earlier.

We need starting values for the parameters:

beta <- c(1,1,1)

Let us use the same learning rate as that was used with the Stochastic Gradient Descent algorithm
and the same number of epochs.

learning_rate <- 10ˆ-2
nb_epoch <- 20

We can select a number of observations per batch:

batch_size <- 250

Again, let us keep track of the MSE values after each epoch:

mse_values <- NULL

Then we can use the following loop:

pb <- txtProgressBar(min = 1, max=nb_epoch, style=3)
for(i_epoch in 1:nb_epoch){

cat("\n----------\nEpoch: ", i_epoch, "\n")
Randomly draw a batch
index <- sample(1:n, size = batch_size, replace=TRUE)

76 CHAPTER 2. GRADIENT DESCENT

For each observation in the batch, we need to compute the gradient
gradients_batch <- rep(0, ncol(X))
for(i in 1:batch_size){

gradient_current <-
grad(func = obj_function, x=beta, y=y[index[i]], X = X[index[i],])

gradients_batch <- gradients_batch+gradient_current
}
Then we divide by the number of observations to get the average
avg_gradients_batch <- gradients_batch/batch_size

Updating the value
beta <- beta - learning_rate * avg_gradients_batch

Just for keeping track (not necessary to run the algorithm)
Significantly slows down the algorithm
cost <- obj_function(beta, y, X)
mse_values <- c(mse_values, cost)
End of keeping track

setTxtProgressBar(pb, i_epoch)
}

The estimated values:

True values:
true_beta

beta_0 beta_1 beta_2
3.0 -2.0 0.5

Estimated values
(beta_batch <- beta)

[1] 0.8524989 -1.7747998 0.6444584

As for the Batch Gradient Descent, let us wrap these codes in a function:

2.2. VARIANTS OF THE GRADIENT DESCENT ALGORITHM 77

#' Performs Batch Gradient Descent for a Linear Model
#' @param par Initial values for the parameters.
#' @param fn A function to be minimized, with first argument the vector
#' of parameters over which minimisation is to take place.
#' It should return a scalar result.
#' @param y Target variable.
#' @param X Matrix of predictors.
#' @param learning_rate Learning rate.
#' @param nb_epoch Number of epochs.
#' @param batch_size Batch size.
#' @param silent If TRUE (default), progress information
#' not printed in the console.
mini_batch_gd <- function(par, fn, y, X, learning_rate=10ˆ-2, nb_epoch=10,

batch_size = 128, silent=TRUE){
mse_values <- NULL
n <- nrow(X)
for(i_epoch in 1:nb_epoch){

if(!silent) cat("\n----------\nEpoch: ", i_epoch, "\n----------")
Randomly draw a batch
index <- sample(1:n, size = batch_size, replace=TRUE)
For each observation in the batch, we need to compute the gradient
gradients_batch <- rep(0, ncol(X))
for(i in 1:batch_size){

gradient_current <-
grad(func = fn, x=par, y=y[index[i]], X = X[index[i],])

gradients_batch <- gradients_batch+gradient_current
}
Then we divide by the number of observations to get the average
avg_gradients_batch <- gradients_batch/batch_size

Updating the value
par <- par - learning_rate * avg_gradients_batch

Just for keeping track (not necessary to run the algorithm)
Significantly slows down the algorithm
cost <- fn(par, y, X)
if(!silent) cat("MSE : ", cost, "\n")
mse_values <- c(mse_values, cost)
End of keeping track

78 CHAPTER 2. GRADIENT DESCENT

}
structure(list(par = par, mse_values = mse_values,

nb_epoch = nb_epoch,
learning_rate = learning_rate,
batch_size = batch_size))

}

Let us run the Mini-Batch Gradient Descent algorithm multiple times, varying the number of
observations in the mini-batches at each time:

With 32 obs per mini-batch
start_time_mini_batch_32 <- Sys.time()
mini_batch_32 <- mini_batch_gd(par = c(1,1,1), fn = obj_function,

y = y, X = X,
silent=TRUE, nb_epoch = 20, batch_size = 32)

end_time_mini_batch_32 <- Sys.time()

With 64 obs per mini-batch
start_time_mini_batch_64 <- Sys.time()
mini_batch_64 <- mini_batch_gd(par = c(1,1,1), fn = obj_function,

y = y, X = X, silent=TRUE,
nb_epoch = 20, batch_size = 64)

end_time_mini_batch_64 <- Sys.time()

With 128 obs per mini-batch
start_time_mini_batch_128 <- Sys.time()
mini_batch_128 <- mini_batch_gd(par = c(1,1,1), fn = obj_function,

y = y, X = X, silent=TRUE,
nb_epoch = 20, batch_size = 128)

end_time_mini_batch_128 <- Sys.time()

With 256 obs per mini-batch
start_time_mini_batch_256 <- Sys.time()
mini_batch_256 <- mini_batch_gd(par = c(1,1,1), fn = obj_function,

y = y, X = X, silent=TRUE,

2.2. VARIANTS OF THE GRADIENT DESCENT ALGORITHM 79

nb_epoch = 20, batch_size = 256)
end_time_mini_batch_256 <- Sys.time()

The estimated parameters:

True values:
beta

[1] 0.8524989 -1.7747998 0.6444584

Estimated values:
mini_batch_32$par

[1] 0.8851996 -1.7382412 0.7427221

mini_batch_64$par

[1] 0.8647598 -1.7800043 0.6838670

mini_batch_128$par

[1] 0.8689784 -1.7547041 0.6840733

mini_batch_256$par

[1] 0.8557173 -1.7529742 0.6988836

Let us look at the time used to estimate the parameters in each situation. The greater the number
of observations, the greater the time taken by the algorithm.

end_time_mini_batch_32-start_time_mini_batch_32

80 CHAPTER 2. GRADIENT DESCENT

Time difference of 0.8221748 secs

end_time_mini_batch_64-start_time_mini_batch_64

Time difference of 1.153019 secs

end_time_mini_batch_128-start_time_mini_batch_128

Time difference of 2.64806 secs

end_time_mini_batch_256-start_time_mini_batch_256

Time difference of 6.198186 secs

Note: if we pick a mini-batch size of 1, the Mini-Batch Gradient Descent algorithm is the
same as the Batch Gradient Descent algorithm.

And let us have a look at the MSE along the epochs:

df_plot <-
map_df(list(mini_batch_32, mini_batch_64, mini_batch_128, mini_batch_256),

~tibble(MSE = .$mse_values,
batch_size = .$batch_size,
epoch = 1:(.$nb_epoch)))

ggplot(data = df_plot, mapping = aes(x=epoch, y = MSE)) +
geom_line(aes(colour = as.factor(batch_size))) +
labs(x = "Epoch", y = "MSE") +
scale_colour_discrete("Mini-Batch Size")

2.2. VARIANTS OF THE GRADIENT DESCENT ALGORITHM 81

10

20

30

40

50

5 10 15 20
Epoch

M
S

E

Mini−Batch Size

32

64

128

256

Figure 2.24: Mini-Batch Gradient Descent.

We note that the update process is smoother, less noisier as long as we increase the batch size.

To finish this section, let us have a look at the MSE over the epochs for the different algorithms
we used, on the same graph:

df_plot <-
tibble(MSE = estim_sgd$mse_values, epoch = 1:estim_sgd$nb_epoch,

type = "Stochastic Gradient Descent") %>%
bind_rows(

tibble(MSE = estim_batch$mse_values, epoch = 1:estim_batch$nb_epoch,
type = "Batch Gradient Descent")

) %>%
bind_rows(

map_df(list(mini_batch_32, mini_batch_64,
mini_batch_128, mini_batch_256),

~tibble(MSE = .$mse_values,
epoch = 1:(.$nb_epoch),
type = .$batch_size,)) %>%

82 CHAPTER 2. GRADIENT DESCENT

mutate(type = str_c("Mini-Batch Gradient Descent (size=", type, ")"))
)

ggplot(data = df_plot, mapping = aes(x=epoch, y = MSE)) +
geom_line(mapping = aes(colour = type)) +
labs(x = "Epoch", y = "MSE") +
scale_colour_manual(values = c(

"Stochastic Gradient Descent" = "#DDCC77",
"Batch Gradient Descent" = "#117733",
"Mini-Batch Gradient Descent (size=32)" = "#44AA99",
"Mini-Batch Gradient Descent (size=64)" = "#88CCEE",
"Mini-Batch Gradient Descent (size=128)" = "#DC267F",
"Mini-Batch Gradient Descent (size=256)" = "#882255"

)) +
theme(legend.position = "bottom")

10

20

30

40

50

5 10 15 20
Epoch

M
S

E

type
Stochastic Gradient Descent

Batch Gradient Descent

Mini−Batch Gradient Descent (size=32)

Mini−Batch Gradient Descent (size=64)

Mini−Batch Gradient Descent (size=128)

Mini−Batch Gradient Descent (size=256)

Figure 2.25: Optimisation with different algorithms.

2.3. OTHER ALGORITHMS 83

2.2.2 Varying the Learning Rate

So far, we have considered a fixed learning rate η. The update rule for the p parameters of the
objective function we used was the following:

θ(t+1) = θ(t) − η · ∇L
(
θ(t)
)

.

The learning rate may change over the iteration process so that the update rule becomes:

θ(t+1) = θ(t) − ηt · ∇L
(
θ(t)
)

,

where ηt can be set in various ways.

2.2.2.1 Linear Decaying Rate

The learning rate can be set so that it decreases linearly with the number of iterations. In such a
case, it is defined as follows:

ηt = ηt

t + 1

2.2.2.2 Quadratic Decaying Rate

For a quadratically decaying learning rate:

ηt = ηt

(t + 1)2

2.2.2.3 Exponential Decaying Rate

For an exponential decay:

ηt = ηt exp(−βt),

where β > 0.

2.3 Other Algorithms

There are many other algorithms and variants. I would like to sketch two other algorithms in
this notebook: Newton’s algorithm and the Coordinate Descent algorithm.

84 CHAPTER 2. GRADIENT DESCENT

2.3.1 Newton’s Method

When the function to be optimised is convex, doubly differentiable and takes its values in Rn, it
is possible to use the second-order derivative to redefine the learning rate.

Taylor’s theorem states that if L : Rp → R is twice-differentiable at point θ, for any small
change δθ, the best quadratic approximation to L is given by the second-order Taylor
series:

L(θ + δθ) = L(θ) + ∇L(θ)⊤δθ + 1
2δθ⊤Hδθ + O(∥δ3θ∥),

with H = ∇2L(θ) the Hessian matrix
In a similar way as in the case of the best linear approximation, we need to take a step δθ
such that :

L(θ + δθ) < L(θ),

i.e., for which:
δθ⊤Hδθ < 0

With Newton’s method, we will thus take a step along the gradient, and we will use the Hessian
matrix to decide the step to take: by doing to, the rate at which we will go down the gradient will
account for the convexity of the function.

Newton’s Method
1. Randomly pick starting values for the parameters
2. Compute both the gradient and the Hessian of the objective function at the current

value of the parameters using all the observations from the training sample
3. Update the parameters
4. Repeat from step 2 until a fixed number of iteration or until convergence.

At iteration t, the parameters are updated as follows:

H(t) = ∇2L
(
θ(t))

θ(t+1) = θ(t) −
(
H(t))−1 · ∇L

(
θ(t)),

While computing the second-order derivative can be fast if the expression of this function is simple,
it can become computationally very expensive otherwise. The computation of the Hessian can
also be very challenging when facing a large number of observations (n2 computations are required
for the second-order derivative).

2.3. OTHER ALGORITHMS 85

Computing the inverse of the Hessian matrix is computationally expensive. The BFGS
(Broyden Fletcher Goldfard Shanno) method avoids computing H−1 and instead estimates
an approximation of the Hessian matrix.

Let us illustrate the method. Consider the following function:

f(x1, x2) = (x1 − x2)4 + 2x2
1 + x2

2 − x1 + 2x2

x_1 <- seq(-10, 10, by = 0.3)
x_2 <- seq(-10, 10, by = 0.3)
z_f <- function(x_1,x_2) (x_1-x_2)ˆ4 + 2*x_1ˆ2 + x_2ˆ2 - x_1 + 2*x_2
z_f_to_optim <- function(theta){

x_1 <- theta[1]
x_2 <- theta[2]
(x_1-x_2)ˆ4 + 2*x_1ˆ2 + x_2ˆ2 - x_1 + 2*x_2

}
z <- outer(x_1, x_2, z_f)

A graphical representation of this function can be obtained as follows:

par(mar = c(1, 1, 1, 1))
th = 150
pmat <-

persp3D(x = x_1, y = x_2, z = z, colkey=F, contour=T,
ticktype = "detailed", asp = 1, phi = 40, theta = th,
border = "grey10", alpha=.4, d = .8,r = 2.8,
expand = .6, shade = .2,axes = T,box = T,cex = .1)

86 CHAPTER 2. GRADIENT DESCENT

x

−10
−5

0
5

y

−10

−5

0

5

z

0
50000

100000

150000

Figure 2.26: Surface of the illustrative function.

Let us pick some starting values:

theta <- c(-9, 9)

The Newton’s Method quickly converges, let us pick a small maximum number of iteration.

nb_max_iter <- 20

Let us set a value for the absolute tolerance:

abstol <- 10ˆ-5

At our starting point, the value of the function is:

(current_obj <- z_f_to_optim(theta))

[1] 105246

Let us keep a track on our updated values for the vector of parameters:

theta_values <- NULL

Then we can make a loop to update iteratively the vector of parameters.

2.3. OTHER ALGORITHMS 87

for(i in 1:nb_max_iter){
gradient <- grad(func = z_f_to_optim, x = theta)
H <- hessian(func = z_f_to_optim, x = theta)
Updating the parameters
theta <- theta - t(solve(H) %*% gradient)
new_obj <- z_f_to_optim(theta)
Keeping track
theta_values <- rbind(theta_values, theta)

if(abs(current_obj - new_obj) < abstol){
break

}else{
current_obj <- new_obj

}
}

The algorithm stopped after the following number of iterations:

i

[1] 13

The algorithm tells us that the minimum is reached at the following point:

theta

[,1] [,2]
[1,] 0.03349047 -0.5669809

Let us have a look at the updates on a first graph:

par(mar = c(1, 1, 1, 1))
pmat <-

persp3D(x = x_1, y = x_2, z = z, colkey=F, contour=T,
ticktype = "detailed", asp = 1, phi = 40, theta = th,
border = "grey10", alpha=.4, d = .8,r = 2.8,
expand = .6, shade = .2,axes = T,box = T,cex = .1)

88 CHAPTER 2. GRADIENT DESCENT

xx <- theta_values[,1]
yy <- theta_values[,2]
zz <- z_f(xx,yy)
new_point <- trans3d(xx,yy,zz,pmat = pmat)
lines(new_point,pch = 20,col = "red", cex=2)
points(new_point,pch = 20,col = "red", cex=2)
points(map(new_point, last),pch = 20,col = "green", cex=1.5)

x

−10
−5

0
5

y

−10

−5

0

5
z

0
50000

100000

150000

Figure 2.27: Newton’s algorithm: steps of the iterative process.

And on a contour plot:

contour2D(x=x_1, y=x_2, z=z, colkey=F,
main="Contour plot", xlab="x_1", ylab="x_2")

for(i in 1:(nrow(theta_values)-1)){
segments(x0 = theta_values[i, 1], x1 = theta_values[i+1, 1],

y0 = theta_values[i, 2], y1 = theta_values[i+1, 2],
col = "red", lwd=2)

}
points(x=theta_values[,1], y=theta_values[,2], t="p",

pch=19, col = "red")
points(x=theta_values[nrow(theta_values),1],

y=theta_values[nrow(theta_values),2], t="p",
pch=19, col = "green")

2.3. OTHER ALGORITHMS 89

Contour plot

x_1

x_
2

 0

 20000

 20000

 40000

 40000

 60000

 60000

 80000

 80000

−10 −5 0 5 10

−
10

−
5

0
5

10

Figure 2.28: Newton’s algorithm: contour plot of the iterative process.

Here, we converged quickly to the minimum, and the computation was really fast. When applying
this algorithm to minimise the objective function of a supervised learning task using large datasets,
computing the Hessian become way more costly.

To get more details on Newton’s method, see Tibshirani (2019).

2.3.2 Coordinate Descent Algorithm

When trying to optimise a high-dimensional multivariate function, the calculation of each first
derivative can quickly become very time consuming.

Intuitively, the n-dimensional optimisation problem can be seen as several small 1-dimensional
optimisation problems. The basic idea is to try to minimise over a single dimension at each
iteration, keeping all the values of the parameters constant.

More (technical/mathematical) details can be found in the slides titled “Coordinate De-
scent and Ascent Methods” from Nutini (2015) and in the slides “Optimisation et con-
vexité 1, 2 and 3” from Charpentier (2020) (although the title is in French, the slides are
in English, only the videos are in French).

https://www.cs.ubc.ca/labs/lci/mlrg/slides/mlrg_CD.pdf
https://www.cs.ubc.ca/labs/lci/mlrg/slides/mlrg_CD.pdf
https://github.com/freakonometrics/ACT6100
https://github.com/freakonometrics/ACT6100

90 CHAPTER 2. GRADIENT DESCENT

If the function f is convex and differentiable, we can rely on the following theorem to find the
minimum:

If f : Rn → R is convex, differentiable, then :

f(x) ≤ f (x + δ−→i) , ∀i ⇒ f(x) = min{f},

where −→i = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn.

In other words, if we find a point x such that f(x) is minimised along each of the n coordinate
axis, this point is a global minimiser.

We can thus try to find the minimum in each direction instead of looking directly at the problem
in n dimensions. We will end up in the global minimum.

The algorithm works the following way:

Coordinate Descent Algorithm
1. Randomly pick starting values for the parameters
2. Select a dimension among the p (cyclic sampling, uniform sampling, . . .)
3. Compute the first-order derivative of the objective function with respect to the ith

parameter
4. Update the ith parameter
5. Repeat from step 2 until a fixed number of iteration or until convergence.

Let us first consider a smooth function to illustrate the method:

f(x1, x2) = x2
1 + x2

2 + x1x2

Let us now generate some observations from that function:

library(plot3D)
library(numDeriv)
n <- 40
x_1 <- x_2 <- seq(-3, 3, length.out=n)
z_f <- function(x_1, x_2) x_1ˆ2 + x_2ˆ2 + x_1*x_2
z_f_to_optim <- function(theta)

theta[1]ˆ2 + theta[2]ˆ2 + theta[1]*theta[2]
z <- outer(x_1, x_2, z_f)

We can visualise these observations on a 3D graph:

2.3. OTHER ALGORITHMS 91

op <- par()
par(mar = c(1, 1, 1, 1))
flip <- 1
th <- 200
pmat <-

persp3D(x = x_1, y = x_2, z = z, colkey=F, contour=T,
ticktype = "detailed", xlab = "x_1", ylab = "x_2",
zlab = "f(x_1, x_2)", asp = 1, phi = 30, theta = th,
border = "grey10", alpha=.4, d = .8,r = 2.8,
expand = .6, shade = .2, axes = T, box = T, cex = .1)

x_1
−3

−2
−1

0123 x_
2

−3
−2
−1
0

1

2

3

f(x_1, x_2) 5
10

15
20

25

Figure 2.29: Surface of the illustrative spherical function.

Now, let us consider a starting point: θ = (2, 2.2)

theta <- c(2, 2.2)

A contour plot can also be used to visualise the process:

contour(x_1, x_1, z, nlevels = 20, xlab = "x_1", ylab = "x_2")
points(theta[1], theta[2], pch = 19, cex = 2, col = "red")

92 CHAPTER 2. GRADIENT DESCENT

x_1

x_
2

 1

 2
 3 4 5

 6

 7

 7

 7

 7

 7 8

 8

 8

 8 9

 9

 10

 10

 11

 11

 12

 12

 13

 13

 14

 14

 15

 15

 18
 19

 19

 20

 20 21

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 2.30: Starting point.

We need to minimise over a single dimension. For example, let us begin with the first dimension.

dim_i <- 1

The value of the parameter of the other dimensions (here only the second dimension) will be held
fixed. We will only update the first dimension of the parameter.

contour(x_1, x_1, z, nlevels = 20, xlab = "x_1", ylab = "x_2")
abline(h = theta[2], lty=2, col = "blue", lwd=2)
points(theta[1], theta[2], pch = 19, cex = 2, col = "red")

2.3. OTHER ALGORITHMS 93

x_1

x_
2

 1

 2
 3 4 5

 6

 7

 7

 7

 7

 7 8

 8

 8

 8 9

 9

 10

 10

 11

 11

 12

 12

 13

 13

 14

 14

 15

 15

 18
 19

 19

 20

 20 21

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 2.31: Optimisation in a single dimension (dashed blue line).

The first derivative of our function f with respect to x1 writes:

∂f

∂x1
(x1, x2) = 2x1 + x2.

derivative_wrt_x1 <- function(theta){
2*theta[1] + theta[2]

}

Evaluated at θ:

(grad_i <- derivative_wrt_x1(theta))

[1] 6.2

Let us select a learning rate:

learning_rate <- 10ˆ-1

The vector of parameters can then be updated:

94 CHAPTER 2. GRADIENT DESCENT

theta_update <- theta
theta_update[dim_i] <- theta_update[dim_i] - learning_rate * grad_i
theta_update

[1] 1.38 2.20

Let us keep track of the evolution of the values of θ.

theta_values <- rbind(theta, theta_update)
theta_values

[,1] [,2]
theta 2.00 2.2
theta_update 1.38 2.2

contour(x_1, x_1, z, nlevels = 20, xlab = "x_1", ylab = "x_2")
abline(h = theta[2], lty=2, col = "blue", lwd = 2)
points(theta[1], theta[2], pch = 19, cex = 2, col = "red")
segments(x0 = theta[1], x1 = theta_update[1],

y0 = theta[2], y1 = theta_update[2], col = "red", lwd=2)
points(theta_update[1], theta_update[2], pch = 19, cex = 2, col = "red")

2.3. OTHER ALGORITHMS 95

x_1

x_
2

 1

 2
 3 4 5

 6

 7

 7

 7

 7

 7 8

 8

 8

 8 9

 9

 10

 10

 11

 11

 12

 12

 13

 13

 14

 14

 15

 15

 18
 19

 19

 20

 20 21

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 2.32: Updated value after the first step.

A new iteration can then begin. Let us now consider another dimension:

dim_i <- 2

This time, we will try to optimise on this second dimension only, keeping the values of the other
dimension constant.

contour(x_1, x_1, z, nlevels = 20, xlab = "x_1", ylab = "x_2")
abline(v = theta_update[1], lty=2, col = "blue", lwd = 2)
points(theta[1], theta[2], pch = 19, cex = 2, col = "red")
segments(x0 = theta[1], x1 = theta_update[1],

y0 = theta[2], y1 = theta_update[2], col = "red", lwd=2)
points(theta_update[1], theta_update[2], pch = 19,

cex = 2, col = "red")

96 CHAPTER 2. GRADIENT DESCENT

x_1

x_
2

 1

 2
 3 4 5

 6

 7

 7

 7

 7

 7 8

 8

 8

 8 9

 9

 10

 10

 11

 11

 12

 12

 13

 13

 14

 14

 15

 15

 18
 19

 19

 20

 20 21

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 2.33: Optimisation in another dimension.

The first derivative of our function f with respect to x2 writes:

∂f

∂x2
(x1, x2) = 2x2 + x1.

derivative_wrt_x2 <- function(theta){
2*theta[2] + theta[1]

}

Evaluated at θ:

(grad_i <- derivative_wrt_x2(theta_update))

[1] 5.78

The vector of parameters can then be updated:

theta_update[dim_i] <- theta_update[dim_i] - learning_rate * grad_i
theta_update

2.3. OTHER ALGORITHMS 97

[1] 1.380 1.622

Keeping track of the changes:

theta_values <- rbind(theta_values, theta_update)
theta_values

[,1] [,2]
theta 2.00 2.200
theta_update 1.38 2.200
theta_update 1.38 1.622

contour(x_1, x_1, z, nlevels = 20, xlab = "x_1", ylab = "x_2")
abline(v = theta_update[1], lty=2, col = "blue", lwd = 2)
for(i in 1:(nrow(theta_values)-1)){

segments(x0 = theta_values[i, 1], x1 = theta_values[i+1, 1],
y0 = theta_values[i, 2], y1 = theta_values[i+1, 2],
col = "red", lwd=2)

}
points(theta_values[,1], theta_values[,2], pch = 19,

cex = 2, col = "red")

98 CHAPTER 2. GRADIENT DESCENT

x_1

x_
2

 1

 2
 3 4 5

 6

 7

 7

 7

 7

 7 8

 8

 8

 8 9

 9

 10

 10

 11

 11

 12

 12

 13

 13

 14

 14

 15

 15

 18
 19

 19

 20

 20 21

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 2.34: Updated value agter the second step.

Then we just need to iterate until a number of iterations is reached or until convergence.

Here is the full code:

Starting values
theta <- c(2, 2.2)
learning_rate <- 10ˆ-1
abstol <- 10ˆ-5
nb_max_iter <- 100
z_current <- z_f_to_optim(theta)
To keep track of what happens at each iteration
theta_values <- list(theta)
dims <- NULL

for(i in 1:nb_max_iter){

nb_dim <- length(theta)
Cyclic rule to pick the dimension
dim_i <- (i-1) %% nb_dim + 1

With uniform sampling
dim_i <- sample(x = seq_len(nb_dim), size = 1)

2.3. OTHER ALGORITHMS 99

Steepest ascent
if(dim_i == 1){

grad_i <- derivative_wrt_x1(theta)
}else{

grad_i <- derivative_wrt_x2(theta)
}

Updating the parameters
theta_update <- theta
theta_update[dim_i] <- theta_update[dim_i] - learning_rate * grad_i
theta <- theta_update
To keep track of the changes
theta_values <- c(theta_values, list(theta))
dims <- c(dims, dim_i)

Checking for improvement
z_updated <- z_f_to_optim(theta_update)
if(abs(z_updated - z_current) < abstol) break
z_current <- z_updated

}

The optimisation stopped at iteration:

i

[1] 29

theta_values <- do.call("rbind", theta_values)

The final value for the parameter theta is:

theta

[1] -0.03832741 0.07418966

Let us have a look at the path of the process:

100 CHAPTER 2. GRADIENT DESCENT

contour(x_1, x_1, z, nlevels = 20, xlab = "x_1", ylab = "x_2")
abline(v = theta_update[1], lty=2, col = "blue", lwd = 2)
for(i in 1:(nrow(theta_values)-1)){

segments(x0 = theta_values[i, 1], x1 = theta_values[i+1, 1],
y0 = theta_values[i, 2], y1 = theta_values[i+1, 2],
col = "red", lwd=2)

}
points(theta_values[,1], theta_values[,2], pch = 19,

cex = .8, col = "red")

x_1

x_
2

 1

 2
 3 4 5

 6

 7

 7

 7

 7

 7 8

 8

 8

 8 9

 9

 10

 10

 11

 11

 12

 12

 13

 13

 14

 14

 15

 15

 18
 19

 19

 20

 20 21

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 2.35: Coordinate descent algorithm: iterative process.

Or with the 3D graph:

saveGIF({

for(j in c(rep(1,5), 2:(nrow(theta_values)-1), rep(nrow(theta_values), 10))){

par(mar = c(1, 1, 1, 1))
flip <- 1
th <- 200
pmat <-

2.3. OTHER ALGORITHMS 101

persp3D(x = x_1, y = x_2, z = z, colkey=F, contour=T,
ticktype = "detailed", asp = 1, phi = 30, theta = th,
border = "grey10", alpha=.4, d = .8,r = 2.8,
expand = .6, shade = .2, axes = T, box = T, cex = .1,
main = paste0("Step ", j))

xx <- theta_values[1:j,1]
yy <- theta_values[1:j,2]
zz <- z_f(xx,yy)
new_point <- trans3d(xx,yy,zz,pmat = pmat)
lines(new_point,pch = 20,col = "red", cex=2, lwd=2)
points(new_point,pch = 20,col = "red", cex=2)

}

}, movie.name = "coordinate_descent_contour_3D.gif", interval = 0.01,
ani.width = 720, ani.height = 480)

The animated graph is not available in the PDF version of the hands-on session. Check to HTML
version.

In this example, we have considered a cyclic sampling rule to decide the dimension to optimise
over. Different rules exist. For example, one could use a uniform sampling rule.

2.3.2.1 When the Function to Optimize is not Differentiable in all Points

The coordinate descent algorithm will not be able to find the minimum of a non-differentiable
function. The theorem we used in the case where f is convex AND differentiable cannot be used
anymore.

It is however possible to find the minimum of some non-differentiable functions using a slightly
modified version of the coordinate descent algorithm, if some conditions on the f function are
met.

More precisely, if the function f : Rn → R is not differentiable at all points but can be written
as follows:

f(x) = g(x) +
n∑

i=1
hi(xi),

where g is convex and differentiable and where hi is convex and non-differentiable, then:

f(x) ≤ f (x + δ−→e i) , ∀i ⇒ f(x) = min{f},

where −→e i = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn.

102 CHAPTER 2. GRADIENT DESCENT

Let us consider the following function:

f(x1, x2) = x2
1 + x2

2︸ ︷︷ ︸
convex and differentiable

+ | x1 | + | x2 |︸ ︷︷ ︸
convex and non-differentiable

Let us visualise a graphical representation of this function:

n <- 25
x_1 <- x_2 <- seq(-3, 3, length.out=n)
z_f <- function(x_1, x_2) x_1ˆ2+x_2ˆ2 + abs(x_1) + abs(x_2)
z_f_to_optim <- function(theta)

theta[1]ˆ2+theta[2]ˆ2 + abs(theta[1])+abs(theta[2])
z <- outer(x_1, x_2, z_f)

To compute the numerical partial first-order derivative with respect to the ith variable, we can cre-
ate a function that will numerically estimate the value. Recall that the partial first-order derivative
of function f is defined as:

∂f

∂xi
(x) = lim

h→0

f(x + hei) − f(x)
h

,

where x = (x1, . . . , xi−1, xi, xi+1, . . . , xn) ∈ Rn and ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn.

In R, we can define the following function to numerically estimate the first-order partial deriva-
tive:

#' Numerical partial first-order derivative of a function
#' @param par Initial values for the parameters
#' @param fn A function to be derived. It should return a scalar result.
#' @param dim Direction for the derivative (1 to compute the first derivative
#' with respect to the first parameter, 2 to compute the first derivative
#' with respect to the second parameter, etc.)
#' @param nb_dim number of dimensions
num_first_deriv <- function(par, fn, dim, nb_dim){

h <- par[dim]*sqrt(10ˆ-12)
e <- rep(0, nb_dim) ; e[dim_i] <- 1
(fn(par+h*e) - fn(par))/h

}

Then, we can run the coordinate descent algorithm:

2.3. OTHER ALGORITHMS 103

Starting values
theta <- c(2, 2.2)
learning_rate <- 10ˆ-1
abstol <- 10ˆ-6
nb_max_iter <- 500
z_current <- z_f_to_optim(theta)
To keep track of what happens at each iteration
theta_values <- list(theta)
dims <- NULL

for(i in 1:nb_max_iter){

nb_dim <- length(theta)
Cyclic rule to pick the dimension
dim_i <- (i-1) %% nb_dim + 1

Partial derivative wrt to the dim_i axis
grad_i <-

num_first_deriv(par = theta, fn = z_f_to_optim,
dim = dim_i, nb_dim = nb_dim)

Updating the parameters
theta_update <- theta
theta_update[dim_i] <- theta_update[dim_i] - learning_rate * grad_i
theta <- theta_update
To keep track of the changes
theta_values <- c(theta_values, list(theta))
dims <- c(dims, dim_i)

Checking for improvement
z_updated <- z_f_to_optim(theta_update)
if(abs(z_updated - z_current) < abstol) break
z_current <- z_updated

}

theta

[1] 0.05555447 0.05555593

104 CHAPTER 2. GRADIENT DESCENT

theta_values <- do.call("rbind", theta_values)

Looking at the path followed by the updated parameters during the iterations:

contour(x_1, x_1, z, nlevels = 20, xlab = "x_1", ylab = "x_2")
for(i in 1:(nrow(theta_values)-1)){

segments(x0 = theta_values[i, 1], x1 = theta_values[i+1, 1],
y0 = theta_values[i, 2], y1 = theta_values[i+1, 2],
col = "red", lwd=2)

}
points(theta_values[,1], theta_values[,2], pch = 19,

cex = .8, col = "red")

x_1

x_
2

 1 2

 3 4 5

 6

 7
 8

 9

 10

 11
 12

 13

 13

 13

 13

 14

 14

 14

 14

 15

 15

 15

 15

 16

 16

 16

 16

 17 17

 17

 18

 18

 18

 18

 19

 19

 19

 20
 21 21

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 2.36: Coordinate descent: iterative process if the function is not differentiable in all points.

Chapter 3

Overfitting

This notebook illustrates the notion of overfitting through three examples. In the first example,
the idea is to build a a classifier on some real data and to assess the predictive capabilities of the
model on seen data, and then on unseen data. In the second example and third, the idea is to see
how overfitting may lead us to select a hyperparameter of a machine learning model that may
exhibit the best results on seen data but will produce a model that performs less well on unseen
data.

Through these examples, the notion of cross validation will be recalled.

3.1 First Example: Default of Credit Card

Disclaimer: The idea of this session is taken from Demšar (2021).

In this first example, we will use a logistic regression to predict the default of credit card clients.
The data used here come from Yeh and Lien (2009). They can be downloaded for free on the
UCI Machine Learning Repository.

On the repository, the following information about the dataset is provided:

This research aimed at the case of customers’ default payments in Taiwan and com-
pares the predictive accuracy of probability of default among six data mining meth-
ods. From the perspective of risk management, the result of predictive accuracy of
the estimated probability of default will be more valuable than the binary result of
classification - credible or not credible clients. Because the real probability of default
is unknown, this study presented the novel “Sorting Smoothing Method” to estimate
the real probability of default. With the real probability of default as the response
variable (Y), and the predictive probability of default as the independent variable (X),
the simple linear regression result (Y = A + BX) shows that the forecasting model

105

https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

106 CHAPTER 3. OVERFITTING

produced by artificial neural network has the highest coefficient of determination; its
regression intercept (A) is close to zero, and regression coefficient (B) to one. There-
fore, among the six data mining techniques, artificial neural network is the only one
that can accurately estimate the real probability of default.

The target variable (y) is the default payment the next month (Yes = 1, No = 0). There are 23
features at hand.

• LIMIT_BAL: Amount of the given credit (NT dollar): it includes both the individual con-
sumer credit and his/her family (supplementary) credit.

• SEX: Binary Coded Gender (1 = male, 2 = female)

• EDUCATION: Education (1 = graduate school; 2 = university; 3 = high school; 4 = others)

• MARRIAGE: Marital status (1 = married; 2 = single; 3 = others)

• AGE: Age (year)

• PAY_0, PAY_1, . . . , PAY_6: History of past payment.

– -1 = pay duly;
– 1 = payment delay for one month;
– 2 = payment delay for two months; . . .
– 8 = payment delay for eight months;
– 9 = payment delay for nine months and above.

Past monthly payment records (from April to September, 2005) tracked as follows:

– PAY_0: repayment in September, 2005
– PAY_1: repayment in August, 2005
– . . .
– PAY_6: repayment in April, 2005

• BILL_AMT1, . . . , BILL_AMT6: Amount of bill statement (NT dollar).

– BILL_AMT1: in September, 2005
– BILL_AMT2: in August, 2005
– . . .
– BILL_AMT6: in April, 2005

• PAY_AMT1, . . . , PAY_AMT6: Amount of previous payment (NT dollar).

– PAY_AMT1: amount paid in September, 2005
– PAY_AMT2: amount paid in August, 2005
– . . .
– PAY_AMT6: amount paid in April, 2005

3.1. FIRST EXAMPLE: DEFAULT OF CREDIT CARD 107

Let us load the data:

library(tidyverse)
library(readxl)
paste0(

"https://egallic.fr/Enseignement/ML/ECB/",
"data/default_credit_card_clients.xls") %>%
download.file(destfile = "default_credit_card_clients.xls")

df <- read_excel("default_credit_card_clients.xls", skip = 1)

Let us rename the target variable:

df <-
df %>%
rename(y = `default payment next month`)

df

A tibble : 30 ,000 x 25
ID LIMIT_BAL SEX EDUCATION MARRIAGE AGE PAY_0 PAY_2

PAY_3 PAY_4 PAY_5
<dbl > <dbl > <dbl > <dbl > <dbl > <dbl > <dbl > <dbl > <

dbl > <dbl > <dbl >
1 1 20000 2 2 1 24 2 2

-1 -1 -2
2 2 120000 2 2 2 26 -1 2

0 0 0
3 3 90000 2 2 2 34 0 0

0 0 0
4 4 50000 2 2 1 37 0 0

0 0 0
5 5 50000 1 2 1 57 -1 0

-1 0 0
6 6 50000 1 1 2 37 0 0

0 0 0
7 7 500000 1 1 2 29 0 0

0 0 0
8 8 100000 2 2 2 23 0 -1

-1 0 0
9 9 140000 2 3 1 28 0 0

2 0 0
10 10 20000 1 3 2 35 -2 -2

-2 -2 -1
... with 29 ,990 more rows , and 14 more variables : PAY_6 <dbl >,

108 CHAPTER 3. OVERFITTING

BILL_AMT1 <dbl >, BILL_AMT2 <dbl >, BILL_AMT3 <dbl >, BILL_AMT4
<dbl >,

BILL_AMT5 <dbl >, BILL_AMT6 <dbl >, PAY_AMT1 <dbl >, PAY_AMT2 <
dbl >,

PAY_AMT3 <dbl >, PAY_AMT4 <dbl >, PAY_AMT5 <dbl >, PAY_AMT6 <dbl
>, y <dbl >

3.1.1 Somme Summary Statistics on the Whole Dataset

Let us have a really quick glance at the dataset. For a more accurate estimate, data cleaning and
feature engineering would be necessary. As this is not the point of this notebook, we will pretend
not to have seen the issues that will be visible in the descriptive statistics.

Feel free to skip this part to get to the main point of the notebook.

The dimensions of the table are the following:

dim(df)

[1] 30000 25

We note that the dataset is not balanced:

df %>%
group_by(y) %>%
count() %>%
arrange(desc(n))

A tibble : 2 x 2
Groups : y [2]
y n
<dbl > <int >
1 0 23364
2 1 6636

Let us visualise this on a barplot:

df %>%
mutate(y=factor(y, levels = c(1,0), labels = c("Yes", "No"))) %>%

3.1. FIRST EXAMPLE: DEFAULT OF CREDIT CARD 109

ggplot(data = .) +
geom_bar(stat = "count", aes(y = y)) +
labs(x = "Frequency", y = NULL) +
theme(plot.title.position = "plot")

Yes

No

0 5000 10000 15000 20000
Frequency

Figure 3.1: Default payment the next month.

We do not have thousands of predictors here, so we can have a little fun with the descriptive
statistics. Let us create a table that associates a label to each variable and provides its type (numeric,
qualitative or ordinal).

c(
"y", "Default payment the next month", "qualitative",
"ID", "ID number", "numeric",
"LIMIT_BAL", "Amount of the given credit", "numeric",
"SEX", "Gender", "qualitative",
"EDUCATION", "Education", "ordinal",
"MARRIAGE", "Marital status", "qualitative",
"AGE", "Age", "numeric",
"PAY_0", "Repayment status September", "qualitative",
"PAY_2", "Repayment status August", "qualitative",
"PAY_3", "Repayment status July", "qualitative",
"PAY_4", "Repayment status June", "qualitative",
"PAY_5", "Repayment status May", "qualitative",

110 CHAPTER 3. OVERFITTING

"PAY_6", "Repayment status April", "qualitative",
"BILL_AMT1", "Bill amount September", "numeric",
"BILL_AMT2", "Bill amount August", "numeric",
"BILL_AMT3", "Bill amount July", "numeric",
"BILL_AMT4", "Bill amount June", "numeric",
"BILL_AMT5", "Bill amount May", "numeric",
"BILL_AMT6", "Bill amount April", "numeric",
"PAY_AMT1", "Amount previous payment September", "numeric",
"PAY_AMT2", "Amount previous payment August", "numeric",
"PAY_AMT3", "Amount previous payment July", "numeric",
"PAY_AMT4", "Amount previous payment June", "numeric",
"PAY_AMT5", "Amount previous payment May", "numeric",
"PAY_AMT6", "Amount previous payment April", "numeric") %>%
matrix(ncol = 3, byrow = TRUE) %>%
as_tibble() %>%
magrittr::set_colnames(c("variable", "label", "type")) ->
variable_names_df

We can look at the values of our predictors depending on the response variable. Let us perform
some basic parametric tests to see whether the distribution of each feature differs depending on
the response variable.

#' format_p_value
#' Format the p-value so that it displays "<10ˆ{i}", if i <= 3
#' rounds the value with 2 digits otherwise
#' @param x p-value to format
#' x <- 0.000133613 ; x <- 0.0011
format_p_value <- function(x){

if(x < 10ˆ-3){
resul <- str_c("**< 10ˆ{-3}**")

}else if(x > 10ˆ-3){
if(x < 0.05){

resul <- str_c("**", round(x, 3), "**")
}else{

resul <- round(x, 3)
}

}else{
resul <- "**0.001**"

3.1. FIRST EXAMPLE: DEFAULT OF CREDIT CARD 111

}

resul
}

We can create a rather big function to create a table with summary statistics, depending on the
type of each variable and on the response variable.

#' Compute descriptive statistics on `df` grouped by `grouping_var`
#' depending on the type of the variable of interest
#' (qualitative, ordinal, numerical)
#' Then performs test of equality of mean/proportion on the sub-samples.
#'
#' @param variable (string) name of the variable of interest
#' @param grouping_var (string) name of the qualitative variable
#' that defines groups
#' @param variable_names table with three columns:
#' 1- variable name, 2- label, 3-type
sample_diff <- function(variable, df,

grouping_var,
variable_names = variable_names_tlm){

label_variable <-
variable_names %>% filter(variable == !!variable) %>%
magrittr::extract2("label")

type <-
variable_names %>% filter(variable == !!variable) %>%
magrittr::extract2("type")

if(type %in% c("qualitative", "ordinal")){

whole_sample <-
df %>%
filter(!is.na(!!!syms(variable)), !is.na(!!!syms(grouping_var))) %>%
mutate(label = label_variable) %>%
select(label, !!!variable) %>%
group_by(label, !!!syms(variable)) %>%
summarise(n = n(), .groups = "drop")

112 CHAPTER 3. OVERFITTING

nb_tot <- sum(whole_sample$n)

whole_sample <-
whole_sample %>%
mutate(pct = n / sum(n),

pct = (round(100*pct, 2)) %>% str_c("(", ., "%)")) %>%
unite(`Whole Sample`, n, pct, sep = " ")

subsamples <-
df %>%
filter(!is.na(!!!syms(variable)), !is.na(!!!syms(grouping_var))) %>%
mutate(label = label_variable) %>%
select(label, !!!variable, !!!grouping_var) %>%
group_by(label, !!!syms(variable), !!!(syms(grouping_var))) %>%
summarise(n = n(), .groups = "drop") %>%
group_by(!!!syms(grouping_var)) %>%
mutate(pct = n / sum(n),

pct = (round(100*pct, 2)) %>% str_c("(", ., "%)")) %>%
unite(value, n, pct, sep = " ")

res <-
whole_sample %>%
left_join(subsamples) %>%
ungroup() %>%
spread_(key_col = grouping_var, value_col = "value",

fill = "0 (0.00%)") %>%
mutate(label = ifelse(

row_number() == 1,
yes = str_c(label,

" (n = ", format(nb_tot, big.mark = ","), ")"),
no = label)) %>%

unite(label, label, !!!variable, sep = " ")

}else{

whole_sample <-
df %>%
filter(!is.na(!!!syms(variable)), !is.na(!!!syms(grouping_var))) %>%
mutate(label = label_variable) %>%

3.1. FIRST EXAMPLE: DEFAULT OF CREDIT CARD 113

select(label, !!!variable)

nb_tot <- nrow(whole_sample)

whole_sample <-
whole_sample %>%
group_by(label) %>%
summarise(mean = mean(!!!syms(variable), na.rm = TRUE) %>%

formatC(format = "e", digits = 2),
sd = sd(!!!syms(variable), na.rm = TRUE) %>%

formatC(format = "e", digits = 2),
.groups = "drop") %>%

mutate(sd = str_c("(+/-", sd, ")")) %>%
unite(`Whole Sample`, mean, sd, sep = " ")

subsamples <-
df %>%
filter(!is.na(!!!syms(variable)), !is.na(!!!syms(grouping_var))) %>%
mutate(label = label_variable) %>%
select(label, !!!variable, !!!grouping_var) %>%
group_by(label, !!!syms(grouping_var)) %>%
summarise(mean = mean(!!!syms(variable)) %>%

formatC(format = "e", digits = 2),
sd = sd(!!!syms(variable)) %>%

formatC(format = "e", digits = 2),
.groups = "drop") %>%

mutate(sd = str_c("(+/-", sd, ")")) %>%
unite(value, mean, sd, sep = " ")

res <-
whole_sample %>%
left_join(subsamples) %>%
ungroup() %>%
spread_(key_col = grouping_var, value_col = "value", fill = "0 (+/-0.00)") %>%
mutate(label = ifelse(

row_number() == 1,
yes = str_c(label,

" (n = ", format(nb_tot, big.mark = ","), ")"),

114 CHAPTER 3. OVERFITTING

no = label))
}

if(type == "qualitative"){
chisq_test <- chisq.test(df %>% magrittr::extract2(grouping_var),

df %>% magrittr::extract2(variable))
p_value <- chisq_test$p.value

}else if(type == "ordinal"){
kruskal_test <- kruskal.test(str_c(grouping_var, "~", variable) %>%

as.formula(), data = df)
p_value <- kruskal_test$p.value

}else{
Numerical
form <- str_c(variable, " ~ ", grouping_var) %>% as.formula()
anov <- aov(form, data = df)
anov_summary <- anov %>% summary() %>% .[[1]]
p_value <- anov_summary$`Pr(>F)`[1]

}

Adding stars for p-values
p_value <- format_p_value(p_value)

resul <- res %>%
mutate(`p value` = c(rep("", nrow(res)-1), p_value))

resul
}# End of sample_diff()

Let us apply this function to all our predictors:

df_summary_stats <-
variable_names_df$variable[!variable_names_df$variable%in%c("y", "ID")]%>%
map_df(sample_diff, df = df,

grouping_var = "y", variable_names = variable_names_df)

Now we can print the summary table:

library(kableExtra)
df_summary_stats %>%

kableExtra::kable(caption = "Driving habits before and after the claim",

3.1. FIRST EXAMPLE: DEFAULT OF CREDIT CARD 115

format = "latex", longtable = TRUE) %>%
kableExtra::kable_classic(full_width = F, html_font = "Cambria") %>%
kableExtra::kable_styling(

bootstrap_options = c("striped", "hover", "condensed", "responsive"),
font_size = 6)

Table 3.1: Driving habits before and after the claim

label Whole Sample 0 1 p value
Amount of the given credit (n = 30,000) 1.67e+05 (+/-1.30e+05) 1.78e+05 (+/-1.32e+05) 1.30e+05 (+/-1.15e+05) **< 10^{-3}**
Gender (n = 30,000) 1 11888 (39.63%) 9015 (38.59%) 2873 (43.29%)
Gender 2 18112 (60.37%) 14349 (61.41%) 3763 (56.71%) **< 10^{-3}**
Education (n = 30,000) 0 14 (0.05%) 14 (0.06%) 0 (0.00%)
Education 1 10585 (35.28%) 8549 (36.59%) 2036 (30.68%)
Education 2 14030 (46.77%) 10700 (45.8%) 3330 (50.18%)
Education 3 4917 (16.39%) 3680 (15.75%) 1237 (18.64%)
Education 4 123 (0.41%) 116 (0.5%) 7 (0.11%)
Education 5 280 (0.93%) 262 (1.12%) 18 (0.27%)
Education 6 51 (0.17%) 43 (0.18%) 8 (0.12%) **< 10^{-3}**
Marital status (n = 30,000) 0 54 (0.18%) 49 (0.21%) 5 (0.08%)
Marital status 1 13659 (45.53%) 10453 (44.74%) 3206 (48.31%)
Marital status 2 15964 (53.21%) 12623 (54.03%) 3341 (50.35%)
Marital status 3 323 (1.08%) 239 (1.02%) 84 (1.27%) **< 10^{-3}**
Age (n = 30,000) 3.55e+01 (+/-9.22e+00) 3.54e+01 (+/-9.08e+00) 3.57e+01 (+/-9.69e+00) **0.016**
Repayment status September (n = 30,000) -2 2759 (9.2%) 2394 (10.25%) 365 (5.5%)
Repayment status September -1 5686 (18.95%) 4732 (20.25%) 954 (14.38%)
Repayment status September 0 14737 (49.12%) 12849 (54.99%) 1888 (28.45%)
Repayment status September 1 3688 (12.29%) 2436 (10.43%) 1252 (18.87%)
Repayment status September 2 2667 (8.89%) 823 (3.52%) 1844 (27.79%)
Repayment status September 3 322 (1.07%) 78 (0.33%) 244 (3.68%)
Repayment status September 4 76 (0.25%) 24 (0.1%) 52 (0.78%)
Repayment status September 5 26 (0.09%) 13 (0.06%) 13 (0.2%)
Repayment status September 6 11 (0.04%) 5 (0.02%) 6 (0.09%)
Repayment status September 7 9 (0.03%) 2 (0.01%) 7 (0.11%)
Repayment status September 8 19 (0.06%) 8 (0.03%) 11 (0.17%) **< 10^{-3}**
Repayment status August (n = 30,000) -2 3782 (12.61%) 3091 (13.23%) 691 (10.41%)
Repayment status August -1 6050 (20.17%) 5084 (21.76%) 966 (14.56%)
Repayment status August 0 15730 (52.43%) 13227 (56.61%) 2503 (37.72%)
Repayment status August 1 28 (0.09%) 23 (0.1%) 5 (0.08%)
Repayment status August 2 3927 (13.09%) 1743 (7.46%) 2184 (32.91%)
Repayment status August 3 326 (1.09%) 125 (0.54%) 201 (3.03%)
Repayment status August 4 99 (0.33%) 49 (0.21%) 50 (0.75%)
Repayment status August 5 25 (0.08%) 10 (0.04%) 15 (0.23%)
Repayment status August 6 12 (0.04%) 3 (0.01%) 9 (0.14%)
Repayment status August 7 20 (0.07%) 8 (0.03%) 12 (0.18%)
Repayment status August 8 1 (0%) 1 (0%) 0 (0.00%) **< 10^{-3}**
Repayment status July (n = 30,000) -2 4085 (13.62%) 3328 (14.24%) 757 (11.41%)
Repayment status July -1 5938 (19.79%) 5012 (21.45%) 926 (13.95%)
Repayment status July 0 15764 (52.55%) 13013 (55.7%) 2751 (41.46%)
Repayment status July 1 4 (0.01%) 3 (0.01%) 1 (0.02%)
Repayment status July 2 3819 (12.73%) 1850 (7.92%) 1969 (29.67%)
Repayment status July 3 240 (0.8%) 102 (0.44%) 138 (2.08%)
Repayment status July 4 76 (0.25%) 32 (0.14%) 44 (0.66%)
Repayment status July 5 21 (0.07%) 9 (0.04%) 12 (0.18%)
Repayment status July 6 23 (0.08%) 9 (0.04%) 14 (0.21%)
Repayment status July 7 27 (0.09%) 5 (0.02%) 22 (0.33%)
Repayment status July 8 3 (0.01%) 1 (0%) 2 (0.03%) **< 10^{-3}**
Repayment status June (n = 30,000) -2 4348 (14.49%) 3511 (15.03%) 837 (12.61%)
Repayment status June -1 5687 (18.96%) 4783 (20.47%) 904 (13.62%)
Repayment status June 0 16455 (54.85%) 13439 (57.52%) 3016 (45.45%)

116 CHAPTER 3. OVERFITTING

Repayment status June 1 2 (0.01%) 1 (0%) 1 (0.02%)
Repayment status June 2 3159 (10.53%) 1506 (6.45%) 1653 (24.91%)
Repayment status June 3 180 (0.6%) 70 (0.3%) 110 (1.66%)
Repayment status June 4 69 (0.23%) 23 (0.1%) 46 (0.69%)
Repayment status June 5 35 (0.12%) 17 (0.07%) 18 (0.27%)
Repayment status June 6 5 (0.02%) 3 (0.01%) 2 (0.03%)
Repayment status June 7 58 (0.19%) 10 (0.04%) 48 (0.72%)
Repayment status June 8 2 (0.01%) 1 (0%) 1 (0.02%) **< 10^{-3}**
Repayment status May (n = 30,000) -2 4546 (15.15%) 3651 (15.63%) 895 (13.49%)
Repayment status May -1 5539 (18.46%) 4642 (19.87%) 897 (13.52%)
Repayment status May 0 16947 (56.49%) 13752 (58.86%) 3195 (48.15%)
Repayment status May 2 2626 (8.75%) 1203 (5.15%) 1423 (21.44%)
Repayment status May 3 178 (0.59%) 65 (0.28%) 113 (1.7%)
Repayment status May 4 84 (0.28%) 33 (0.14%) 51 (0.77%)
Repayment status May 5 17 (0.06%) 7 (0.03%) 10 (0.15%)
Repayment status May 6 4 (0.01%) 1 (0%) 3 (0.05%)
Repayment status May 7 58 (0.19%) 10 (0.04%) 48 (0.72%)
Repayment status May 8 1 (0%) 0 (0.00%) 1 (0.02%) **< 10^{-3}**
Repayment status April (n = 30,000) -2 4895 (16.32%) 3914 (16.75%) 981 (14.78%)
Repayment status April -1 5740 (19.13%) 4765 (20.39%) 975 (14.69%)
Repayment status April 0 16286 (54.29%) 13217 (56.57%) 3069 (46.25%)
Repayment status April 2 2766 (9.22%) 1365 (5.84%) 1401 (21.11%)
Repayment status April 3 184 (0.61%) 66 (0.28%) 118 (1.78%)
Repayment status April 4 49 (0.16%) 18 (0.08%) 31 (0.47%)
Repayment status April 5 13 (0.04%) 6 (0.03%) 7 (0.11%)
Repayment status April 6 19 (0.06%) 5 (0.02%) 14 (0.21%)
Repayment status April 7 46 (0.15%) 8 (0.03%) 38 (0.57%)
Repayment status April 8 2 (0.01%) 0 (0.00%) 2 (0.03%) **< 10^{-3}**
Bill amount September (n = 30,000) 5.12e+04 (+/-7.36e+04) 5.20e+04 (+/-7.36e+04) 4.85e+04 (+/-7.38e+04) **< 10^{-3}**
Bill amount August (n = 30,000) 4.92e+04 (+/-7.12e+04) 4.97e+04 (+/-7.10e+04) 4.73e+04 (+/-7.17e+04) **0.014**
Bill amount July (n = 30,000) 4.70e+04 (+/-6.93e+04) 4.75e+04 (+/-6.96e+04) 4.52e+04 (+/-6.85e+04) **0.015**
Bill amount June (n = 30,000) 4.33e+04 (+/-6.43e+04) 4.36e+04 (+/-6.43e+04) 4.20e+04 (+/-6.44e+04) 0.079
Bill amount May (n = 30,000) 4.03e+04 (+/-6.08e+04) 4.05e+04 (+/-6.06e+04) 3.95e+04 (+/-6.14e+04) 0.242
Bill amount April (n = 30,000) 3.89e+04 (+/-5.96e+04) 3.90e+04 (+/-5.95e+04) 3.83e+04 (+/-5.96e+04) 0.352
Amount previous payment September (n = 30,000) 5.66e+03 (+/-1.66e+04) 6.31e+03 (+/-1.80e+04) 3.40e+03 (+/-9.54e+03) **< 10^{-3}**
Amount previous payment August (n = 30,000) 5.92e+03 (+/-2.30e+04) 6.64e+03 (+/-2.53e+04) 3.39e+03 (+/-1.17e+04) **< 10^{-3}**
Amount previous payment July (n = 30,000) 5.23e+03 (+/-1.76e+04) 5.75e+03 (+/-1.87e+04) 3.37e+03 (+/-1.30e+04) **< 10^{-3}**
Amount previous payment June (n = 30,000) 4.83e+03 (+/-1.57e+04) 5.30e+03 (+/-1.67e+04) 3.16e+03 (+/-1.12e+04) **< 10^{-3}**
Amount previous payment May (n = 30,000) 4.80e+03 (+/-1.53e+04) 5.25e+03 (+/-1.61e+04) 3.22e+03 (+/-1.19e+04) **< 10^{-3}**
Amount previous payment April (n = 30,000) 5.22e+03 (+/-1.78e+04) 5.72e+03 (+/-1.88e+04) 3.44e+03 (+/-1.35e+04) **< 10^{-3}**

3.1.2 Fitting the Model

Let us take a sample of the data such that the number of predictors is about the same order of
magnitude as the number of rows. We will create a dataset with only 50 observations here.

set.seed(134)
Number of observations
n <- 50
df_first_example <-

sample_n(df %>% filter(y == 0), size = n/2, replace= FALSE) %>%
bind_rows(

sample_n(df %>% filter(y == 1), size = n/2, replace= FALSE)
) %>%
select(-ID)

3.1. FIRST EXAMPLE: DEFAULT OF CREDIT CARD 117

We will use a logistic regression to try to predict the credit card default clients. Please note that
we do it very naively here, without considering, for example, that some data are categorical.

Let us use all the 23 predictors in the model.

reg <- glm(y ~ ., data = df_first_example, family = "binomial")

For convenience, we can define two functions:

1. confusion_table: a function that constructs the confusion table
2. compute_metric_confusion: a function that computes errors metrics from the confusion

matrix

#' Get the confusion table
#' @param observed vector of observed values
#' @param predicted vector of predicted values
confusion_table <- function(observed, predicted){

confusion_matrix <- table(observed, predicted)
confusion_matrix_prop <- prop.table(confusion_matrix)
confusion_matrix_print <- confusion_matrix
for(i in 1:ncol(confusion_matrix_print)){

for(j in 1:nrow(confusion_matrix_print)){
confusion_matrix_print[i,j] <-

str_c(confusion_matrix_print[i,j], " (",
confusion_matrix_prop[i,j], "%)")

}
}
metrics <- compute_metric_confusion(confusion_matrix)
list(confusion_matrix = confusion_matrix,

confusion_matrix_print = confusion_matrix_print,
metrics = metrics)

}

#' Computes errors metrics from the confusion matrix
#' @param confusion_matrix Confusion matrix
compute_metric_confusion <- function(confusion_matrix){

true_negative <- confusion_matrix["0", "0"]
if(is.null(true_negative)) true_negative <- 0

false_positive <- confusion_matrix["0", "1"]
if(is.null(false_positive)) false_positive <- 0

118 CHAPTER 3. OVERFITTING

false_negative <- confusion_matrix["1", "0"]
if(is.null(false_negative)) false_negative <- 0

true_positive <- confusion_matrix["1", "1"]
if(is.null(true_positive)) true_positive <- 0

error_rate <- (false_positive+false_negative)/sum(confusion_matrix)

True positive rate
TPR <- true_positive / (true_positive + false_negative)
False positive rate
FPR <- false_positive / (false_positive + true_negative)
True negative rate
TNR <- true_negative / (true_negative + false_positive)
False negative rate
FNR <- false_negative / (false_negative + true_positive)
Overall error rate
OER <- (false_negative + false_positive) /

(false_negative + false_positive + true_positive + true_negative)

list(`Erorr rate` = error_rate,
`True positive rate` = TPR,
`False positive rate` = FPR,
`True negative rate` = TNR,
`False negative rate` = FNR,
`Overall error rate` = OER

)
}

Now, let us have a look at the predictive capabilities of our model:

Predictions:
threshold <- .5
pred_prob <- predict(reg)
pred <- ifelse(pred_prob>.5, 1, 0)

We can easily obtain the confusion matrix and some error metrics with our function:

3.1. FIRST EXAMPLE: DEFAULT OF CREDIT CARD 119

confusion_matrix <- confusion_table(df_first_example$y, pred)

Here is the confusion matrix:

confusion_matrix$confusion_matrix_print

predicted
observed 0 1
0 23 (0.46%) 2 (0.04%)
1 6 (0.12%) 19 (0.38%)

And the metrics:

confusion_matrix$metrics

$`Erorr rate `
[1] 0.16
##
$`True positive rate `
[1] 0.76
##
$`False positive rate `
[1] 0.08
##
$`True negative rate `
[1] 0.92
##
$`False negative rate `
[1] 0.24
##
$` Overall error rate `
[1] 0.16

With 50 observations and 23 regressors, we do not make that many mistakes.

3.1.3 Randomly Assigning the Classes

Now, let us try something. We will keep the observations unchanged, excepts for the value of
the target value. The latter will be randomly drawn. We will store the new target variable in a
column named y_new in the data table.

120 CHAPTER 3. OVERFITTING

set.seed(123)
df_first_example <-

df_first_example %>%
mutate(y_new = sample(c(0, 1), size = n(), replace = TRUE))

df_first_example$y

[1] 0 1 1 1 1 1
1 1 1 1 1 1 1 1

[39] 1 1 1 1 1 1 1 1 1 1 1 1

df_first_example$y_new

[1] 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1
0 1 0 1 1 0 0 0

[39] 0 1 0 1 1 0 0 0 0 1 0 0

Half of the "observed" values have been modified here
sum(df_first_example$y == df_first_example$y_new)

[1] 25

Let us train the model again, this time on this randomly drawn response:

reg_2 <-
glm(y_new ~ ., data = df_first_example %>% select(-y),

family = "binomial")

And we can now have a look at the predicting capabilities of the model:

pred_prob_2 <- predict(reg_2)
pred_2 <- ifelse(pred_prob_2>.5, 1, 0)
conf_matrix_2 <- confusion_table(df_first_example$y_new, pred_2)
conf_matrix_2$confusion_matrix_print

3.1. FIRST EXAMPLE: DEFAULT OF CREDIT CARD 121

predicted
observed 0 1
0 25 (0.5%) 5 (0.1%)
1 6 (0.12%) 14 (0.28%)

conf_matrix_2$metrics

$`Erorr rate `
[1] 0.22
##
$`True positive rate `
[1] 0.7
##
$`False positive rate `
[1] 0.1666667
##
$`True negative rate `
[1] 0.8333333
##
$`False negative rate `
[1] 0.3
##
$` Overall error rate `
[1] 0.22

The accuracy of the model is still quite good. . . Maybe this is due to our sampling? Let us repeat
this random switching of the “true” class. At each iteration, we will store the results in a list.

random_fit <- function(){
df_first_example <-

df_first_example %>%
mutate(y_new = sample(c(0, 1), size = n(), replace = TRUE))

Let us train the model again, this time on this randomly drawn response
reg_2 <-

glm(y_new ~ ., data = df_first_example %>% select(-y),
family = "binomial")

pred_prob_2 <- predict(reg_2)
pred_2 <- ifelse(pred_prob_2>.5, 1, 0)

122 CHAPTER 3. OVERFITTING

conf_matrix_2 <- confusion_table(df_first_example$y_new, pred_2)
conf_matrix_2

}

results_random <- vector(mode = "list", length = 100)
pb <- txtProgressBar(min = 1, max = 100, style = 3)
for(i in 1:100){

results_random[[i]] <- random_fit()
setTxtProgressBar(pb, i)

}

The overall error rates of each of the 100 repetitions can be accessed the following way:

error_rates <-
map(results_random, "metrics") %>%
map_dbl("Overall error rate")

Here are some summary statistics of these error rates:

summary(error_rates)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0750 0.1600 0.1386 0.2000 0.3600

Let us visualise those with a boxplot:

ggplot(data = tibble(error_rate = error_rates)) +
geom_boxplot(aes(x =error_rate)) +
labs(x = "Overall error rate")

3.1. FIRST EXAMPLE: DEFAULT OF CREDIT CARD 123

−0.4

−0.2

0.0

0.2

0.4

0.0 0.1 0.2 0.3
Overall error rate

Figure 3.2: Overall error rate over 100 repetitions.

What these error show is that the model is able to “memorize” the data and is able to reproduce
not so badly the response variable. We face here some overfitting. With a more flexible model,
the error rate could even be equal to zero.

3.1.4 Performances on Unseen Data

Let us go back to our previous regression and let us use our model to make predictions on unseen
data.

First, we need some unseen data:

df_test <-
sample_n(df %>% filter(y == 0), size = n/2, replace= FALSE) %>%
bind_rows(

sample_n(df %>% filter(y == 1), size = n/2, replace= FALSE)
) %>%
select(-ID)

The predictions can be obtained as follows:

124 CHAPTER 3. OVERFITTING

pred_prob_test <- predict(reg, newdata=df_test)
pred_test <- ifelse(pred_prob_test>.5, 1, 0)

The confusion matrix on these unseen data is obtained with the following instructions:

confusion_matrix_test <- confusion_table(df_test$y, pred_test)
confusion_matrix_test$confusion_matrix_print

predicted
observed 0 1
0 17 (0.34%) 8 (0.16%)
1 16 (0.32%) 9 (0.18%)

And here are some metrics obtained thanks to this confusion matrix:

confusion_matrix_test$metrics

$` Erorr rate `
[1] 0.48
##
$`True positive rate `
[1] 0.36
##
$` False positive rate `
[1] 0.32
##
$`True negative rate `
[1] 0.68
##
$` False negative rate `
[1] 0.64
##
$` Overall error rate `
[1] 0.48

The predictive ability of the model worsened.

Could it be bad luck?

3.1. FIRST EXAMPLE: DEFAULT OF CREDIT CARD 125

set.seed(123)
Sample of size 200
n <- 200
df_first_example_2 <-

sample_n(df %>% filter(y == 0), size = n/2, replace= FALSE) %>%
bind_rows(

sample_n(df %>% filter(y == 1), size = n/2, replace= FALSE)
) %>%
select(-ID)

Splitting into train/test to evaluate the capacity of the model to generalise its results on unseen
data:

n_train <- round(.8*nrow(df_first_example_2))
ind_train <- sample(1:nrow(df_first_example_2),

size = n_train, replace = FALSE)

df_train <- df_first_example_2 %>% slice(ind_train)
df_test <- df_first_example_2 %>% slice(-ind_train)

The dimensions of the training and of the testing datasets:

dim(df_train)

[1] 160 24

dim(df_test)

[1] 40 24

Let us fit the model on the training set:

reg_train <- glm(y ~ ., data = df_train, family = "binomial")

The predictions on the training dataset (in-sample predictions):

126 CHAPTER 3. OVERFITTING

pred_train_prob <- predict(reg_train)
pred_train <- ifelse(pred_train_prob>.5, 1, 0)

And the confusion matrix:

confusion_matrix_train <- confusion_table(df_train$y, pred_train)
confusion_matrix_train$confusion_matrix_print

predicted
observed 0 1
0 68 (0.425%) 14 (0.0875%)
1 41 (0.25625%) 37 (0.23125%)

confusion_matrix_train$metrics

$` Erorr rate `
[1] 0.34375
##
$`True positive rate `
[1] 0.474359
##
$` False positive rate `
[1] 0.1707317
##
$`True negative rate `
[1] 0.8292683
##
$` False negative rate `
[1] 0.525641
##
$` Overall error rate `
[1] 0.34375

Let us see our performances on the test set:

pred_test_prob <- predict(reg_train, newdata = df_test)
pred_test <- ifelse(pred_test_prob>.5, 1, 0)
confusion_matrix_test <- confusion_table(df_test$y, pred_test)
confusion_matrix_test$confusion_matrix_print

3.1. FIRST EXAMPLE: DEFAULT OF CREDIT CARD 127

predicted
observed 0 1
0 12 (0.3%) 6 (0.15%)
1 12 (0.3%) 10 (0.25%)

confusion_matrix_test$metrics

$`Erorr rate `
[1] 0.45
##
$`True positive rate `
[1] 0.4545455
##
$`False positive rate `
[1] 0.3333333
##
$`True negative rate `
[1] 0.6666667
##
$`False negative rate `
[1] 0.5454545
##
$` Overall error rate `
[1] 0.45

We will repeat this procedure 100 times. To make things easier, we can define a function that
randomly constitutes a training and a testing datasets from df_first_example_2, fits the model
and then returns the confusion matrices as well as the goodness of fit metrics.

train_test_estim <- function(){

n_train <- round(.8*nrow(df_first_example_2))
ind_train <-

sample(1:nrow(df_first_example_2), size = n_train, replace = FALSE)

df_train <- df_first_example_2 %>% slice(ind_train)
df_test <- df_first_example_2 %>% slice(-ind_train)

reg_train <- glm(y ~ ., data = df_train, family = "binomial")
Predictions on the train set

128 CHAPTER 3. OVERFITTING

pred_train_prob <- predict(reg_train)
pred_train <- ifelse(pred_train_prob>.5, 1, 0)
On the test set
pred_test_prob <- predict(reg_train, newdata = df_test)
pred_test <- ifelse(pred_test_prob>.5, 1, 0)

Confusion matrices
confusion_matrix_train <- confusion_table(df_train$y, pred_train)
confusion_matrix_test <- confusion_table(df_test$y, pred_test)

list(confusion_matrix_train = confusion_matrix_train,
confusion_matrix_test = confusion_matrix_test)

}

The function can be applied over a loop. At each iteration, we can store the results.

results_random_2 <- vector(mode = "list", length = 100)
pb <- txtProgressBar(min = 1, max = 100, style = 3)
for(i in 1:100){

results_random_2[[i]] <- train_test_estim()
setTxtProgressBar(pb, i)

}

The overall error rates obtained on both sets over the 100 iterations can be obtained as follows:

error_rates_train_2 <-
map(results_random_2, "confusion_matrix_train") %>%
map("metrics") %>%
map_dbl("Overall error rate")

error_rates_test_2 <-
map(results_random_2, "confusion_matrix_test") %>%
map("metrics") %>%
map_dbl("Overall error rate")

summary(error_rates_train_2)

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.1. FIRST EXAMPLE: DEFAULT OF CREDIT CARD 129

0.2437 0.3047 0.3250 0.3225 0.3438 0.4000

summary(error_rates_test_2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.3000 0.3750 0.4500 0.4427 0.5000 0.6250

Let us have a look at these overall error rates on boxplots:

ggplot(data = tibble(error_rate = c(error_rates_train_2,error_rates_test_2),
sample = rep(c("Train", "Test"), each = 100))) +

geom_boxplot(aes(x =error_rate, y = sample)) +
labs(x = "Overall Error rate", y = "Sample")

Test

Train

0.3 0.4 0.5 0.6
Overall Error rate

S
am

pl
e

Figure 3.3: Model performance on 100 random draws of the data.

We can see that it was not bad luck in this case. The model tends to make better predictions on
the training set and its predictive capacities tend to be worsen on the testing set.

130 CHAPTER 3. OVERFITTING

To have an idea of how good the model may perform on unseen data, we can proceed as we just
did, but we can also use cross validation.

3.1.5 K-fold Cross Validation

We will use K-fold Cross validation to assess the predictive capacities of the model. We will use a
value of k = 5.

K-fold Cross Validation
• Consider a dataset with n training observations. This set of observations can be

divided into k subsets of roughly the same size. Each subset is called a fold.
• In each k-fold, the fitting procedure is performed on the k − 1 folds and evaluated

on the kth fold.
• The error metric is computed at each iteration
• Once each of the k-fold has served as an evaluation set, we can compute the average

of the error metrics (the cross-validation error).

Choice of K
• The choice of the number of folds is not straightforward.

– Relatively small values of k lead to larger training samples, which may result
in more bias in the estimation of the true surface.

– Relatively high values of k lead to less bias in the estimation of the true surface,
but they also lead to a higher variance of the estimated test error.

• In the end, it depends on the size and structure of the dataset.
• In practice, we often pick k = 3, k = 5 or k = 10.

Here, let us use k = 5.

k <- 5

We can define a small function that will split a vector into k parts. We will feed this function with
the index of rows.

#' Splits a vector into folds
#' @param x vector of observations to be splitted
#' @param k number of desired folds
split_into_folds <- function(x,k)

split(x, cut(seq_along(x), k, labels = FALSE))

Here is an example of how this function works:

3.1. FIRST EXAMPLE: DEFAULT OF CREDIT CARD 131

split_into_folds(seq(1, 20), k=3)

$`1`
[1] 1 2 3 4 5 6 7
##
$`2`
[1] 8 9 10 11 12 13
##
$`3`
[1] 14 15 16 17 18 19 20

Here, we will make a stratified sampling to make sure we end with approximatively the same
distribution of the target variable as that of the dataset.

(classes <- unique(df_first_example_2$y))

[1] 0 1

folds <- vector(mode = "list", length = length(classes))
for(i in 1:length(classes)){

class <- classes[i]
row number of obs with target equal to !!class
shuffle the obs
ind_class <-

sample(which(df_first_example_2$y == class), replace=FALSE)
split into k folds
folds[[i]] <- split_into_folds(ind_class, k=k)

}

folds <-
map(1:k, ~map(folds, .)) %>%
map(unlist) %>%
map(sample)

Here are the row indices in each fold:

132 CHAPTER 3. OVERFITTING

folds

[[1]]
[1] 3 168 139 35 69 1 146 175 160 73 79 60 41 195 18

2 33 108 133
[20] 138 169 156 131 118 68 123 10 32 50 19 122 47 121 80

162 81 89 101
[39] 171 141
##
[[2]]
[1] 29 20 30 52 116 88 184 183 54 37 77 158 127 113 16

180 173 164 157
[20] 96 56 57 196 117 92 155 82 40 75 26 153 163 48 192

149 43 14 161
[39] 190 142
##
[[3]]
[1] 93 150 167 194 103 147 191 106 66 84 107 53 176 159 186

177 34 181 87
[20] 62 13 17 144 135 197 9 200 67 31 193 51 85 4 145

90 70 8 7
[39] 136 25
##
[[4]]
[1] 102 109 22 46 182 63 125 115 104 165 64 98 28 198 5

86 132 114 39
[20] 119 129 71 45 42 97 94 78 124 61 99 21 111 179 112

23 170 187 83
[39] 126 178
##
[[5]]
[1] 15 137 174 185 120 148 49 55 11 74 44 100 110 27 154

95 189 65 76
[20] 199 140 143 24 128 152 130 166 151 72 38 58 6 134 59

12 188 91 36
[39] 105 172

We will consider each fold iteratively and make the estimation of the modle on the remaing folds.
At each iteration, we will store the overall error rates.

error_rates <- NULL

Here is the loop:

3.1. FIRST EXAMPLE: DEFAULT OF CREDIT CARD 133

for(current_fold in 1:k){
All the obs but those of the kth fold
ind_obs_current <- unlist(folds[-current_fold])
df_train_current <- df_first_example_2 %>% slice(ind_obs_current)
df_test_current <- df_first_example_2 %>% slice(-ind_obs_current)

Fitting the model
reg_train <- glm(y ~ ., data = df_train_current, family = "binomial")
Predictions on the train set
pred_train_prob <- predict(reg_train)
pred_train <- ifelse(pred_train_prob>.5, 1, 0)
On the test set
pred_test_prob <- predict(reg_train, newdata = df_test_current)
pred_test <- ifelse(pred_test_prob>.5, 1, 0)

Confusion matrices
confusion_matrix_train <- confusion_table(df_train_current$y, pred_train)
confusion_matrix_test <- confusion_table(df_test_current$y, pred_test)

error_rate_train <- confusion_matrix_train$metrics$`Overall error rate`
error_rate_test <- confusion_matrix_test$metrics$`Overall error rate`
error_rates[[current_fold]] <-

list(error_rate_train = error_rate_train,
error_rate_test = error_rate_test)

}

The overall error rate we obtained at each iteration is:

map_dbl(error_rates, "error_rate_train")

[1] 0.33750 0.31250 0.30625 0.34375 0.31250

We can calculate the mean of this error:

map_dbl(error_rates, "error_rate_train") %>% mean()

[1] 0.3225

134 CHAPTER 3. OVERFITTING

And on the test set:

map_dbl(error_rates, "error_rate_test")

[1] 0.400 0.450 0.525 0.475 0.450

map_dbl(error_rates, "error_rate_test") %>% mean()

[1] 0.46

This mean error gives us a pretty good idea of the average error we will make with unseen data
when the model is made into production.

3.1.6 Leave-one-out Cross Validation

Now, let us turn to leave-one-out cross validation.

Leave one out cross validation
• Leave one out cross validation is a k-fold cross validation where k = n, i.e., the

number of folds equals the number of training examples.
• The idea is to leave one observation out and then perform the fitting procedure on

all remaining data. - Then, iterate on each data point.

• Each fitting procedure yields an estimation. It is then possible to average the results
to get the error metric.

• While this procedure reduces the bias, as it uses all data points, it may be time
consuming.

• In addition, the estimations may be influenced by outliers.

This procedure can be implemented as follows:

Leave one out CV
error_rates_loocv <- NULL

for(i in 1:nrow(df_first_example_2)){
df_train_current <- df_first_example_2 %>% slice(-i)
Single obs:

3.1. FIRST EXAMPLE: DEFAULT OF CREDIT CARD 135

df_test_current <- df_first_example_2 %>% slice(i)

Fitting the model
reg_train <- glm(y ~ ., data = df_train_current, family = "binomial")
Predictions on the train set
pred_train_prob <- predict(reg_train)
pred_train <- ifelse(pred_train_prob>.5, 1, 0)
On the test set
pred_test_prob <- predict(reg_train, newdata = df_test_current)
pred_test <- ifelse(pred_test_prob>.5, 1, 0)

avg_error_train <- mean(!pred_train == df_train_current$y)
avg_error_test <- mean(!pred_test == df_test_current$y)

error_rates_loocv[[i]] <-
list(avg_error_train = avg_error_train,

avg_error_test = avg_error_test)

}

We can have a look at the performances of the model on the training set:

map_dbl(error_rates_loocv, "avg_error_train")

[1] 0.3517588 0.3467337 0.3567839 0.3567839 0.3517588 0.3467337
0.3467337

[8] 0.3467337 0.3517588 0.3517588 0.3366834 0.3417085 0.3517588
0.3467337

[15] 0.3467337 0.3366834 0.3417085 0.3517588 0.3417085 0.3417085
0.3266332

[22] 0.3567839 0.3517588 0.3618090 0.3517588 0.3567839 0.3567839
0.3567839

[29] 0.3567839 0.3517588 0.3567839 0.3517588 0.3316583 0.3467337
0.3366834

[36] 0.3517588 0.3517588 0.3517588 0.3517588 0.3567839 0.3467337
0.3517588

[43] 0.3366834 0.3266332 0.3618090 0.3417085 0.3567839 0.3517588
0.3216080

[50] 0.3316583 0.3417085 0.3517588 0.3467337 0.3567839 0.3517588
0.3517588

[57] 0.3567839 0.3517588 0.3165829 0.3467337 0.3467337 0.3417085
0.3517588

136 CHAPTER 3. OVERFITTING

[64] 0.3517588 0.3517588 0.3567839 0.3517588 0.3517588 0.3517588
0.3618090

[71] 0.3517588 0.3417085 0.3517588 0.3417085 0.3467337 0.3467337
0.3467337

[78] 0.3467337 0.3618090 0.3567839
[reached getOption (" max.print ") -- omitted 120 entries]

map_dbl(error_rates_loocv, "avg_error_train") %>% mean()

[1] 0.3501005

And on the testing set:

map_dbl(error_rates_loocv, "avg_error_test")

[1] 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0

[39] 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 1 0

[77] 1 0 0 0
[reached getOption (" max.print ") -- omitted 120 entries]

map_dbl(error_rates_loocv, "avg_error_test") %>% mean()

[1] 0.465

Once again, this average give us an idea of how good (or bad) our model will perform on unseen
data. If the model performs greatly on the training dataset but very poorly on the testing dataset,
then we face overfitting.

3.2 Second Example: Selling Price of Cars

In this second example, we will train a machine learning model so that it can predict the selling
price of cars. We will use a random forest algorithm to perform this supervised task. We will
try different values for one of the hyperparameters of the model, namely the number of variables
randomly sampled as candidates at each split (mtry).

3.2. SECOND EXAMPLE: SELLING PRICE OF CARS 137

In the next hands-on session, we will talk more about random forests. For now, let us just take it
as a “black box” for which we need to select a value of one of its hyperparameters. In a nutshell,
the higher the value for mtry, the more flexible the model.

The data we will rely on give the selling price of cars (in rupees) and provide details on the
characteristics of the car. These were downloaded from Kaggle1 and cleaned (you can download
the raw dataset on Kaggle and clean it yourself if you prefer).

The columns of the dataset are the following:

Table 3.2: Variables of the dataset used for the second example.

Variable Description

name name of the car
year year in which the car was bought
selling_price price the owner wants to sell the car at (in thousand

rupees)
km_driven distance completed by the car in km
fuel fuel type of the car
seller_type tells if car is sold by individual or dealer
transmission Gear transmission of the car (Automatic/Manual)
owner number of previous owners
mileage mileage of the car
engine engine capacity of the car
max_power max power of engine
torque torque of the car
seats number of seats in the car

The data can be loaded as follows:

cars_df <- read_csv("https://egallic.fr/Enseignement/ML/ECB/data/cars.csv")

There are 8128 rows and 12 in the dataset.

The target variable is selling_price, i.e., the price of the car:

summary(cars_df$selling_price)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1https://www.kaggle.com/nehalbirla/vehicle-dataset-from-cardekho

https://www.kaggle.com/nehalbirla/vehicle-dataset-from-cardekho

138 CHAPTER 3. OVERFITTING

30.0 255.0 450.0 638.3 675.0 10000.0

sd(cars_df$selling_price)

[1] 806.2534

Let us have a quick glance at the correlations for numerical variables:

cars_df %>%
select(where(is_double)) %>%
cor(use = "complete.obs")

year selling_price km_driven mileage
engine

year 1.000000000 0.41230156 -0.42854848 0.3303059
0.0182631

selling_price 0.412301558 1.00000000 -0.22215848 -0.1198457
0.4556818

km_driven -0.428548483 -0.22215848 1.00000000 -0.1743984
0.2060307

mileage 0.330305862 -0.11984571 -0.17439836 1.0000000
-0.5661751

engine 0.018263100 0.45568180 0.20603073 -0.5661751
1.0000000

max_power 0.226597796 0.74967378 -0.03815852 -0.3621186
0.7039745

seats -0.007923033 0.04161669 0.22725939 -0.4462056
0.6111034

max_power seats
year 0.22659780 -0.007923033
selling_price 0.74967378 0.041616694
km_driven -0.03815852 0.227259388
mileage -0.36211858 -0.446205571
engine 0.70397453 0.611103386
max_power 1.00000000 0.191999183
seats 0.19199918 1.000000000

The proportions of each category for discrete variables can be obtained as follows:

3.2. SECOND EXAMPLE: SELLING PRICE OF CARS 139

cars_df %>%
select(selling_price,where(~is.character(.x) | is.factor(.x)), -name) %>%
pivot_longer(cols = -selling_price) %>%
group_by(name, value) %>%
count() %>%
group_by(name) %>%
mutate(prop = round(100*n / sum(n), 2)) %>%
arrange(name, desc(prop))

A tibble : 14 x 4
Groups : name [4]
name value n prop
<chr > <chr > <int > <dbl >
1 fuel Diesel 4402 54.2
2 fuel Petrol 3631 44.7
3 fuel CNG 57 0.7
4 fuel LPG 38 0.47
5 owner First Owner 5289 65.1
6 owner Second Owner 2105 25.9
7 owner Third Owner 555 6.83
8 owner Fourth & Above Owner 174 2.14
9 owner Test Drive Car 5 0.06
10 seller_type Individual 6766 83.2
11 seller_type Dealer 1126 13.8
12 seller_type Trustmark Dealer 236 2.9
13 transmission Manual 7078 87.1
14 transmission Automatic 1050 12.9

Some categories only appear a very restricted number of time. Let us make some changes.

cars_df <-
cars_df %>%
mutate(

fuel = forcats::fct_lump_min(fuel, min = 100, other_level = "Other"),
owner = forcats::fct_recode(owner, "First Owner" = "Test Drive Car"))

There are some missing values:

cars_df %>%
summarise(across(everything(), ~sum(is.na(.)))) %>%

140 CHAPTER 3. OVERFITTING

data.frame() %>%
t()

[,1]
name 0
year 0
selling_price 0
km_driven 0
fuel 0
seller_type 0
transmission 0
owner 0
mileage 0
engine 221
max_power 216
seats 221

Let us use some quick and dirty method here: we will just replace the NA values with the avrage
observed in the data. This should require more serious investigation.

Let us also make some feature engineering to augment the dataset, i.e., let us add transformed
explanatory variables to the dataset:

cars_df <-
cars_df %>%
replace NA values with average in data
(this method is really dirty and should be discussed)
mutate(

engine = replace_na(engine, mean(engine, na.rm=TRUE)),
max_power = replace_na(max_power, mean(max_power, na.rm=TRUE)),
seats = replace_na(seats, mean(seats, na.rm=TRUE)),
mileage = ifelse(mileage < 0, yes = NA, no = mileage),
mileage = replace_na(mileage, mean(mileage, na.rm=TRUE))

) %>%
mutate(selling_price_log = log(selling_price),

km_driven_log = log(km_driven),
mileage_log = log(mileage+1),
engine_log = log(engine),
max_power_log = log(max_power+1))

To fasten the computations in this session, let us only keep 500 observations.

3.2. SECOND EXAMPLE: SELLING PRICE OF CARS 141

set.seed(456)
cars_df <- cars_df %>% sample_n(1000)

We will use the randomForest() function from {randomForest}. The library thus needs to be
loaded.

library(randomForest)

Let us split the data into two samples: 80% of the observations in a training sample, and the
remaining 20% in a validation sample.

set.seed(456)
n_train <- round(.8*nrow(cars_df))
ind_train <- sample(1:nrow(cars_df), size = n_train, replace = FALSE)
df_train <- cars_df %>% slice(ind_train)
df_valid <- cars_df %>% slice(-ind_train)

Let us check how many observations we have in each samples:

dim(df_train)

[1] 800 17

dim(df_valid)

[1] 200 17

3.2.1 Predicting the Price with a Random Forest

Let us train a random forest on the training data with the following hyperparameters for the
algorithm:

• ntree=50: we will grow 50 trees
• mtry=4: at each split in a tree, we will sample only 4 candidate variables
• nodesize=10 : the Minimum size of terminal nodes is set to 10 (there will be no less than

10 observations in the terminal nodes)

142 CHAPTER 3. OVERFITTING

set.seed(456)
mtry <- 4

model_1 <-
randomForest::randomForest(

selling_price ~ year + fuel + km_driven +
seller_type + transmission + owner + mileage +
engine + max_power + seats,

data=df_train, importance=TRUE,
ntree=50, mtry=mtry, nodesize = 10)

The estimated values can be obtained as follows:

predicted_train_1 <- predict(model_1, newdata = df_train)

Using those predictions, we can compute the Mean Squared Error (MSE):

resid_train_1 <- df_train$selling_price - predicted_train_1
mse_train_1 <- mean(resid_train_1ˆ2)
mse_train_1

[1] 16141.57

Let us pick another value for mtry a higher value can make the model more flexible and could
thus reduce the MSE.

set.seed(456)
mtry <- 7
model_2 <-

randomForest::randomForest(
selling_price ~ year + fuel + km_driven +

seller_type + transmission + owner + mileage +
engine + max_power + seats,

data=df_train, importance=TRUE,
ntree=50, mtry=mtry, nodesize = 10)

Using this second model, let us compute the residuals and then the MSE:

3.2. SECOND EXAMPLE: SELLING PRICE OF CARS 143

predicted_train_2 <- predict(model_2, newdata = df_train)
resid_train_2 <- df_train$selling_price - predicted_train_2
(mse_train_2 <- mean(resid_train_2ˆ2))

[1] 16106.57

The MSE has indeed decreased. Let us compute the MSE for both models, but this time ondata
which were not used to train the model.

predicted_test_1 <- predict(model_1, newdata = df_valid)
predicted_test_2 <- predict(model_2, newdata = df_valid)
resid_test_1 <- df_valid$selling_price - predicted_test_1
resid_test_2 <- df_valid$selling_price - predicted_test_2
mse_test_1 <- mean(resid_test_1ˆ2)
mse_test_2 <- mean(resid_test_2ˆ2)

The MSE computed with the errors made on data never seen by the model are:

mse_test_1 # less flexible model

[1] 21387.4

mse_test_2 # more flexible model

[1] 22276.27

Let us recall the MSE computed on the train set:

mse_train_1

[1] 16141.57

mse_train_2

144 CHAPTER 3. OVERFITTING

[1] 16106.57

Compared with the less flexible model (the first one), the more flexible model yielded a lower
MSE on the training set, but a higher MSE on unseen data. We may suspect some overfitting
here.

Let us have a broader look at how the MSE varies as long as we make the model more or less
flexible. To do so, we will simply use a loop. At each iteration, we will train the random forest
on the same data, but we will make the number of variables randomly sampled as candidates at
each split vary.

set.seed(123)
mtry <- c(2,3,4,5,6,7,8)
pb <- txtProgressBar(min = 1, max = length(mtry), style = 3)
mse <- NULL
for(j in 1:length(mtry)){

model <-
randomForest::randomForest(

selling_price ~ year + fuel + km_driven +
seller_type + transmission + owner + mileage +
engine + max_power + seats,

data=df_train, importance=TRUE,
ntree=50, mtry=mtry[j], nodesize = 10)

predicted_train <- predict(model, newdata = df_train)
predicted_test <- predict(model, newdata = df_valid)
resid_train <- df_train$selling_price - predicted_train
resid_test <- df_valid$selling_price - predicted_test

mse_train <- mean(resid_trainˆ2)
mse_test <- mean(resid_testˆ2)

mse <- mse %>%
bind_rows(tibble(mse_train = mse_train, mse_test = mse_test,

mtry = mtry[j]))
setTxtProgressBar(pb, j)

}

3.2. SECOND EXAMPLE: SELLING PRICE OF CARS 145

mse

A tibble : 7 x 3
mse_train mse_test mtry
<dbl > <dbl > <dbl >
1 27188. 30378. 2
2 18281. 25414. 3
3 16088. 19389. 4
4 18224. 27619. 5
5 14252. 23608. 6
6 14278. 24330. 7
7 14439. 24171. 8

mse %>%
pivot_longer(cols = -mtry,

names_to = "sample", values_to = "MSE") %>%
mutate(sample = factor(sample, levels = c("mse_train", "mse_test"),

labels = c("Train", "Test"))) %>%
ggplot(data = ., mapping = aes(x = mtry, y = MSE)) +
geom_line(mapping = aes(colour = sample)) +
labs(

x = "Number of variables randomly sampled as candidates at each split",
y = "MSE")

146 CHAPTER 3. OVERFITTING

15000

20000

25000

30000

2 4 6 8
Number of variables randomly sampled as candidates at each split

M
S

E

sample

Train

Test

Figure 3.4: Mean Squared Error on Train/Test data..

This graph illustrates multiple things:
1. for each value of mtry, the MSE is relatively higher on the test sample
2. as long as the hyperparameter mtry increases, i.e., as long as the flexibility of the

model increases, the mean squared error computed on the training sample diminishes
3. this is not the case for unseen data: increasing the flexibility of the model may yield

better predictions up to a certain flexibility. At some point, however, the model
can learn characteristics that are specific to the test sample but which cannot be
generalised afterwards: this is overfitting.

3.2.2 Cross-validation to Select the Hyperparameters

In the previous example, we have seen that the predictive capacities of the model are subject to
the hyperparameters. This raises the question of the choice of value for these hyperparameters.
To do so, a common practice is to perform a grid search and to select the values that yield the
best results on unseen data. The performances of the model are assessed using cross-validation.
Let us have a look at an example.

Let us only create a very simple grid, in which we will, once again, make a single hyperparameter
vary. We will see in the next hands-on session how to perform a slightly more sophisticated grid
search.

We will assess the model predictive capacities using k-fold cross-validation, with k = 5. The
predictive capacities will be evaluated using the MSE.

3.2. SECOND EXAMPLE: SELLING PRICE OF CARS 147

nb_folds <- 5

As in the first example of this notebook, let us define a function that assign the elements of a
vector (we will use the row numbers) to one of the k folds.

#' Splits a vector into folds
#' @param x vector of observations to be splitted
#' @param k number of desired folds
split_into_folds <- function(x,k) split(x, cut(seq_along(x), k, labels = FALSE))

Let us assign each observation to a fold:

set.seed(123)
fold_ind <- split_into_folds(sample(1:nrow(df_train)), nb_folds)

We will keep track of the MSE through the iterative process:

mse <- NULL

For each value of the hyperparameter mtry, we will train the random forest k times. At each of
the k times, the k-th fold will be left aside to train the machine learning algorithm and will only
be used to assess the performances of the model.

mtry <- c(2,3,4,5,6,7,8)
for(j in 1:length(mtry)){

for(k in 1:nb_folds){
df_train_current <-

df_train %>%
slice(unlist(fold_ind[-k]))

df_test_current <-
df_train %>%
slice(fold_ind[[k]])

model <-
randomForest::randomForest(

selling_price ~ year + fuel + km_driven +
seller_type + transmission + owner + mileage +
engine + max_power + seats,

148 CHAPTER 3. OVERFITTING

data=df_train, importance=TRUE,
ntree=50, mtry=mtry[j], nodesize = 10)

predicted_train <- predict(model, newdata = df_train_current)
predicted_test <- predict(model, newdata = df_test_current)
resid_train <- df_train_current$selling_price - predicted_train
resid_test <- df_test_current$selling_price - predicted_test

mse_train <- mean(resid_trainˆ2)
mse_test <- mean(resid_testˆ2)

mse <- mse %>%
bind_rows(tibble(mse_train = mse_train, mse_test = mse_test,

k = k, mtry = mtry[j]))

}
}

For each value of mtry, we have obtained k MSE measures evaluated on the training set and k
MSE measures evaluated on the fold left aside (test set). The average MSE for each value of mtry,
both for the train and the test sets can be computed as follows:

mse_summary <-
mse %>%
group_by(mtry) %>%
summarise(

mse_train = mean(mse_train),
mse_test = mean(mse_test)

)
mse_summary

A tibble : 7 x 3
mtry mse_train mse_test
<dbl > <dbl > <dbl >
1 2 26458. 29510.
2 3 18376. 17647.
3 4 16029. 16240.
4 5 15167. 13525.
5 6 15704. 18081.
6 7 15427. 15310.

3.3. THIRD EXAMPLE: CHOICE OF LAMBDA IN LASSO REGRESSION 149

7 8 14845. 14689.

If we only look at the MSE on the train sample, we would be tempted to select a value of 5 for
the number of variables to sample from at each split.

mse_summary %>%
arrange(mse_train)

A tibble : 7 x 3
mtry mse_train mse_test
<dbl > <dbl > <dbl >
1 8 14845. 14689.
2 5 15167. 13525.
3 7 15427. 15310.
4 6 15704. 18081.
5 4 16029. 16240.
6 3 18376. 17647.
7 2 26458. 29510.

But looking at the MSE computed on unseen data, a value of 6 may be a better choice.

mse_summary %>%
arrange(mse_test)

A tibble : 7 x 3
mtry mse_train mse_test
<dbl > <dbl > <dbl >
1 5 15167. 13525.
2 8 14845. 14689.
3 7 15427. 15310.
4 4 16029. 16240.
5 3 18376. 17647.
6 6 15704. 18081.
7 2 26458. 29510.

3.3 Third Example: Choice of Lambda in Lasso Regression

Emmanuel Flachaire showed in his slides yesterday that the Lasso regression can be written as
follows:

150 CHAPTER 3. OVERFITTING

minimiseα,β

n∑
i=1

(yi − α − Xiβ)2 + λ
p∑

j=1
|βj |.

He explained that λ can be selected by cross validation. A pre-built routine in R does it for us
(cv.glmnet() from {glmnet}). In this third example, we will use cross validation to select the
value for λ. We will compare the performances of the model on unseen data by contrasting two
situations:

1. one in which λ will be selected without cross-validation
2. another one in which λ will be selected using cross-validation.

First, let us load the data from {ISLR} (see James et al. (2021), chapter 6):

library(tidyverse)
library(ISLR)
Removing NA values
Hitters <- na.omit(Hitters)

Let us create the matrix of predictors x and the target variable y (Salary).

x <- model.matrix(Salary ~., Hitters)[,-1]
head(x)

AtBat Hits HmRun Runs RBI Walks Years CAtBat
CHits CHmRun

-Alan Ashby 315 81 7 24 38 39 14 3449
835 69

-Alvin Davis 479 130 18 66 72 76 3 1624
457 63

-Andre Dawson 496 141 20 65 78 37 11 5628
1575 225

-Andres Galarraga 321 87 10 39 42 30 2 396
101 12

CRuns CRBI CWalks LeagueN DivisionW PutOuts
Assists Errors

-Alan Ashby 321 414 375 1 1 632
43 10

-Alvin Davis 224 266 263 0 1 880
82 14

-Andre Dawson 828 838 354 1 0 200
11 3

-Andres Galarraga 48 46 33 1 0 805
40 4

3.3. THIRD EXAMPLE: CHOICE OF LAMBDA IN LASSO REGRESSION 151

NewLeagueN
-Alan Ashby 1
-Alvin Davis 0
-Andre Dawson 1
-Andres Galarraga 1
[getOption (" max.print ") est atteint -- 2 lignes omises]

y <- Hitters$Salary
head(y)

[1] 475.0 480.0 500.0 91.5 750.0 70.0

We will choose λ by fitting models on a training dataset. The performances of the model will be
compared on a validation set:

n_train <- round(.8*nrow(x))
ind_train <- sample(1:nrow(x), size = n_train, replace=FALSE)
x_train <- x[ind_train,]
x_valid <- x[-ind_train,]
y_train <- y[ind_train]
y_valid <- y[-ind_train]

Different values of lambda will be tested:

grid <- 10ˆseq(2, -2, length = 100)
grid

[1] 100.00000000 91.11627561 83.02175681 75.64633276
68.92612104

[6] 62.80291442 57.22367659 52.14008288 47.50810162
43.28761281

[11] 39.44206059 35.93813664 32.74549163 29.83647240
27.18588243

[16] 24.77076356 22.57019720 20.56512308 18.73817423
17.07352647

[21] 15.55676144 14.17474163 12.91549665 11.76811952
10.72267222

[26] 9.77009957 8.90215085 8.11130831 7.39072203
6.73415066

152 CHAPTER 3. OVERFITTING

[31] 6.13590727 5.59081018 5.09413801 4.64158883
4.22924287

[36] 3.85352859 3.51119173 3.19926714 2.91505306
2.65608778

[41] 2.42012826 2.20513074 2.00923300 1.83073828
1.66810054

[46] 1.51991108 1.38488637 1.26185688 1.14975700
1.04761575

[51] 0.95454846 0.86974900 0.79248290 0.72208090
0.65793322

[56] 0.59948425 0.54622772 0.49770236 0.45348785
0.41320124

[61] 0.37649358 0.34304693 0.31257158 0.28480359
0.25950242

[66] 0.23644894 0.21544347 0.19630407 0.17886495
0.16297508

[71] 0.14849683 0.13530478 0.12328467 0.11233240
0.10235310

[76] 0.09326033 0.08497534 0.07742637 0.07054802
0.06428073

[reached getOption (" max.print ") -- omitted 20 entries]

A function that computes the mean squared error can be defined:

#' Cpmputes the Mean Squared Error
#' @param observed vector of observed data
#' @param predicted vector of predicted values, same length as `observed`
compute_mse <- function(observed, predicted){

mean((observed - predicted)ˆ2)
}

3.3.1 First Method: Without Cross-Validation

First, we will select a value of λ without using cross-validation.

We need to loop over the different values of λ. At each iteration, we will store the value of lambda
we used and the computed MSE (calculated on the training set). As we will pick the value of λ
based on the performances of the model on already seen data, there is a risk of overfitting.

The list mse_lasso will contain the MSE computed for each value of λ.

3.3. THIRD EXAMPLE: CHOICE OF LAMBDA IN LASSO REGRESSION 153

mse_lasso <- vector(mode = "list", length = length(grid))

We need to load {glmnet} to estimate the model:

library(glmnet)

And the loop:

for(i in 1:length(grid)){
lambda <- grid[i]
lasso_m_current <- glmnet(x = x_train, y = y_train,

alpha=1, lambda = lambda, standardize = TRUE)
predictions_current <- predict(lasso_m_current, newx = x_train)
mse_lasso[[i]] <- tibble(lambda = lambda, mse = compute_mse(y_train, predictions_current))

}

Let us bind all the tables from the list in a single table, and order the observations by descending
values of the MSE:

mse_lasso <-
bind_rows(mse_lasso) %>%
arrange(mse)

mse_lasso

A tibble : 100 x 2
lambda mse
<dbl > <dbl >
1 0.0278 102263.
2 0.0254 102263.
3 0.0231 102263.
4 0.0305 102263.
5 0.0210 102263.
6 0.0192 102263.
7 0.0335 102263.
8 0.0175 102263.
9 0.0159 102263.
10 0.0368 102263.
... with 90 more rows

The selected value of λ, with such a technique, is the one for which the MSE is the lowest, i.e.,

154 CHAPTER 3. OVERFITTING

the first one in our sorted table:

best_lambda_1 <- mse_lasso$lambda[1]

We can plot the MSE as a function of λ:

ggplot(data = mse_lasso, mapping = aes(x = lambda, y = mse)) +
geom_line()

110000

120000

130000

140000

0 25 50 75 100
lambda

m
se

Figure 3.5: Mean Squared Error depending on the value of lambda.

3.3.2 Second Method: With Cross-Validation

To avoid selecting the value of λ by assessing the capabilities of the model to reproduce already
seen data, we will use k-fold cross validation, with k = 10.

nb_folds <- 10

Let us assign a fold to each data from the training set:

n <- nrow(x_train)
folds <- sample(rep(1:nb_folds, length=n))

As in the first situation, we will use a loop to select the value of λ. First, we need to loop on the
different folds, and for each fold, we need to train the model on the different values for λ (using

3.3. THIRD EXAMPLE: CHOICE OF LAMBDA IN LASSO REGRESSION 155

a second loop). At each time, we need to store the value of λ, the index of the k-th fold used to
compute the MSE, and the computed MSE.

mse <- vector(mode = "list", length = nb_folds)

for(k in 1:nb_folds){
ind_current <- folds != k

Train set
x_train_current <- x_train[ind_current,]
y_train_current <- y_train[ind_current]
Test set
x_test_current <- x_train[-ind_current,]
y_test_current <- y_train[-ind_current]

Looping over the values of lambda
mse_fold <- vector(mode = "list", length = length(grid))
for(i in 1:length(grid)){

lambda <- grid[i]
Estimating on the training set
lasso_m_current <- glmnet(x = x_train_current, y = y_train_current,

alpha=1, lambda = lambda, standardize = TRUE)
Predictions on the test set
pred_test <- predict(lasso_m_current, x_test_current)
MSE
mse_test_current <- compute_mse(y_test_current, pred_test)

Storing the results
mse_fold[[i]] <-

tibble(nb_folds = k, lambda = lambda, mse_test = mse_test_current)
}
mse[[k]] <- bind_rows(mse_fold)

}
mse <- bind_rows(mse)

The resulting table looks as follows:

mse

A tibble : 1 ,000 x 3

156 CHAPTER 3. OVERFITTING

nb_folds lambda mse_test
<int > <dbl > <dbl >
1 1 100 146138.
2 1 91.1 142031.
3 1 83.0 137975.
4 1 75.6 134597.
5 1 68.9 131781.
6 1 62.8 129434.
7 1 57.2 127478.
8 1 52.1 125846.
9 1 47.5 124485.
10 1 43.3 123348.
... with 990 more rows

Let us compute the average and standard deviation of MSE on the k folds:

mse_summary <-
mse %>%
group_by(lambda) %>%
summarise(

mse_sd_test = sd(mse_test),
mse_test = mean(mse_test)

)

What is the value of lambda that gives the lowest MSE? To answer this question, we just need to
sort the table by descending values of the calculated MSE, and keep the first row.

best_lambda_cv <-
mse_summary %>%
arrange(mse_test) %>%
slice(1)

Let us consider the values of λ within a 1-standard error interval:

best_lambda_cv <-
best_lambda_cv %>%
mutate(mse_test_one_sd = mse_test+mse_sd_test)

best_lambda_candidates <-
mse_summary %>%
filter(mse_test <= best_lambda_cv$mse_test_one_sd) %>%

3.3. THIRD EXAMPLE: CHOICE OF LAMBDA IN LASSO REGRESSION 157

arrange(desc(lambda))

best_lambda_candidates

A tibble : 61 x 3
lambda mse_sd_test mse_test
<dbl > <dbl > <dbl >
1 2.66 1303. 106955.
2 2.42 1255. 106668.
3 2.21 1220. 106446.
4 2.01 1228. 106220.
5 1.83 1225. 105998.
6 1.67 1249. 105797.
7 1.52 1279. 105633.
8 1.38 1335. 105478.
9 1.26 1384. 105363.
10 1.15 1444. 105274.
... with 51 more rows

Among the candidates, let us pick the highest:

best_lambda_2 <- best_lambda_candidates$lambda[1]
best_lambda_2

[1] 2.656088

Just for the record, we can plot the MSE calculated as a function of λ:

mse_summary %>%
ggplot(data = mse_summary, mapping = aes(x = lambda, y = mse_test)) +
geom_line() +
labs(x = "Lambda", y = "MSE")

158 CHAPTER 3. OVERFITTING

110000

120000

130000

140000

0 25 50 75 100
Lambda

M
S

E

Figure 3.6: Average MSE computed on the left-aside fold.

3.3.3 Comparing the Capacities of the Models on Unseen Data

We have two different values for λ:

1. one computed without using cross-validation
2. another computer with cross-validation

Model where the value of lambda was selected based on
the MSE computed using all the observations at hand
lasso_model_1 <-

glmnet(x = x_train, y = y_train,
alpha=1, lambda = best_lambda_1, standardize = TRUE)

Model where the value of lambda was selected using cross-validation
lasso_model_2 <-

glmnet(x = x_train, y = y_train,
alpha=1, lambda = best_lambda_2, standardize = TRUE)

Let us predict the values on the validation set for both models:

pred_valid_1 <- predict(lasso_model_1, x_valid)
mse_valid_1 <- compute_mse(y_valid, pred_valid_1)

Now we can compute the MSE in both cases:

3.3. THIRD EXAMPLE: CHOICE OF LAMBDA IN LASSO REGRESSION 159

pred_valid_2 <- predict(lasso_model_2, x_valid)
mse_valid_2 <- compute_mse(y_valid, pred_valid_2)

mse_valid_1

[1] 58511.33

mse_valid_2

[1] 57736.12

One can argue that this result may be due to chance. We can thus make some simulations to
reproduce the exact same steps a great number of times.

3.3.4 Repeating the Comparison 100 times

We will repeat the following process 100 times :

1. create a training and a validation step
2. select λ without cross-validation on training the model on the training sample
3. select λ with cross-validation on training the model on the different folds
4. fit the models with the two different values of λ
5. compute the MSE on the validation set for both models

Please note that this procedure takes a few minutes on a standard computer. We could use parallel
computing to fasten it.

nb_repeat <- 100
mse_simulation <- vector(mode = "list", length = nb_repeat)

pb <- txtProgressBar(min = 1, max = nb_repeat, style = 3)
for(i_repeat in 1:nb_repeat){

Training and validation sets
n_train <- round(.8*nrow(x))
ind_train <- sample(1:nrow(x), size = n_train, replace=FALSE)
x_train <- x[ind_train,]
x_valid <- x[-ind_train,]

160 CHAPTER 3. OVERFITTING

y_train <- y[ind_train]
y_valid <- y[-ind_train]

1. Lambda estimated without cross-validation
mse_lasso <- vector(mode = "list", length = length(grid))
for(i in 1:length(grid)){

lambda <- grid[i]
lasso_m_current <- glmnet(x = x_train, y = y_train,

alpha=1, lambda = lambda, standardize = TRUE)
predictions_current <- predict(lasso_m_current, newx = x_train)
mse_lasso[[i]] <-

tibble(lambda = lambda,
mse = compute_mse(y_train, predictions_current))

}

mse_lasso <-
bind_rows(mse_lasso) %>%
arrange(mse)

best_lambda_1 <- mse_lasso$lambda[1]

#2. Lambda estimated with cross-validation
folds <- sample(rep(1:nb_folds, length=n))

mse <- vector(mode = "list", length = nb_folds)
for(k in 1:nb_folds){

ind_current <- folds != k

Train set
x_train_current <- x_train[ind_current,]
y_train_current <- y_train[ind_current]
Test set
x_test_current <- x_train[-ind_current,]
y_test_current <- y_train[-ind_current]

Looping over the values of lambda
mse_fold <- vector(mode = "list", length = length(grid))
for(i in 1:length(grid)){

lambda <- grid[i]

3.3. THIRD EXAMPLE: CHOICE OF LAMBDA IN LASSO REGRESSION 161

Estimating on the training set
lasso_m_current <-

glmnet(x = x_train_current, y = y_train_current,
alpha=1, lambda = lambda, standardize = TRUE)

Predictions on the test set
pred_test <- predict(lasso_m_current, x_test_current)
MSE
mse_test_current <- compute_mse(y_test_current, pred_test)

Storing the results
mse_fold[[i]] <-

tibble(nb_folds = k, lambda = lambda, mse_test = mse_test_current)
}
mse[[k]] <- bind_rows(mse_fold)

}
mse <- bind_rows(mse)

Compute the average and standard deviation of MSE on the k folds
mse_summary <-

mse %>%
group_by(lambda) %>%
summarise(

mse_sd_test = sd(mse_test),
mse_test = mean(mse_test)

)

What is the value of lambda that gives the lowest MSE?
best_lambda_cv <-

mse_summary %>%
arrange(mse_test) %>%
slice(1) %>%
mutate(mse_test_one_sd = mse_test+mse_sd_test)

Lambdas within 1 standard error
best_lambda_candidates <-

mse_summary %>%
filter(mse_test <= best_lambda_cv$mse_test_one_sd) %>%
arrange(desc(lambda))

162 CHAPTER 3. OVERFITTING

Among the candidates, let us pick the highest
best_lambda_2 <- best_lambda_candidates$lambda[1]

3. Performance on the validation set

Model where the value of lambda was selected based on
the MSE computed using all the observations at hand
lasso_model_1 <-

glmnet(x = x_train, y = y_train,
alpha=1, lambda = best_lambda_1, standardize = TRUE)

Model where the value of lambda was selected using cross-validation
lasso_model_2 <-

glmnet(x = x_train, y = y_train,
alpha=1, lambda = best_lambda_2, standardize = TRUE)

Predictions:
pred_valid_1 <- predict(lasso_model_1, x_valid)
mse_valid_1 <- compute_mse(y_valid, pred_valid_1)

pred_valid_2 <- predict(lasso_model_2, x_valid)
mse_valid_2 <- compute_mse(y_valid, pred_valid_2)

mse_simulation[[i_repeat]] <-
tibble(i = i_repeat, mse_valid_1 = mse_valid_1, mse_valid_2)

setTxtProgressBar(pb, i_repeat)
}
mse_simulation <- bind_rows(mse_simulation)

We end up with a table with the MSE for the 100 simulations:

mse_simulation

A tibble : 100 x 3
i mse_valid_1 mse_valid_2
<int > <dbl > <dbl >
1 1 153647. 131441.

3.3. THIRD EXAMPLE: CHOICE OF LAMBDA IN LASSO REGRESSION 163

2 2 137854. 116347.
3 3 222221. 220751.
4 4 76973. 79704.
5 5 55429. 50502.
6 6 105757. 91559.
7 7 103680. 101132.
8 8 164501. 148567.
9 9 129571. 125734.
10 10 137936. 149992.
... with 90 more rows

Let us look at how many replications yielded lower MSE on the validation set when λ was selected
by cross-validation:

mse_simulation %>%
mutate(lower_with_cv = mse_valid_2 < mse_valid_1) %>%
group_by(lower_with_cv) %>%
count()

A tibble : 2 x 2
Groups : lower_with_cv [2]
lower_with_cv n
<lgl > <int >
1 FALSE 29
2 TRUE 71

And we can also compute some descriptive statistics:

mse_simulation %>%
pivot_longer(cols = -i) %>%
group_by(name) %>%
summarise(mean = mean(value),

sd = sd(value),
q_1 = quantile(value, probs = .25),
med = quantile(value, probs = .5),
q_3 = quantile(value, probs = .75)
)

A tibble : 2 x 6
name mean sd q_1 med q_3
<chr > <dbl > <dbl > <dbl > <dbl > <dbl >

164 CHAPTER 3. OVERFITTING

1 mse_valid_1 130271. 43112. 100508. 134385. 157273.
2 mse_valid_2 126686. 43244. 93671. 123173. 156620.

And lastly, we can look at the distribution of the MSE with boxplots:

mse_simulation %>%
pivot_longer(cols = -i, names_to = "sample", values_to = "MSE") %>%
mutate(sample = factor(sample, levels = c("mse_valid_1", "mse_valid_2"),

labels = c("Without CV", "With CV"))) %>%
ggplot(data = ., mapping = aes(y = MSE)) +
geom_boxplot(mapping = aes(fill = sample)) +
scale_fill_discrete("Choice of lambda")

50000

100000

150000

200000

250000

−0.2 0.0 0.2

M
S

E

Choice of lambda

Without CV

With CV

Figure 3.7: MSE on the replications depending on how lambda was selected.

Chapter 4

Trees

This chapter presents some of the tree methods used for classification or regression problems.
After presenting some data that will be used to illustrate the methods, it shows how decision
trees work. Then, it present two ensemble methods based on decision trees: bagging and random
forests. It is built using two main references: James et al. (2021), Boehmke and Greenwell (2019).

4.1 Data Used in the Notebook

To illustrate how to use tree-based methods, we will rely on Seoul bike sharing demand data set
(Sathishkumar, Jangwoo, and Yongyun 2020 ; Sathishkumar and Yongyun 2020) freely available
on the UCI Machine Learning Repository.

The data give the number of bicycles rented each hour from December 1st, 2017 to November
30th, 2018. It contains 8,760 observations. Some characteristics are made available on each day:

• date: the date (day/month/year)
• Rented Bike Count: number of bicycles rented
• Hour: hour
• Temperature(°C): temperature in Celcius degrees
• Humidity(%): percentage of humidity
• Wind speed (m/s): wind speed in metres per second
• Visibility (10m): visibility at 10 metre
• Dew point temperature(°C): dew point temperature in Celcius degrees, i.e., tempera-

ture to which air must be cooled to become saturated with water vapour
• Solar Radiation (MJ/m2): solar radiation in megajoules per square metre
• Rainfall(mm): rainfall in millimetres
• Snowfall (cm): snowfall in centimetres
• Seasons: season (Spring, Summer, Automn, Winter)

165

https://archive.ics.uci.edu/ml/datasets/Seoul+Bike+Sharing+Demand

166 CHAPTER 4. TREES

• Holiday: holiday (Holiday, No Holiday)
• Functioning Day: functioning day of the bicycle rental service (Yes, No)

We will need to use many functions from the packages of the tidyverse environment.

library(tidyverse)

A copy of the dataset is available on my website. The CSV file can directly be loaded in R as
follows:

url <- "https://egallic.fr/Enseignement/ML/ECB/data/SeoulBikeData.csv"
bike <- read_csv(url, locale = locale(encoding = "latin1"))

There are a few days during which the rental service is not functioning:

table(bike$`Functioning Day`)

##
No Yes
295 8465

For simplicity, let us remove the few observations for which the service is not functioning.

bike <-
bike %>%
filter(`Functioning Day` == "Yes") %>%
select(-`Functioning Day`)

The name of the variables is not convenient at all to work with. Let us rename the variables:

bike <-
bike %>%
rename(

"date" = `Date`,
"rented_bike_count" = `Rented Bike Count`,
"hour" = `Hour`,
"temperature" = `Temperature(°C)`,
"humidity" = `Humidity(%)`,
"wind_speed" = `Wind speed (m/s)`,
"visibility" = `Visibility (10m)`,

4.1. DATA USED IN THE NOTEBOOK 167

"dew_point_temperature" = `Dew point temperature(°C)`,
"solar_radiation" = `Solar Radiation (MJ/m2)`,
"rainfall" = `Rainfall(mm)`,
"snowfall" = `Snowfall (cm)`,
"seasons" = `Seasons`,
"holiday" = `Holiday`

)

There may be some seasonality in the data depending on: the hour, the day of the week, or the
month of the year. While the hour is already given in the hour variable, the other component
are not. Let us transform the date column in a date format. Then, the month and the day of the
week can easily be extracted using functions from {lubidate}. We will provide the month name
and the name of the week day in English. Depending on our settings, the functions month() and
wday() from {lubridate} may give different outputs. We will thus make sure to set the time locale
to English. The name of the locale is system dependent: on Unix, we can use "en_US", while on
Windows, we can use "english_us".

loc_time_english <-
ifelse(.Platform$OS.type == "unix", "en_US", "english_us")

library(lubridate)

The new variables can be created as follows:

bike <-
bike %>%
mutate(

date = dmy(date),
year = year(date),
month = month(date, label = TRUE, locale = loc_time_english),
month = factor(as.character(month),

levels = c("Jan", "Feb", "Mar", "Apr",
"May", "Jun", "Jul", "Aug",
"Sep", "Oct", "Nov", "Dec")),

week_day = wday(date, label = TRUE, locale = loc_time_english),
week_day = factor(as.character(week_day),

levels = c("Mon", "Tue", "Wed",
"Thu", "Fri", "Sat", "Sun")),

seasons = factor(seasons, levels = c("Spring", "Summer",

168 CHAPTER 4. TREES

"Autumn", "Winter"))
)

Now, let us have a look at some summary statistics. First, we shall consider our target variable,
i.e., the hourly number of bikes rented:

summary(bike$rented_bike_count)

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.0 214.0 542.0 729.2 1084.0 3556.0

On average, there are 729 bikes rented per hour in Seoul over the considered period (December
2017 to November 2018).

We can have an idea of the distribution by plotting a histogram:

ggplot(data = bike, mapping = aes(x = rented_bike_count)) +
geom_histogram(colour = "black") +
labs(x = "Rented bike count", y = "Count")

4.1. DATA USED IN THE NOTEBOOK 169

0

400

800

1200

0 1000 2000 3000
Rented bike count

C
ou

nt

Figure 4.1: Distribution of rented bike count.

The distribution is skewed. Let us look at the distribution of the target variable depending on the
month:

ggplot(data = bike, mapping = aes(x = rented_bike_count)) +
geom_histogram(colour = "black") +
labs(x = "Rented bike count", y = "Count") +
facet_wrap(~month)

170 CHAPTER 4. TREES

Sep Oct Nov Dec

May Jun Jul Aug

Jan Feb Mar Apr

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

0

100

200

0

100

200

0

100

200

Rented bike count

C
ou

nt

Figure 4.2: Distribution of rented bike count by month.

In cold months (December, January, February), the distribution appears to be concentrated
around low values. There seems to be monthly seasonality here.

Let us look at the distribution of the number of bikes rented depending on the weekday:

ggplot(data = bike, mapping = aes(x = rented_bike_count)) +
geom_histogram(colour = "black") +
labs(x = "Rented bike count", y = "Count") +
facet_wrap(~week_day)

4.1. DATA USED IN THE NOTEBOOK 171

Sun

Thu Fri Sat

Mon Tue Wed

0 1000 2000 3000

0 1000 2000 3000 0 1000 2000 3000

0
50

100
150
200

0
50

100
150
200

0
50

100
150
200

Rented bike count

C
ou

nt

Figure 4.3: Distribution of rented bike count by weekday.

To the naked eye, there does not seem to be a specific link between the day of the week and the
number of bicycles rented.

Somme summary statistics depending on the weekday can be obtained using the tableby() func-
tion from {arsenal}.

library(arsenal)
tableby_control <- tableby.control(

numeric.stats=c("Nmiss", "meansd", "median", "q1q3")
)
tab <- tableby(week_day~rented_bike_count, data = bike,

control = tableby_control)
summary(tab, text = NULL) %>%

kableExtra::kable(
caption = "Rented bike count depending on the week days.", booktabs = T,
format = "latex", longtable = TRUE) %>%

kableExtra::kable_classic(html_font = "Cambria") %>%
kableExtra::kable_styling(

172 CHAPTER 4. TREES

bootstrap_options = c("striped", "hover", "condensed",
"responsive", "scale_down"),

font_size = 5)

Table 4.1: Rented bike count depending on the week days.

Mon (N=1248) Tue (N=1152) Wed (N=1200) Thu (N=1200) Fri (N=1224) Sat (N=1217) Sun (N=1224) Total (N=8465) p value

rented_bike_count < 0.001
Mean (SD) 730.563 (664.961) 745.309 (646.550) 769.963 (674.288) 718.332 (639.037) 776.417 (654.013) 727.602 (600.706) 637.413 (605.013) 729.157 (642.351)
Median 533.000 571.500 570.500 538.000 600.000 560.000 424.000 542.000
Q1, Q3 186.000, 1099.000 227.750, 1083.500 225.000, 1133.250 210.000, 1068.000 262.750, 1142.000 230.000, 1095.000 170.750, 943.000 214.000, 1084.000

The ANOVA test result reported in the previous table lead us to think that the mean is not
the same across all weekdays. We notice that the number of rented bikes is relatively lower on
Sundays and relatively higher on Fridays.

To have an idea of the distribution of the target variable conditional on the hour, we can use polar
coordinates:

bike %>%
group_by(hour) %>%
summarise(rented_bike_count = mean(rented_bike_count)) %>%
ggplot(data = ., aes(x = hour, y = rented_bike_count)) +
geom_bar(stat = "identity") +
coord_polar() +
labs(x = NULL, y = "Rented bike count") +
scale_x_continuous(breaks = seq(0,24, by = 2))

4.1. DATA USED IN THE NOTEBOOK 173

0

2

4

6

8

10
12

14

16

18

20

22

0

500

1000

1500

R
en

te
d

bi
ke

 c
ou

nt

Figure 4.4: Rented bike count per hour.

As one could expect, the number of bikes rented during the night are much lower that during the
day. Two peaks are observed: around 8am and around 6pm, i.e., at the beginning and end of the
working day.

We can also look at the distribution of the number of rented bikes depending on the seasons:

bike %>%
group_by(hour, seasons) %>%
summarise(rented_bike_count = mean(rented_bike_count)) %>%
ggplot(data = ., aes(x = hour, y = rented_bike_count)) +
geom_bar(stat = "identity", mapping = aes(fill = seasons)) +
coord_polar() +
labs(x = NULL, y = "Rented bike count") +
scale_x_continuous(breaks = seq(0,24, by = 2)) +
facet_wrap(~seasons) +
scale_fill_manual("Seasons",

values = c("Spring" = "#004D40", "Summer" = "#FFC107",
"Autumn" = "#D81B60", "Winter" = "#1E88E5"))

174 CHAPTER 4. TREES

0
2

4

6

8

1012
14

16

18

20

22

0
2

4

6

8

1012
14

16

18

20

22

0
2

4

6

8

1012
14

16

18

20

22

0
2

4

6

8

1012
14

16

18

20

22

Autumn Winter

Spring Summer

0
500

1000
1500
2000

0
500

1000
1500
2000

R
en

te
d

bi
ke

 c
ou

nt Seasons

Spring

Summer

Autumn

Winter

Figure 4.5: Rented bike count per hour and per season.

As previously seen, the number of rented bikes is much lower during Winter. The peaks at 8am
and 6pm are observed regardless the seasons.

Now, using scatter plots, let us explore the relationship between the number of bikes rented and
each weather variable. Let us first create each plot and store everyone of them in a different object.

library(cowplot)
p_temp <-

ggplot(data = bike,
mapping = aes(x = temperature, y = rented_bike_count)) +

geom_point(alpha = .3) +
geom_smooth() +
labs(x = "Temperature (°C)", y = NULL,

title = "Temperature vs humidity")

p_humidity <-
ggplot(data = bike,

mapping = aes(x = humidity, y = rented_bike_count)) +

4.1. DATA USED IN THE NOTEBOOK 175

geom_point(alpha = .3) +
geom_smooth() +
labs(x = "Humidity (%)", y = NULL,

title = "Rented count vs humidity")

p_wind <-
ggplot(data = bike,

mapping = aes(x = wind_speed, y = rented_bike_count)) +
geom_point(alpha = .3) +
geom_smooth() +
labs(x = "Wind speed (m/s)", y = NULL,

title = "Rented count vs wind speed")

p_visibility <-
ggplot(data = bike,

mapping = aes(x = visibility, y = rented_bike_count)) +
geom_point(alpha = .3) +
geom_smooth() +
labs(x = "Visibility (10m)", y = NULL,

title = "Rented count vs visibility")

p_dew_point <-
ggplot(data = bike,

mapping = aes(x = dew_point_temperature, y = rented_bike_count)) +
geom_point(alpha = .3) +
geom_smooth() +
labs(x = "Dew point temperature (°C)", y = NULL,

title = "Rented count vs dew point temperature")

p_solar_radiation <-
ggplot(data = bike,

mapping = aes(x = solar_radiation, y = rented_bike_count)) +
geom_point(alpha = .3) +
geom_smooth() +
labs(x = "Solar Radiation (MJ/m2)", y = NULL,

title = "Rented count vs solar radiation")

p_rainfall <-

176 CHAPTER 4. TREES

ggplot(data = bike,
mapping = aes(x = rainfall, y = rented_bike_count)) +

geom_point(alpha = .3) +
geom_smooth() +
labs(x = "Rainfall (mm)", y = NULL,

title = "Rented count vs rainfall")

p_snowfall <-
ggplot(data = bike,

mapping = aes(x = snowfall, y = rented_bike_count)) +
geom_point(alpha = .3) +
geom_smooth() +
labs(x = "Snowfall (cm)", y = NULL,

title = "Rented count vs snowfall")

Then, using the plot_grid() function from {cowplot}, we can plot all these graphs on a single
figure:

cowplot::plot_grid(p_temp, p_humidity, p_wind,
p_visibility, p_dew_point, p_rainfall,
p_snowfall, ncol = 2)

4.1. DATA USED IN THE NOTEBOOK 177

0

1000

2000

3000

−20 0 20 40
Temperature (°C)

Temperature vs humidity

0

1000

2000

3000

0 25 50 75 100
Humidity (%)

Rented count vs humidity

0

1000

2000

3000

0 2 4 6
Wind speed (m/s)

Rented count vs wind speed

0

1000

2000

3000

0 500 1000 1500 2000
Visibility (10m)

Rented count vs visibility

0

1000

2000

3000

−30 −20 −10 0 10 20 30
Dew point temperature (°C)

Rented count vs dew point temperature

−1000

0

1000

2000

3000

0 10 20 30
Rainfall (mm)

Rented count vs rainfall

0

1000

2000

3000

0.0 2.5 5.0 7.5
Snowfall (cm)

Rented count vs snowfall

Figure 4.6: Relationship between the rented count and the numeric predictors.

178 CHAPTER 4. TREES

The plot show nonlinear relationships between the weather and the number of rented bikes. One
should note that these graphs do not allow to look at interaction effects.

Is there any correlation between the numerical variables of the dataset? Let us have a look.

correl_mat <-
bike %>%
select_if(is.numeric) %>%
cor() %>%
round(2)

correl_mat

rented_bike_count hour temperature
humidity wind_speed

rented_bike_count 1.00 0.43 0.56
-0.20 0.13

hour 0.43 1.00 0.12
-0.24 0.29

temperature 0.56 0.12 1.00
0.17 -0.04

humidity -0.20 -0.24 0.17
1.00 -0.34

wind_speed 0.13 0.29 -0.04
-0.34 1.00

visibility 0.21 0.10 0.03
-0.55 0.18

dew_point_temperature 0.40 0.00 0.91
0.54 -0.18

visibility dew_point_temperature
solar_radiation rainfall

rented_bike_count 0.21 0.40
0.27 -0.13

hour 0.10 0.00
0.14 0.01

temperature 0.03 0.91
0.35 0.05

humidity -0.55 0.54
-0.46 0.24

wind_speed 0.18 -0.18
0.33 -0.02

visibility 1.00 -0.18
0.15 -0.17

dew_point_temperature -0.18 1.00
0.10 0.13

snowfall year

4.1. DATA USED IN THE NOTEBOOK 179

rented_bike_count -0.15 0.23
hour -0.02 0.00
temperature -0.22 0.38
humidity 0.11 0.04
wind_speed 0.00 0.00
visibility -0.12 0.05
dew_point_temperature -0.15 0.33
[getOption (" max.print ") est atteint -- 4 lignes omises]

It may be more convenient to construct a correlation plot (we can do so here as the number of
predictors is not too large).

library(corrplot)
corrplot.mixed(correl_mat, order = 'AOE')

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
snowfall

humidity

rainfall

dew_point_temperature

temperature

year

rented_bike_count

solar_radiation

hour

visibility

wind_speed

 0.11

 0.01

−0.15

−0.22

−0.21

−0.15

−0.07

−0.02

−0.12

 0.00

 0.24

 0.54

 0.17

 0.04

−0.20

−0.46

−0.24

−0.55

−0.34

 0.13

 0.05

 0.03

−0.13

−0.07

 0.01

−0.17

−0.02

 0.91

 0.33

 0.40

 0.10

 0.00

−0.18

−0.18

 0.38

 0.56

 0.35

 0.12

 0.03

−0.04

 0.23

 0.13

 0.00

 0.05

 0.00

 0.27

 0.43

 0.21

 0.13

 0.14

 0.15

 0.33

 0.10

 0.29 0.18

Figure 4.7: Correlation plot.

A nice summary table can also be constructed.

180 CHAPTER 4. TREES

tableby_control <- tableby.control(
numeric.stats=c("Nmiss", "meansd", "range", "median", "q1q3")

)
tab <- tableby(~., data = bike, control = tableby_control)
summary(tab, text = NULL) %>%

kableExtra::kable(caption = "Summary statistics.", booktabs = T,
format = "latex", longtable = TRUE) %>%

kableExtra::kable_classic(full_width = F, html_font = "Cambria") %>%
kableExtra::kable_styling(

bootstrap_options = c("striped", "hover", "condensed", "responsive"),
font_size = 6)

Table 4.2: Summary statistics.

Overall (N=8465)

date
Median 2018-05-28
Range 2017-12-01 - 2018-11-30
rented_bike_count
Mean (SD) 729.157 (642.351)

Range 2.000 - 3556.000
Median 542.000
Q1, Q3 214.000, 1084.000
hour
Mean (SD) 11.507 (6.921)

Range 0.000 - 23.000
Median 12.000
Q1, Q3 6.000, 18.000
temperature
Mean (SD) 12.771 (12.104)

Range -17.800 - 39.400
Median 13.500
Q1, Q3 3.000, 22.700
humidity
Mean (SD) 58.147 (20.485)

Range 0.000 - 98.000
Median 57.000
Q1, Q3 42.000, 74.000
wind_speed
Mean (SD) 1.726 (1.034)

Range 0.000 - 7.400
Median 1.500
Q1, Q3 0.900, 2.300
visibility
Mean (SD) 1433.873 (609.051)

Range 27.000 - 2000.000
Median 1690.000
Q1, Q3 935.000, 2000.000
dew_point_temperature
Mean (SD) 3.945 (13.242)

Range -30.600 - 27.200
Median 4.700

4.1. DATA USED IN THE NOTEBOOK 181

Q1, Q3 -5.100, 15.200
solar_radiation
Mean (SD) 0.568 (0.868)

Range 0.000 - 3.520
Median 0.010
Q1, Q3 0.000, 0.930
rainfall
Mean (SD) 0.149 (1.126)

Range 0.000 - 35.000
Median 0.000
Q1, Q3 0.000, 0.000
snowfall
Mean (SD) 0.078 (0.444)

Range 0.000 - 8.800
Median 0.000
Q1, Q3 0.000, 0.000
seasons
Spring 2160 (25.5%)

Summer 2208 (26.1%)
Autumn 1937 (22.9%)
Winter 2160 (25.5%)
holiday
Holiday 408 (4.8%)

No Holiday 8057 (95.2%)
year
Mean (SD) 2017.912 (0.283)
Range 2017.000 - 2018.000
Median 2018.000

Q1, Q3 2018.000, 2018.000
month
Jan 744 (8.8%)
Feb 672 (7.9%)
Mar 744 (8.8%)

Apr 696 (8.2%)
May 720 (8.5%)
Jun 720 (8.5%)
Jul 744 (8.8%)
Aug 744 (8.8%)

Sep 624 (7.4%)
Oct 665 (7.9%)
Nov 648 (7.7%)
Dec 744 (8.8%)
week_day

Mon 1248 (14.7%)
Tue 1152 (13.6%)
Wed 1200 (14.2%)
Thu 1200 (14.2%)
Fri 1224 (14.5%)

Sat 1217 (14.4%)
Sun 1224 (14.5%)

For the sake of the illustration, let us create a binary outcome variable. Let us imagine that, for
example, the service is too costly if the number of bikes rented per day is below 300. In such a
case, we might want to train a classifier which will predict whether or not the number of bikes
rented per day will be below or above that threshold.

182 CHAPTER 4. TREES

bike <-
bike %>%
mutate(y_binary = ifelse(rented_bike_count < 300, "Low", "High"))

Let us look at the number and proportions of observations in each category:

table(bike$y_binary)

##
High Low
5526 2939

prop.table(table(bike$y_binary))

##
High Low
0.6528057 0.3471943

We can also recreate the summary table depending on the binary outcome variable:

tableby_control <- tableby.control(
numeric.stats=c("Nmiss", "meansd", "range", "median", "q1q3")

)
tab <- tableby(y_binary~., data = bike, control = tableby_control)
summary(tab, text = NULL) %>%

kableExtra::kable(
caption = "Summary statistics depending on the binary response variable.",
booktabs = T,
format = "latex", longtable = TRUE) %>%

kableExtra::kable_classic(full_width = F, html_font = "Cambria") %>%
kableExtra::kable_styling(

bootstrap_options = c("striped", "hover", "condensed", "responsive"),
font_size = 6)

Table 4.3: Summary statistics depending on the binary response variable.

High (N=5526) Low (N=2939) Total (N=8465) p value

4.1. DATA USED IN THE NOTEBOOK 183

date < 0.001
Median 2018-07-05 2018-02-18 2018-05-28
Range 2017-12-01 - 2018-11-30 2017-12-01 - 2018-11-30 2017-12-01 - 2018-11-30
rented_bike_count < 0.001
Mean (SD) 1036.016 (597.662) 152.191 (82.792) 729.157 (642.351)

Range 300.000 - 3556.000 2.000 - 299.000 2.000 - 3556.000
Median 912.000 155.000 542.000
Q1, Q3 563.000, 1358.750 79.000, 222.500 214.000, 1084.000
hour < 0.001
Mean (SD) 12.940 (6.533) 8.812 (6.827) 11.507 (6.921)

Range 0.000 - 23.000 0.000 - 23.000 0.000 - 23.000
Median 14.000 6.000 12.000
Q1, Q3 8.000, 18.000 4.000, 14.000 6.000, 18.000
temperature < 0.001
Mean (SD) 17.460 (10.024) 3.954 (10.678) 12.771 (12.104)

Range -17.800 - 39.400 -17.500 - 31.100 -17.800 - 39.400
Median 18.900 1.800 13.500
Q1, Q3 9.725, 25.200 -4.200, 11.300 3.000, 22.700
humidity < 0.001
Mean (SD) 55.503 (18.326) 63.119 (23.227) 58.147 (20.485)

Range 0.000 - 98.000 0.000 - 98.000 0.000 - 98.000
Median 55.000 64.000 57.000
Q1, Q3 42.000, 69.000 43.000, 84.000 42.000, 74.000
wind_speed < 0.001
Mean (SD) 1.769 (0.992) 1.645 (1.105) 1.726 (1.034)

Range 0.000 - 7.400 0.000 - 7.300 0.000 - 7.400
Median 1.600 1.300 1.500
Q1, Q3 1.000, 2.400 0.800, 2.300 0.900, 2.300
visibility < 0.001
Mean (SD) 1497.753 (556.808) 1313.765 (680.812) 1433.873 (609.051)

Range 66.000 - 2000.000 27.000 - 2000.000 27.000 - 2000.000
Median 1745.000 1523.000 1690.000
Q1, Q3 1062.000, 2000.000 606.500, 1994.000 935.000, 2000.000
dew_point_temperature < 0.001
Mean (SD) 7.670 (11.123) -3.059 (14.048) 3.945 (13.242)

Range -29.800 - 27.200 -30.600 - 26.000 -30.600 - 27.200
Median 8.700 -3.900 4.700
Q1, Q3 -0.100, 16.775 -14.900, 7.600 -5.100, 15.200
solar_radiation < 0.001
Mean (SD) 0.780 (0.968) 0.168 (0.406) 0.568 (0.868)

Range 0.000 - 3.520 0.000 - 2.460 0.000 - 3.520
Median 0.280 0.000 0.010
Q1, Q3 0.000, 1.420 0.000, 0.040 0.000, 0.930
rainfall < 0.001
Mean (SD) 0.020 (0.364) 0.391 (1.819) 0.149 (1.126)

Range 0.000 - 21.500 0.000 - 35.000 0.000 - 35.000
Median 0.000 0.000 0.000
Q1, Q3 0.000, 0.000 0.000, 0.000 0.000, 0.000
snowfall < 0.001
Mean (SD) 0.016 (0.194) 0.193 (0.691) 0.078 (0.444)

Range 0.000 - 4.100 0.000 - 8.800 0.000 - 8.800
Median 0.000 0.000 0.000
Q1, Q3 0.000, 0.000 0.000, 0.000 0.000, 0.000
seasons < 0.001
Spring 1502 (27.2%) 658 (22.4%) 2160 (25.5%)

Summer 1889 (34.2%) 319 (10.9%) 2208 (26.1%)
Autumn 1570 (28.4%) 367 (12.5%) 1937 (22.9%)
Winter 565 (10.2%) 1595 (54.3%) 2160 (25.5%)
holiday < 0.001
Holiday 180 (3.3%) 228 (7.8%) 408 (4.8%)

184 CHAPTER 4. TREES

No Holiday 5346 (96.7%) 2711 (92.2%) 8057 (95.2%)
year < 0.001
Mean (SD) 2017.958 (0.201) 2017.826 (0.379) 2017.912 (0.283)
Range 2017.000 - 2018.000 2017.000 - 2018.000 2017.000 - 2018.000
Median 2018.000 2018.000 2018.000

Q1, Q3 2018.000, 2018.000 2018.000, 2018.000 2018.000, 2018.000
month < 0.001
Jan 157 (2.8%) 587 (20.0%) 744 (8.8%)
Feb 174 (3.1%) 498 (16.9%) 672 (7.9%)
Mar 481 (8.7%) 263 (8.9%) 744 (8.8%)

Apr 485 (8.8%) 211 (7.2%) 696 (8.2%)
May 536 (9.7%) 184 (6.3%) 720 (8.5%)
Jun 637 (11.5%) 83 (2.8%) 720 (8.5%)
Jul 633 (11.5%) 111 (3.8%) 744 (8.8%)
Aug 619 (11.2%) 125 (4.3%) 744 (8.8%)

Sep 519 (9.4%) 105 (3.6%) 624 (7.4%)
Oct 542 (9.8%) 123 (4.2%) 665 (7.9%)
Nov 509 (9.2%) 139 (4.7%) 648 (7.7%)
Dec 234 (4.2%) 510 (17.4%) 744 (8.8%)
week_day < 0.001

Mon 795 (14.4%) 453 (15.4%) 1248 (14.7%)
Tue 765 (13.8%) 387 (13.2%) 1152 (13.6%)
Wed 787 (14.2%) 413 (14.1%) 1200 (14.2%)
Thu 778 (14.1%) 422 (14.4%) 1200 (14.2%)
Fri 867 (15.7%) 357 (12.1%) 1224 (14.5%)

Sat 815 (14.7%) 402 (13.7%) 1217 (14.4%)
Sun 719 (13.0%) 505 (17.2%) 1224 (14.5%)

Now that we are a bit more familiar with the data, let us dig into the core subject of this notebook.

4.2 Training and Test Sets

Let us create a training dataset and a test dataset. We will put 80% of the first observations in the
training set and the remaining 20% in the test set. Although we will not explore the time series
aspect of the data at first, let us prepare the training and test sets such that the data in the test set
will be those at the end of the sample period.

First, we need to make sure that the table is sorted by ascending values of date and then by
ascending values of hour:

bike <-
bike %>%
arrange(date, hour)

Then the two sets can be created:

n_train <- round(.8*nrow(bike))

Training set

4.3. DECISION TREES 185

df_train <-
bike %>%
slice(1:n_train)

Test set
df_test <-

bike %>%
slice(-(1:n_train))

Let us look at the dimensions:

dim(df_train)

[1] 6772 17

dim(df_test)

[1] 1693 17

4.3 Decision Trees

In this first part, we will try to predict the number of rented bikes with a regression tree and then
we will try to predict the binary outcome variable using a classification tree. The method we will
used is called Classification and Regression Trees (CART) and was introduced in L. Breiman et
al. (1984).

We will rely on {rpart} to build the tree and on {rpart.plot} to create graphical illustrations (when-
ever it is possible to do so).

library(rpart)
library(rpart.plot)

4.3.1 Regression Trees

To predict the number of hourly rented bikes, the predictor space will be segmented into a number
of simple regions. To create these segments, the algorithm creates a series of binary splits. The
data are recursively split into terminal nodes (leaves). Let us illustrate this with our data.

186 CHAPTER 4. TREES

part_tree <-
rpart(rented_bike_count ~.,

data = df_train %>% select(-y_binary, -date),
method = "anova")

The rules that were learnt by the algorithm are the following

part_tree

n= 6772
##
node), split , n, deviance , yval
* denotes terminal node
##
1) root 6772 2825639000 687.5492
2) temperature < 12.15 3131 199783800 285.6675
4) temperature < 5.65 2383 64996140 228.1637 *
5) temperature >=5.65 748 101804000 468.8650 *
3) temperature >=12.15 3641 1685319000 1033.1390
6) hour < 15.5 2365 518621400 748.7455
12) solar_radiation < 0.205 1084 114108200 460.0489
24) hour >=1.5 801 61201670 362.2322 *
25) hour < 1.5 283 23550280 736.9081 *
13) solar_radiation >=0.205 1281 237713700 993.0445
26) month=Mar ,Apr ,Jul ,Aug 723 92311480 850.5007 *
27) month=May ,Jun ,Sep 558 111677400 1177.7380 *
7) hour >=15.5 1276 620889500 1560.2470
14) rainfall >=0.05 109 19285900 259.2018 *
15) rainfall < 0.05 1167 399864100 1681.7670
30) hour >=22.5 137 11867380 1124.7230 *
31) hour < 22.5 1030 339831500 1755.8590
62) month=Mar ,Apr ,Aug 392 86211860 1483.6530 *
63) month=May ,Jun ,Jul ,Sep 638 206727700 1923.1080
126) humidity >=80.5 42 10854010 1015.6900 *
127) humidity < 80.5 596 158853500 1987.0540 *

They can be visualised using a tree:

rpart.plot(part_tree)

4.3. DECISION TREES 187

temperature < 12

temperature < 5.7 hour < 16

solar_radiation < 0.21

hour >= 2 month = Mar,Apr,Jul,Aug

rainfall >= 0.05

hour >= 23

month = Mar,Apr,Aug

humidity >= 81

688
100%

286
46%

228
35%

469
11%

1033
54%

749
35%

460
16%

362
12%

737
4%

993
19%

851
11%

1178
8%

1560
19%

259
2%

1682
17%

1125
2%

1756
15%

1484
6%

1923
9%

1016
1%

1987
9%

yes no

Figure 4.8: A first decision tree.

The first rule appears on top of the tree. Among all the tested separating rules, the one involving
the variable temperature with a threshold of 12 is the one that minimises the residual sum
of square (RSS). In other words, this couple of variable/cutoff value is the one that minimises
deviations to the mean (variances) in each resulting leaf.

On the root node (top of the graph), the bubble shows two values:

• 688: this corresponds to the average value of the response variable for the observations in
the node (here, the average for all observations)

• 100%: this percentage corresponds to the number of observation from the whole dataset
that can be found in that node.

mean(df_train$rented_bike_count)

[1] 687.5492

The first variable used to perform a split is temperature. Observations with a value for the
variable temperature strictly lower than 12.15 (46%) will go to the left leaf. The others (the
remaining 54%) will go to the right leaf.

188 CHAPTER 4. TREES

Among the observations for which temperature is strictly lower than 12.15, the average of the
response variable is equal to 286 (once rounded):

df_train %>%
filter(temperature < 12.15) %>%
summarise(mean = mean(rented_bike_count))

A tibble : 1 x 1
mean
<dbl >
1 286.

In that node, another split is performed, using the temperature variable once again, and the
cutoff value that lead to the lowest RSS within that node is 5.65. Hence, observations for which
the temperature is lower than 12.15 and lower than 5.65 (35% of all observations of the dataset)
will go to the left leaf, while those for which the the temperature is lower than 12.15 and greater
than 5.65 (11% of all observations of the dataset) will go to the right leaf.

df_train %>%
filter(temperature < 12.15) %>%
filter(temperature < 5.65) %>%
count() %>%
mutate(prop = n / nrow(df_train))

A tibble : 1 x 2
n prop
<int > <dbl >
1 2383 0.352

We end up in a final node. The predicted value for such observations will be the average of the
response variable in this node:

df_train %>%
filter(temperature < 12.15) %>%
filter(temperature < 5.65) %>%
summarise(pred = mean(rented_bike_count))

A tibble : 1 x 1
pred

4.3. DECISION TREES 189

<dbl >
1 228.

And on the right node:

df_train %>%
filter(temperature < 12.15) %>%
filter(temperature > 5.65) %>%
count() %>%
mutate(prop = n / nrow(df_train))

A tibble : 1 x 2
n prop
<int > <dbl >
1 748 0.110

df_train %>%
filter(temperature < 12.15) %>%
filter(temperature > 5.65) %>%
summarise(pred = mean(rented_bike_count))

A tibble : 1 x 1
pred
<dbl >
1 469.

Let us detail the process of selecting the variable/cutoff pair. We can create a simple function
to help compute the residual sum of squares:

compute_rss <- function(observed, predicted){
sum((observed-predicted)ˆ2)

}

Before making any split, the RSS is equal to:

rss_init <-
compute_rss(df_train$rented_bike_count,

190 CHAPTER 4. TREES

mean(df_train$rented_bike_count))
rss_init

[1] 2825639089

Let us consider the variable temperature used to partition the data, and a threshold of 12.15.
Note that this variable is numerical. We will illustrate next how to procede with categorical data.

variable_split <- "temperature"
threshold <- 12.15

We split the data into two subsamples:

1. one for which temperature is below 12.15
2. another one for which temperature is greater than or equal to 12.15.

In each subset, we compute the average of the response variable: this will be the prediction made
in the node:

tmp_data <-
df_train %>%
mutate(below_t = temperature < 12.15) %>%
select(rented_bike_count, below_t) %>%
group_by(below_t) %>%
mutate(pred = mean(rented_bike_count))

tmp_data

A tibble : 6 ,772 x 3
Groups : below_t [2]
rented_bike_count below_t pred
<dbl > <lgl > <dbl >
1 254 TRUE 286.
2 204 TRUE 286.
3 173 TRUE 286.
4 107 TRUE 286.
5 78 TRUE 286.
6 100 TRUE 286.
7 181 TRUE 286.
8 460 TRUE 286.
9 930 TRUE 286.
10 490 TRUE 286.

4.3. DECISION TREES 191

... with 6 ,762 more rows

We can then compute the RSS :

rss_after_split <-
compute_rss(tmp_data$rented_bike_count,

tmp_data$pred)
rss_after_split

[1] 1885102486

The improvement due to the split, in terms of percentage deviation of the RSS is given by:

-(rss_after_split - rss_init)/rss_init

[1] 0.332858

It is the value reported in the split element of the object returned by rpart():

head(part_tree$splits)

count ncat improve index adj
temperature 6772 -1 0.3328580 12.15 0.0000000
month 6772 12 0.2719021 1.00 0.0000000
seasons 6772 4 0.2395872 2.00 0.0000000
dew_point_temperature 6772 -1 0.2132190 3.55 0.0000000
hour 6772 -1 0.1572311 6.50 0.0000000
dew_point_temperature 0 -1 0.9162729 5.25 0.8189077

Now, let us wrap-up this code in a function, so that it is easy to make the threshold vary:

#' @param data data frame
#' @param variable_to_predict name of the variable to predict
#' @param variable_split name of the variable used to create the partitions
#' @param threshold threshold used to create the two partitions
rss_split_numeric <-

192 CHAPTER 4. TREES

function(data, variable_to_predict,
variable_split, threshold){

tmp_data <-
data %>%
mutate(below_t = !!sym(variable_split) < threshold) %>%
select(!!sym(variable_to_predict), below_t) %>%
group_by(below_t) %>%
mutate(pred = mean(!!sym(variable_to_predict)))

compute_rss(tmp_data[[variable_to_predict]], tmp_data[["pred"]])
}

An example with the same variable (temperature) and threshold (12.15) as earlier:

rss_split_numeric(
data = df_train, variable_to_predict = "rented_bike_count",
variable_split = "temperature", threshold = 12.15)

[1] 1885102486

All that we need to to is to make the threshold vary. For example, we can consider values ranging
from the minimum of the splitting variable to its maximum, so that 1000 different threshold
values are tested:

number_of_cuts <- 1000
thresholds <-

seq(min(df_train$temperature), max(df_train$temperature),
length.out = number_of_cuts)

Then, we can loop over these threshold values. At each iteration, we can store the RSS in a vector.

rss_tmp <- rep(NA, number_of_cuts)
for(i in 1:number_of_cuts){

rss_tmp[i] <-
rss_split_numeric(

data = df_train, variable_to_predict = "rented_bike_count",
variable_split = "temperature", threshold = thresholds[i])

}

4.3. DECISION TREES 193

After a few seconds, once the loop has ended, we can look at the threshold value for which the
RSS was the lowest:

thresholds[which.min(rss_tmp)]

[1] 12.14555

We find the same value as that shown on top of the tree!

If we compute the average value of the number of rented bikes in each partition:

df_train %>%
mutate(below_t = temperature < thresholds[which.min(rss_tmp)]) %>%
select(rented_bike_count, below_t) %>%
group_by(below_t) %>%
summarise(pred = mean(rented_bike_count),

n = n()) %>%
ungroup() %>%
mutate(prop = round(100*n/sum(n)))

A tibble : 2 x 4
below_t pred n prop
<lgl > <dbl > <int > <dbl >
1 FALSE 1033. 3641 54
2 TRUE 286. 3131 46

We get the values shown on top of the children nodes.

Then, we need to consider all variables as the variable used to partition the data (not only
temperature). We will not do it here, but I am sure that you understood the process of selecting
the splitting rule. What you may be now wondering, is how to proceed if the variable used to
partition the data is not numerical, but categorical. In such a case, we just need to consider the
combination of binary splits. For example, let us consider the variable month. There are l = 12
months in the dataset, so that makes 2(l−1) − 1 = 2047 possible binary splits:

• (Jan) vs (Feb or Mar or Apr or May or Jun or Jul or Aug or Sep or Oct or Nov or Dec)
• (Jan or Feb) vs (Mar or Apr or May or Jun or Jul or Aug or Sep or Oct or Nov or Dec)

194 CHAPTER 4. TREES

• (Jan or Mar) vs (Feb or Apr or May or Jun or Jul or Aug or Sep or Oct or Nov or Dec)
• . . .
• (Jan or Feb or Mar) vs (Apr or May or Jun or Jul or Aug or Sep or Oct or Nov or Dec)
• . . .
• (Jan or Feb or Mar or Apr or May or Jun or Jul or Aug or Sep or Oct or Nov) vs (Dec).

We can define a simple function that will give us all possible ways of creating unique binary
partitions from a set of classes.

#' @param classes vector of names of classes
possible_splits <- function(classes){

l <- length(classes)
if(l>2){

resul <- resul <- rep(NA, 2ˆ(l-1) - 1)
i <- 1
for(k in 1:(l-1)){

tmp <- combn(c(classes), k)
for(j in 1:ncol(tmp)){

if(tmp[1, j] != classes[1]) break
current <- str_c(tmp[,j], collapse = ",")
resul[i] <- str_c(tmp[,j], collapse = ",")
i <- i+1

}
}

}else{
If only two classes
resul <- classes[1]

}
resul

}

This function just needs to be fed with a vector of classes. For example, if the classes are A, B, C,
D, there will be 2(4−1) − 1 = 7 unique ways to partition the data into two areas.

possible_splits(c("A", "B", "C", "D"))

[1] "A" "A,B" "A,C" "A,D" "A,B,C" "A,B,D" "A,C,D"

Let us illustrate how the partition is done on the tree by moving to one of the specific node: the
one concerning observations for which temperature is greater than or equal to 12.15, the hour is

4.3. DECISION TREES 195

lower than 15.5, the solar radiation is greater than or equal to 0.205.

Recall the plot:

rpart.plot(part_tree)

temperature < 12

temperature < 5.7 hour < 16

solar_radiation < 0.21

hour >= 2 month = Mar,Apr,Jul,Aug

rainfall >= 0.05

hour >= 23

month = Mar,Apr,Aug

humidity >= 81

688
100%

286
46%

228
35%

469
11%

1033
54%

749
35%

460
16%

362
12%

737
4%

993
19%

851
11%

1178
8%

1560
19%

259
2%

1682
17%

1125
2%

1756
15%

1484
6%

1923
9%

1016
1%

1987
9%

yes no

Figure 4.9: The same first decision tree.

df_tmp <-
df_train %>%
filter(temperature >= 12.15 & hour < 15.5 & solar_radiation >= 0.205)

The next partition, according to the graph, is done by separating observations for which the
month is either March, April, July, or August from other observations. Let us try to retrieve
such a result by hand.

At this node, we are left with 1281 observations:

nrow(df_tmp)

[1] 1281

196 CHAPTER 4. TREES

The different levels (or classes) of the month variable are the following:

classes <- as.character(unique(df_tmp$month))
classes

[1] "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"

We note that there are less than 12 months in the dataset at this point. The number of classes is
thus lower and the number of possible splits will thus be much smaller than 2047.

We can use our little function to obtain the list of possible splits:

list_possible_splits <- possible_splits(classes)
head(list_possible_splits)

[1] "Mar" "Mar ,Apr" "Mar ,May" "Mar ,Jun" "Mar ,Jul" "Mar ,Aug"

There are actually 7 classes, so there are 63 possible splits:

length(list_possible_splits)

[1] 63

Let us consider the following split:

list_possible_splits[2]

[1] "Mar ,Apr"

All we need to do is to create a variable that will state whether the month is either in March or
in April, i.e., either in one of the elements of the following vector:

str_split(list_possible_splits[2], ",")[[1]]

[1] "Mar" "Apr"

4.3. DECISION TREES 197

Then, we can group the observations by this dummy variable and compute the average of the
response variable in each subset. This average will be the prediction made at this node, if we use
(March or April) as the decision rule.

tmp_data <-
df_tmp %>%
mutate(var_in_categ = month %in%

str_split(list_possible_splits[2],",")[[1]])%>%
select(rented_bike_count, var_in_categ) %>%
group_by(var_in_categ) %>%
mutate(pred = mean(rented_bike_count))

We can check how many observations are in each subset:

table(tmp_data$var_in_categ)

##
FALSE TRUE
1065 216

And we need to compute the RSS:

compute_rss(tmp_data[["rented_bike_count"]], tmp_data[["pred"]])

[1] 235207726

Now, let us wrap-up this in a function, so that it can be used over a loop where the decision rule
is changed at each iteration:

#' @param data data frame
#' @param variable_to_predict name of the variable to predict
#' @param variable_split name of the variable used to create the partitions
#' @param split_rule vector of classes used to create the two partitions
rss_split_categ <-

function(data, variable_to_predict,
variable_split, split_rule){

tmp_data <-
data %>%

198 CHAPTER 4. TREES

mutate(var_in_categ = !!sym(variable_split) %in% split_rule) %>%
select(!!sym(variable_to_predict), var_in_categ) %>%
group_by(var_in_categ) %>%
mutate(pred = mean(!!sym(variable_to_predict)))

compute_rss(tmp_data[[variable_to_predict]], tmp_data[["pred"]])
}

With the same rule as that used in the example, the function rss_split_categ() can be used
as follows:

rss_split_categ(df_tmp,
variable_to_predict = "rented_bike_count",
variable_split = "month",
split_rule = str_split(list_possible_splits[2], ",")[[1]])

[1] 235207726

Let us loop over all the possible splits, and store the RSS at each iteration.

rss_tmp <- rep(NA, length(list_possible_splits))
for(i in 1:length(list_possible_splits)){

rss_tmp[i] <-
rss_split_categ(

df_tmp,
variable_to_predict = "rented_bike_count",
variable_split = "month",
split_rule = str_split(list_possible_splits[i], ",")[[1]])

}

The RSS is at its lowest for this variable with the following rule:

list_possible_splits[which.min(rss_tmp)]

[1] "Mar ,Apr ,Jul ,Aug"

Good news, we obtain the same result as that provided by the rpart() function! We can also

4.3. DECISION TREES 199

check that the predictions in each subset and the proportion of observations are the same as that
obtained with rpart().

df_tmp %>%
mutate(var_in_categ = month %in%

str_split(list_possible_splits[which.min(rss_tmp)],",")[[1]])%>%
select(rented_bike_count, var_in_categ) %>%
group_by(var_in_categ) %>%
summarise(pred = mean(rented_bike_count),

n = n()) %>%
mutate(prop = round(100*n/nrow(df_train)))

A tibble : 2 x 4
var_in_categ pred n prop
<lgl > <dbl > <int > <dbl >
1 FALSE 1178. 558 8
2 TRUE 851. 723 11

rpart.plot(part_tree)

temperature < 12

temperature < 5.7 hour < 16

solar_radiation < 0.21

hour >= 2 month = Mar,Apr,Jul,Aug

rainfall >= 0.05

hour >= 23

month = Mar,Apr,Aug

humidity >= 81

688
100%

286
46%

228
35%

469
11%

1033
54%

749
35%

460
16%

362
12%

737
4%

993
19%

851
11%

1178
8%

1560
19%

259
2%

1682
17%

1125
2%

1756
15%

1484
6%

1923
9%

1016
1%

1987
9%

yes no

Figure 4.10: The same (again) first decision tree.

200 CHAPTER 4. TREES

To sum up, at each node, each variable is tested as a candidate to segment the input space
into two parts. Multiple splits are tested for each variables. The final choice is the variable
and the splitting rule leading to the lowest RSS value.
Once a split is done, the splitting process can be repeated in each partition. This process
goes on recursively until some stopping criteria. All the variables are again considered as
candidates, even the one that was used in the previous split.

4.3.2 Stopping the Recursive Splitting Process

The question that can then be asked is: what criteria should be used to decide to stop the recursive
partitioning process?

There are multiple ways of stopping the algorithm. These ways are controlled by the argu-
ments of the function rpart.control() from {rpart}. Some of them are the following:

• maxdepth: we can set the maximum depth of the tree, with the root node counted
as depth 0

• minsplit: we can decide that in order to make a split, there should be at least a
minimum number of observations in a node ; if it is not the case, the split should
not be attempted

• minbucket: we can also decide that a split should not be performed if it leads to
a leaf node with too few observations (by default, this value is set in R as 1/3 of
minsplit)

• cp: in the case of regression trees with anova splitting, if the split leads to an in-
crease in the R-squared less than cp compared to the previous value, then the split
should not be done. Setting cp=0 will lead to overlooking this criterion as a stopping
criterion.

These arguments can be directly provided to the rpart() function. In the following example,
a split will be attempted if there is at least 1,000 observation in the node for which the split is
performed, and if it leads to partitions in which at least 500 observations are left in the leaf node.
If attempting the split respects these two conditions, we will overlook the fact that the R-squared
should be increased at the next step, by setting cp=-1.

part_tree <-
rpart(rented_bike_count ~.,

data = df_train %>% select(-y_binary, -date),
method = "anova",
minsplit = 1000,
minbucket = 500,

4.3. DECISION TREES 201

cp=0)
rpart.plot(part_tree)

temperature < 12

temperature < 5.7

hour < 7

temperature < 0.55

hour < 16

solar_radiation < 0.21

hour >= 4 month = Mar,Apr,Jul,Aug

humidity >= 63

688
100%

286
46%

228
35%

109
12%

286
24%

249
14%

345
9%

469
11%

1033
54%

749
35%

460
16%

351
8%

565
8%

993
19%

851
11%

1178
8%

1560
19%

1256
8%

1764
11%

yes no

Figure 4.11: Decision tree where splits are made if there is at least 1000 obs. in the node and if
the number of obs. in the resulting leaves are at least 500.

If now we allow splits to be done with the same conditions but only if they lead to an increase in
the R-squared value of 0.01 from one step to the next:

part_tree <-
rpart(rented_bike_count ~.,

data = df_train %>% select(-y_binary, -date),
method = "anova",
minsplit = 1000,
minbucket = 500,
cp=.01)

rpart.plot(part_tree)

202 CHAPTER 4. TREES

temperature < 12

temperature < 5.7 hour < 16

solar_radiation < 0.21

month = Mar,Apr,Jul,Aug

humidity >= 63

688
100%

286
46%

228
35%

469
11%

1033
54%

749
35%

460
16%

993
19%

851
11%

1178
8%

1560
19%

1256
8%

1764
11%

yes no

Figure 4.12: Growing the tree stopped earlier as we imposed restrictions on the improvement
needed to make split.

It can be noted that the tree is a bit shallower.

The tree grown has a depth of 4. Let us constrain the tree to have a maximum depth of only 3.

part_tree <-
rpart(rented_bike_count ~.,

data = df_train %>% select(-y_binary, -date),
method = "anova",
maxdepth = 3,
cp = 0)

rpart.plot(part_tree)

4.3. DECISION TREES 203

temperature < 12

temperature < 5.7

hour < 7 humidity >= 63

hour < 16

solar_radiation < 0.21 rainfall >= 0.05

688
100%

286
46%

228
35%

109
12%

286
24%

469
11%

290
5%

625
6%

1033
54%

749
35%

460
16%

993
19%

1560
19%

259
2%

1682
17%

yes no

Figure 4.13: Decision tree when constraining its depth.

The algorithm stopped earlier.

Let us spent a bit more time with the two parameters controlling the maximum depth of the tree
and the minimum number of observations in a node for a split to be attempted. We can easily
give the intuition that the higher the depth of the tree, the higher the risk of overfitting. In a
same way, the lower the minimum number of observations in a node for a split to be attempted,
the higher the risk of overfitting. Let us give an illustration with synthetic data. Let us assume
that we observe 100 observations drawn from the following process:

yi = .1x3
i − x2

i + xi + εi, ε ∼ N (0, 4).

set.seed(123)
n <- 100
x <- runif(n=n, min=0, max=10)
eps <- rnorm(n, 0, 4)
f <- function(x) .1*xˆ3-1*xˆ2+x
y <- f(x)+eps

Let us plot the observed values and show with a red dotted line the expected value of data drawn
from this data generating process.

204 CHAPTER 4. TREES

df_sim <- tibble(x=x, y=y)
ggplot(data = df_sim, mapping = aes(x = x, y = y)) +

geom_line(data = tibble(x=seq(0, 10, by = .1), y=f(x)),
size = 1.1, linetype = "dashed", colour = "#AA2F2F") +

geom_point()

−10

0

10

0.0 2.5 5.0 7.5 10.0
x

y

Figure 4.14: Generating Data Process and generated data.

Now, let us train a regression tree on the observed values. Let us limit the depth of the tree to 1.

part_tree <-
rpart(y ~ x,

data = df_sim,
method = "anova",
maxdepth = 1,
cp = 0

)
rpart.plot(part_tree)

4.3. DECISION TREES 205

x < 8.7

−3.6
100%

−4.9
86%

4.3
14%

yes no

Figure 4.15: Decision tree built on the synthetic data with a maximum depth of 1.

The decision boundary is such that if x is lower than 8.7, the predicted value will be -4.9; otherwise
it will be 4.3.

ggplot(mapping = aes(x = x, y = y)) +
geom_line(data = tibble(x=seq(0, 10, by = .1), y=f(x)),

size = 1.1, linetype = "dashed", colour = "#AA2F2F") +
geom_point(data = df_sim) +
geom_segment(data = tibble(x = c(-Inf, 8.7),

xend = c(8.7, Inf),
y = c(-4.9, 4.3),
yend = c(-4.9, 4.3)),

mapping = aes(x=x, y=y, xend=xend, yend=yend),
colour = "#005A8B", size = 1.5)

206 CHAPTER 4. TREES

−10

0

10

0.0 2.5 5.0 7.5 10.0
x

y

Figure 4.16: Decision boundary of the grown tree.

Now let us vary the maxdepth and minsplit parameters over a loop. We can create a func-
tion that will return the decision boundaries (to be precise, it is not exactly the exact decision
boundaries that is returned, but a very close approximation).

get_pred_part <- function(max_depth, min_split){
part_tree <-

rpart(y ~ x,
data = df_sim,
method = "anova",
minsplit = min_split,
maxdepth = max_depth,
cp = 0

)

tibble(
x = seq(0, 10, by = .1),
y = predict(part_tree, newdata = tibble(x=seq(0, 10, by = .1))),
max_depth = max_depth,
min_split = min_split

)

}

4.3. DECISION TREES 207

We will loop over all the combinations that can be made up with the values for maxdepth and
minsplit that we define, and apply the get_pred_part() at each iteration.

predicted_vals <-
list(

max_depth = c(1, 3, 5, 10),
min_split = c(2, 10, 20)) %>%

cross() %>%
map_df(purrr::lift(get_pred_part))

predicted_vals

A tibble : 1 ,212 x 4
x y max_depth min_split
<dbl > <dbl > <dbl > <dbl >
1 0 -4.92 1 2
2 0.1 -4.92 1 2
3 0.2 -4.92 1 2
4 0.3 -4.92 1 2
5 0.4 -4.92 1 2
6 0.5 -4.92 1 2
7 0.6 -4.92 1 2
8 0.7 -4.92 1 2
9 0.8 -4.92 1 2
10 0.9 -4.92 1 2
... with 1 ,202 more rows

library(ggtext)
ggplot(mapping = aes(x = x, y = y)) +

geom_line(data = tibble(x=seq(0, 10, by = .1), y=f(x)),
size = 1.1, linetype = "dashed", colour = "#AA2F2F") +

geom_point(data = df_sim) +
geom_step(data = predicted_vals %>%

mutate(max_depth = factor(
max_depth,
levels = sort(unique(predicted_vals$max_depth)),
labels = str_c("Max depth: ",

sort(unique(predicted_vals$max_depth)))),
min_split = factor(

min_split,
levels = sort(unique(predicted_vals$min_split),

208 CHAPTER 4. TREES

decreasing = TRUE),
labels = str_c("Min node size: ",

sort(unique(predicted_vals$min_split),
decreasing = TRUE)))

),
colour = "#005A8B", size = 1.5) +

facet_grid(max_depth~min_split) +
labs(title = str_c(

"Change in **",
"decision boundaries** induced by parameter variations")

) +
theme(

plot.title = element_markdown(lineheight = 1.1),
plot.title.position = "plot",
legend.text = element_markdown(size = 11)

)

4.3. DECISION TREES 209

Min node size: 20 Min node size: 10 Min node size: 2
M

ax depth: 1
M

ax depth: 3
M

ax depth: 5
M

ax depth: 10

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

−10

0

10

−10

0

10

−10

0

10

−10

0

10

x

y

Change in decision boundaries induced by parameter variations

Figure 4.17: Varying the parameters affect the decision boundary and may lead to overfitting.

In the previous graph, we clearly note that:
• if the maximum depth of the tree that is grown is 1, then the minimum node size

does not play any role
• as long as we increase the maximum depth, the boundary decision gets closer to the

points: there is a risk of overfitting
• as long as the number of minimum observations in a node for a split to be attempted

decreases, the boundary decision gets closer to the points: there is once again a risk
of overfitting.

210 CHAPTER 4. TREES

4.3.2.1 Pruning

With the previous example, we saw that smaller trees lead to lower variance. They also lead to
better interpretation. On the other hand, this is done at the expense of a little bias. We might
be tempted to rely on growing small trees, by stropping the algorithm as soon as the decrease in
the SSR due to the current split falls below some threshold. But this is too short-sided, as a poor
split could be followed by a very good split.

Another strategy, called tree pruning, consists in growing a large tree, and then prune it back to
keep only a subtree. To determine the level at which pruning is carried out, we can proceed by
cross-validation. But instead of considering all trees, only a subset of those are considered. The
cross-validation process is used to select a penalization parameter (λ). As explained in Emmanuel
Flachaire’s course, we put a prize to pay for having a tree with many terminal nodes J , or regions,

min
J∑

j=1

∑
i∈Rj

(yi − yRj
)2 + λJ.

With a value of λ = 0, the subtree we end up with is the large tree we grew in the first place. As
long as we increase the value of λ, having many terminal nodes J become costlier.

In {rpart}, the number of folds for the cross-validation is provided through the xval argument of
the rpart.control() function. It can also be given directly to the rpart() function.

Let us perform a 10-fold cross validation with the Seoul bike data (this is actually done by default
when calling the rpart() function).

set.seed(123)
large_tree <-

rpart(rented_bike_count ~.,
data = df_train %>% select(-y_binary, -date),
method = "anova",
control = rpart.control(xval = 10, cp = -1, minbucket = 20))

Number of nodes
nodes_large_tree <- as.numeric(rownames(large_tree$frame))
max(rpart:::tree.depth(nodes_large_tree))

[1] 16

We can plot the results of the cross-validation:

4.3. DECISION TREES 211

plotcp(large_tree)

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
0

0.
4

0.
8

Inf 0.0046 0.0014 0.00053 0.00023 6.6e−05 2.3e−05 NaN

1 9 22 37 49 61 75 92 105 123 140 156 173 188

size of tree

Figure 4.18: Relative error depending on the complexity parameter (10-fold cross-validation re-
sults), for the Seoul bike data.

The results of the cross-validation are stored in the cptable attribute of the result. The column CP
(cost-complexity) corresponds to different values of λ, and the column xerror gives the resulting
error.

head(large_tree$cptable)

CP nsplit rel error xerror xstd
1 0.33285801 0 1.0000000 1.0005565 0.021514547
2 0.19316259 1 0.6671420 0.6771662 0.015698709
3 0.07139607 2 0.4739794 0.4855051 0.012615119
4 0.05903069 3 0.4025833 0.4253927 0.010949168
5 0.01704578 4 0.3435527 0.3615918 0.009915513
6 0.01659517 5 0.3265069 0.3476690 0.009469073

212 CHAPTER 4. TREES

Let us find the minimum value of the cost-parameter λ:

min_val <-
as_tibble(large_tree$cptable) %>%
arrange(xerror) %>%
slice(1)

min_val

A tibble : 1 x 5
CP nsplit `rel error ` xerror xstd
<dbl > <dbl > <dbl > <dbl > <dbl >
1 0.00000162 185 0.0973 0.140 0.00544

Then, we can consider all the values of the cost-parameter within a 1-standard error deviation
from that value:

candidates <-
as_tibble(large_tree$cptable) %>%
filter((xerror > min_val$xerror-min_val$xstd) &

(xerror < min_val$xerror+min_val$xstd)) %>%
arrange(desc(CP))

candidates

A tibble : 90 x 5
CP nsplit `rel error ` xerror xstd
<dbl > <dbl > <dbl > <dbl > <dbl >
1 0.000314 91 0.106 0.145 0.00546
2 0.000311 92 0.106 0.145 0.00546
3 0.000295 93 0.106 0.144 0.00546
4 0.000295 94 0.105 0.144 0.00546
5 0.000294 95 0.105 0.144 0.00546
6 0.000286 96 0.105 0.144 0.00546
7 0.000285 97 0.104 0.144 0.00546
8 0.000269 98 0.104 0.144 0.00546
9 0.000262 99 0.104 0.143 0.00546
10 0.000259 100 0.104 0.143 0.00545
... with 80 more rows

Among those candidates, we can pick up the values that results in the smallest subtree:

4.3. DECISION TREES 213

cp_val <-
candidates %>%
slice(1) %>%
magrittr::extract2("CP")

cp_val

[1] 0.0003139774

Then, the tree can be pruned accordingly with this cost-complexity value, using the prune()
function from {rpart}:

pruned_tree <- prune(large_tree, cp=cp_val)

Let us check the depth of the resulting tree:

nodes_pruned_tree <- as.numeric(rownames(pruned_tree$frame))
max(rpart:::tree.depth(nodes_pruned_tree))

[1] 12

And for comparison, let us grow a smaller tree:

small_tree <-
rpart(rented_bike_count ~.,

data = df_train %>% select(-y_binary, -date),
method = "anova",
maxdepth = 2,
cp = 0,
xval = 0)

Number of nodes
nodes_small_tree <- as.numeric(rownames(small_tree$frame))
max(rpart:::tree.depth(nodes_small_tree))

[1] 2

214 CHAPTER 4. TREES

Let us compute the MSE on the test set:

pred_test_small <- predict(small_tree, newdata = df_test)
pred_test_large <- predict(large_tree, newdata = df_test)
pred_test_pruned <- predict(pruned_tree, newdata = df_test)

compute_mse <- function(observed, predicted){
mean((observed-predicted)ˆ2)

}

mse_small_tree <-
compute_mse(observed = df_test$rented_bike_count,

predicted = pred_test_small)
mse_large_tree <-

compute_mse(observed = df_test$rented_bike_count,
predicted = pred_test_large)

mse_pruned_tree <-
compute_mse(observed = df_test$rented_bike_count,

predicted = pred_test_pruned)

mse <- scales::number(c(mse_small_tree, mse_large_tree,
mse_pruned_tree))

names(mse) <- c("Small", "Large", "Pruned")
mse

Small Large Pruned
"295 291" "164 097" "168 395"

Here, pruning the tree unfortunately produced a higher MSE in the test set. Let us have another
look at pruning with our synthetic dataset this time.

Let us draw some new observations from the same data generating process.

set.seed(234)
x_new <- runif(n=n, min=0, max=10)
eps <- rnorm(n, 0, 4)
y_new <- f(x)+eps
df_sim_new <- tibble(x=x_new, y=y_new)
ggplot(mapping = aes(x = x, y = y)) +

geom_line(data = tibble(x=seq(0, 10, by = .1), y=f(x)),

4.3. DECISION TREES 215

colour = "black", size = 1.1, linetype = "dashed") +
geom_point(data = df_sim %>% mutate(sample = "Train") %>%

bind_rows(
df_sim_new %>% mutate(sample = "Test")

),
mapping = aes(colour = sample)) +

scale_colour_manual("Sample",
values = c("Train" = "#D55E00", "Test" = "#009E73"))

−10

0

10

0.0 2.5 5.0 7.5 10.0
x

y

Sample

Train

Test

Figure 4.19: Synthetic data.

Let us build a large tree using the training sample:

part_tree_large <-
rpart(y ~ x,

data = df_sim,
method = "anova",
control = rpart.control(

xval = 10,
cp = -1,
minbucket = 5)

)
rpart.plot(part_tree_large)

216 CHAPTER 4. TREES

x < 8.7

x >= 3

x >= 4.9

x < 7.5

x < 6

x < 4.5

x < 3.7

x >= 0.99

x < 1.3

x >= 2.4

−3.6
100%

−4.9
86%

−7.3
56%

−8.7
33%

−10
21%

−12
7%

−9.8
14%

−5.6
12%

−5.3
23%

−6.2
18%

−7
6%

−5.8
12%

−2.2
5%

−0.48
30%

−0.98
23%

−3.5
5%

−0.28
18%

−2.2
5%

0.46
13%

1.1
7%

4.3
14%

yes no

Figure 4.20: Unpruned tree.

The cost-parameter can be chosen thanks to the 10-fold cross-validation that was performed:

plotcp(part_tree_large)

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
4

0.
8

1.
2

Inf 0.28 0.11 0.03 0.013 0.0083 0.0026 NaN

1 2 3 5 6 8 9 10 11

size of tree

Figure 4.21: Relative error depending on the complexity parameter, for the synthetic data.

The same procedure to select λ as that used on the Seoul bike data can be done. In a first step,

4.3. DECISION TREES 217

we select the value that minimises the error:

min_val <-
as_tibble(part_tree_large$cptable) %>%
arrange(xerror) %>%
slice(1)

min_val

A tibble : 1 x 5
CP nsplit `rel error ` xerror xstd
<dbl > <dbl > <dbl > <dbl > <dbl >
1 0.0185 4 0.344 0.479 0.0673

Then, we consider all values within a 1-standard error:

candidates <-
as_tibble(part_tree_large$cptable) %>%
filter((xerror > min_val$xerror-min_val$xstd) &

(xerror < min_val$xerror+min_val$xstd)) %>%
arrange(desc(CP))

candidates

A tibble : 5 x 5
CP nsplit `rel error ` xerror xstd
<dbl > <dbl > <dbl > <dbl > <dbl >
1 0.0482 2 0.440 0.539 0.0711
2 0.0185 4 0.344 0.479 0.0673
3 0.00927 5 0.325 0.486 0.0647
4 0.00749 7 0.307 0.511 0.0646
5 0.00429 8 0.299 0.514 0.0649

And finally, we pick the values among the candidates that produces the shallowest tree:

cp_val <-
candidates %>%
slice(1) %>%
magrittr::extract2("CP")

cp_val

[1] 0.04824351

218 CHAPTER 4. TREES

We can then prune the large tree:

pruned_tree <- prune(part_tree_large, cp=cp_val)
rpart.plot(pruned_tree)

x < 8.7

x >= 3

−3.6
100%

−4.9
86%

−7.3
56%

−0.48
30%

4.3
14%

yes no

Figure 4.22: Pruned tree, synthetic data.

The depth of the pruned tree is indeed smaller:

nodes_pruned_tree <- as.numeric(rownames(pruned_tree$frame))
max(rpart:::tree.depth(nodes_pruned_tree))

[1] 2

Let us visualise the boundaries of each tree:

boundaries <-
tibble(

x = seq(0, 10, by = .1),
y = predict(part_tree_large,

newdata = tibble(x=seq(0, 10, by = .1)))
)

boundaries_pruned <-
tibble(

x = seq(0, 10, by = .1),

4.3. DECISION TREES 219

y = predict(pruned_tree,
newdata = tibble(x=seq(0, 10, by = .1)))

)

ggplot(mapping = aes(x = x, y = y)) +
geom_line(data = tibble(x=seq(0, 10, by = .1), y=f(x)),

size = 1.1, linetype = "dashed", colour = "#AA2F2F") +
geom_point(data = df_sim %>% mutate(sample = "Train") %>%

bind_rows(
df_sim_new %>% mutate(sample = "Test")

),
mapping = aes(shape = sample)) +

geom_step(data = boundaries %>% mutate(model = "Large Tree") %>%
bind_rows(

boundaries_pruned %>% mutate(model = "Pruned Tree")
),

mapping = aes(colour = model),
colour = "#005A8B",
size = 1.5) +

labs(title = str_c(
"Decision boundaries for the **",
"large** and for the **",
"pruned** trees")

) +
scale_colour_manual("Boundary",

values = c("Large Tree" = "#E69F00",
"Pruned Tree" = "#56B4E9")) +

scale_shape_discrete("Dataset") +
theme(

plot.title = element_markdown(lineheight = 1.1),
plot.title.position = "plot",
legend.text = element_markdown(size = 11)

)

220 CHAPTER 4. TREES

−10

0

10

0.0 2.5 5.0 7.5 10.0
x

y

Dataset

Test

Train

Boundary

Large Tree

Pruned Tree

Decision boundaries for the large and for the pruned trees

Figure 4.23: Decision boundaries are different after the tree was pruned.

Now, using these boundaries, let us compute the MSE on the unseen data (test set):

pred_test_large <- predict(part_tree_large, newdata = df_sim_new)
pred_test_pruned <- predict(pruned_tree, newdata = df_sim_new)

compute_mse <- function(observed, predicted){
mean((observed-predicted)ˆ2)

}

mse_large_tree <-
compute_mse(observed = df_sim_new$y, predicted = pred_test_large)

mse_pruned_tree <-
compute_mse(observed = df_sim_new$y, predicted = pred_test_pruned)

mse <- scales::number(c(mse_large_tree, mse_pruned_tree))
names(mse) <- c("Large", "Pruned")
print("MSE : \n")

[1] "MSE : \n"

4.3. DECISION TREES 221

mse

Large Pruned
"65" "47"

We avoided overfitting by pruning the tree and ended-up with a lower MSE on the test.

4.3.3 Classification Trees

So far, we have considered a numerical target/response variable. Let us now consider the case
where the predictor is categorical. This implies two changes:

1. the criterion used to select the variable/cutoff pairs can no longer be the RSS

• we can use another metric, such as the classification error rate for example
• or the Gini index, or the Entropy

2. the prediction made for each partition is no longer the average of the response variable

• we can rely on a voting rule based on the proportions of the categories: for example,
the proportions of each class can considered as the probabilities that the observations of a
partition belong to each corresponding class.

Instead of using the classification error, it is more common to either use the Gini impurity index
or the entropy to select the pair variable/cutoff that will be used to make a split.

222 CHAPTER 4. TREES

The Gini impurity index at some node N , as reminded in Emmanuel Flachaire’s course,
is given by:

G(N) =
K∑

k=1
pk(1 − pk) = 1 −

K∑
k=1

p2
k,

where pk is the fraction of observations (or training samples) labeled with class k in the
node. If all the pk are close to 0, or to 1, the Gini impurity index has a small value: in such
cases, there will be mostly observations from the same class, the node will be homogeneous.
The Gini impurity index thus gives an idea of the total variance across the K classes in a
node.
Entropy is defined as follows:

E(N) = −
K∑

k=1
pk log(pk)

If the pk are all near 0 or near 1, the entropy will also be near 0.
After a split into two leaves NL and NR, the Gini impurity index becomes:

G(NL, NR) = pLG(NL) + pRG(NR),

where pL and pR are the proportion of observations in NL and NR

In a similar fashion, the entropy becomes:

E(NL, NR) = pLE(NL) + pRE(NR).

Splits can be done as long as they substantially decrease impurity, i.e., when

∆ = G(N) − G(NL, NR) > ϵ,

where ϵ is a threshold value set by the user.
The choice of the pair variable/cutoff can be done so as to select the one that minimises
the impurity, i.e., the one that maximises ∆.

Let us look at an example on the Seoul bike data. First, let us look at how some little changes
need to be made when calling the rpart() function.

With regression trees, the argument method was set to "anova". Now that the variable of
interest is categorical, we need to change the value to "class". By default, the Gini impurity
index is used as the splitting index. If we want to use entropy, we can feed the argument parms
with a list with the element split equal to "class".

Let us build a tree to predict our binary variable (recall that it is equal to "High" if the number

4.3. DECISION TREES 223

of hourly bikes is greater than 300 and "Low" otherwise). Let us make sure that at least 20
observations are in a node before a split is attempted (minsplit = 20) and that there are at least
7 observations in each terminal leaves (minbucket = 7).

classif_tree_gini <-
rpart(y_binary ~.,

data = df_train %>% select(-rented_bike_count, -date),
method = "class",
minsplit = 20,
minbucket = 7,
parms = list(split = "gini"))

The tree can be visualised thanks to the rpart.plot() function, as in the case of a regression tree.
The argument extra allows to change the type of information reported on the graph. Here, since
we have a binary response variable, the value is automatically set to 106 if not specified differently.
It is made of two parts:

• 6: the probability of the second class only is reported
• +100: the percentage of observations in the node is also added

rpart.plot(classif_tree_gini, extra = 106)

temperature >= 3.4

humidity < 86

hour >= 7

hour < 3

hour >= 6

High
0.38

100%
High
0.21
70%

High
0.13
61%

High
0.04
46%

High
0.41
15%

High
0.15
7%

Low
0.64
8%

High
0.32
2%

Low
0.74
6%

Low
0.70
9%

Low
0.80
30%

yes no

Figure 4.24: A first classification tree grown on Seoul bike data.

Here, at the top of the tree where 100% of observations are in the node, we read on the graph
that the probability to be predicted as the second class (Low) is 0.38. This corresponds to the
percentage of Low observations in the training dataset.

224 CHAPTER 4. TREES

prop.table(table(df_train$y_binary))

##
High Low
0.6151802 0.3848198

If the temperature is greater than or equal to 3.35 (we go to the left), we are left with 70% of
the observations. In the resulting node, the probability to be classified as the second class (Low)
is estimated at 0.21. This means that 21% of the observations in that node are labelled as Low:

df_train %>%
filter(temperature >= 3.35) %>%
group_by(y_binary) %>%
count() %>%
ungroup() %>%
mutate(prop = round(n/sum(n), 2))

A tibble : 2 x 3
y_binary n prop
<chr > <int > <dbl >
1 High 3754 0.79
2 Low 990 0.21

This concerns 70% of the observations:

df_train %>%
group_by(temperature < 3.35) %>%
count() %>%
ungroup() %>%
mutate(prop = n / sum(n))

A tibble : 2 x 3
`temperature < 3.35 ` n prop
<lgl > <int > <dbl >
1 FALSE 4744 0.701
2 TRUE 2028 0.299

4.3. DECISION TREES 225

If the temperature is strictly lower than 3.35 (we go to the right), which concerns the remaining
30% of the observations, there are 20% of observations label with the first class (High) and
80%with the second (Low):

df_train %>%
filter(temperature < 3.35) %>%
group_by(y_binary) %>%
count() %>%
ungroup() %>%
mutate(prop = round(n/sum(n), 2))

A tibble : 2 x 3
y_binary n prop
<chr > <int > <dbl >
1 High 412 0.2
2 Low 1616 0.8

This is a terminal leaf node, so any observation that falls in it, the predicted class will be that of
the most frequent class in that node. With this tree, if an observation has temperature >=3.35:

• the probability that the number of bikes is of class “High” returned by the model will be
0.2

• the probability that the number of bikes is of class “Low” returned by the model will be
0.8.

226 CHAPTER 4. TREES

When calling the plot, we set extra=106. As 106 mod 100 = 6, only the probability of
the second class is repord. Here is the list of available values that can be used (this list is
extracted from the help page of the rpart() function):

• 1: the number of observations that fall in the node
• 2: the classification rate at the node (number of correct classifications and the number

of observations in the node)
• 3: misclassification rate at the node (number of incorrect classifications and the num-

ber of observations in the node)
• 4: probability per class of observations in the node (conditioned on the node, sum

across a node is 1)
• 5: like 4 but don’t display the fitted class
• 6: probability of the second class only. Useful for binary responses (the one we

used)
• 7: like 6 but don’t display the fitted class
• 8: probability of the fitted class
• 9: probability relative to all observations – the sum of these probabilities across

all leaves is 1. This is in contrast to the options above, which give the probability
relative to observations falling in the node – the sum of the probabilities across the
node is 1

• 10: like 9 but display the probability of the second class only. (Useful for binary
responses).

• 11: like 10 but don’t display the fitted class

rpart.plot(classif_tree_gini, extra = 102)

4.3. DECISION TREES 227

temperature >= 3.4

humidity < 86

hour >= 7

hour < 3

hour >= 6

High
4166 / 6772

100%
High

3754 / 4744
70%

High
3565 / 4117

61%

High
2968 / 3097

46%

High
597 / 1020

15%

High
395 / 464

7%

Low
354 / 556

8%

High
95 / 139

2%

Low
310 / 417

6%

Low
438 / 627

9%

Low
1616 / 2028

30%

yes no

Figure 4.25: Showing the classification rate at the node.

If we want to use entropy instead of the Gini impurity index as the splitting index, all we need to
do is to change the value of the element split in the list given to the parms argument so that it
becomes "information" instead of "gini".

classif_tree_entropy <-
rpart(y_binary ~.,

data = df_train %>% select(-rented_bike_count, -date),
method = "class",
parms = list(split = "information"))

rpart.plot(classif_tree_entropy)

228 CHAPTER 4. TREES

temperature >= 3.4

humidity < 86

hour >= 7

hour < 3

seasons = Summer,Autumn

hour >= 6

hour < 4

High
0.38

100%
High
0.21
70%

High
0.13
61%

High
0.04
46%

High
0.41
15%

High
0.15
7%

Low
0.64
8%

High
0.47
5%

High
0.16
1%

Low
0.58
3%

High
0.26
1%

Low
0.75
2%

Low
0.84
4%

Low
0.70
9%

Low
0.80
30%

yes no

Figure 4.26: Classification tree build using entropy instead of gini to measure impurity index.

Similarly to what we did with regression trees, let us have a closer look at how the splitting rule
is performed. Let us consider temperature as the splitting variable, and let us set a cutoff value
of 10.

variable_split <- "temperature"
threshold <- 10

Let us consider the root as the current node:

current_node <- df_train

The proportion of each class, pk, can be computed as follows:

prop_current_node <-
current_node %>%
group_by(y_binary) %>%
count() %>%
ungroup() %>%
mutate(p_k = n / sum(n))

prop_current_node

A tibble : 2 x 3
y_binary n p_k
<chr > <int > <dbl >
1 High 4166 0.615

4.3. DECISION TREES 229

2 Low 2606 0.385

The Gini impurity index in that current node is:

gini_node <-
prop_current_node %>%
mutate(g_k = p_k*(1-p_k)) %>%
magrittr::extract2("g_k") %>%
sum()

gini_node

[1] 0.4734671

Let us define a function that computes the Gini impurity index on a given node:

#' @param data_node tibble/data.frame with the data of the node
#' @param target name of the target variable (discrete variable)
compute_gini <- function(data_node, target){

prop_current_node <-
data_node %>%
group_by(!!sym(target)) %>%
count() %>%
ungroup() %>%
mutate(p_k = n / sum(n))

prop_current_node %>%
mutate(g_k = p_k*(1-p_k)) %>%
magrittr::extract2("g_k") %>%
sum()

}

Which can be used this way:

compute_gini(current_node, "y_binary")

[1] 0.4734671

230 CHAPTER 4. TREES

Let us split the data into two partitions, depending on the splitting variable and the tested cutoff:

left_node <-
current_node %>%
filter(temperature < threshold)

right_node <-
current_node %>%
filter(temperature >= threshold)

The proportions of observations in each node pL and pR can be computed as follows:

p_L <- nrow(left_node) / nrow(current_node)
p_R <- nrow(right_node) / nrow(current_node)
cat(str_c("Prop left: ", p_L, "\n", "Prop right: ", p_R))

Prop left: 0.427495569994093
Prop right: 0.572504430005907

The Gini impurity coefficient in left and right nodes:

gini_left <- compute_gini(left_node, "y_binary")
gini_right <- compute_gini(right_node, "y_binary")

c(gini_left, gini_right)

[1] 0.4353491 0.2749603

The weighted average of the Gini impurity indices:

gini_l_r <- p_L*gini_left + p_R * gini_right
gini_l_r

[1] 0.3435258

Let us recap:

• the Gini impurity index in the current node is equal to 0.4734671

4.3. DECISION TREES 231

• the Gini impurity index after the split is equal to 0.3435258

Hence, the decrease in impurity (∆) after the split is equal to:

gini_node - gini_l_r

[1] 0.1299412

Equivalently, the split allowed to reduce the impurity by -0.27%:

(gini_l_r - gini_node)/gini_node

[1] -0.2744462

Let us wrap-up the previous code in a function:

gini_split <- function(data_node, variable_to_predict,
variable_split, threshold,
minbucket){

if(is.numeric(data_node[[variable_split]])){
left_node <-

data_node %>%
filter(!!sym(variable_split) < threshold)

right_node <-
data_node %>%
filter(!!sym(variable_split) >= threshold)

}else{
left_node <-

data_node %>%
filter(!!sym(variable_split) %in% threshold)

right_node <-
data_node %>%
filter(!(!!sym(variable_split) %in% threshold))

}

If there is less than a given number of obs in the leaves

232 CHAPTER 4. TREES

warning
warning_min_bucket <-

any(table(left_node[[variable_to_predict]]) < minbucket) |
any(table(right_node[[variable_to_predict]]) < minbucket)

Proportions of obs in the resulting leaves
p_L <- nrow(left_node) / nrow(current_node)
p_R <- nrow(right_node) / nrow(current_node)

Gini in leaves
gini_left <- compute_gini(left_node, "y_binary")
gini_right <- compute_gini(right_node, "y_binary")

gini_l_r <- p_L*gini_left + p_R * gini_right

list(gini_l_r = gini_l_r, warning_min_bucket = warning_min_bucket)
}

This function can then be applied as follows:

gini_split(
data_node = df_train, variable_to_predict = "y_binary",
variable_split = "temperature", threshold = 10, minbucket = 7)

$gini_l_r
[1] 0.3435258
##
$warning_min_bucket
[1] FALSE

Let us consider multiple cutoffs:

number_of_cuts <- 1000
thresholds <-

seq(min(df_train$temperature), max(df_train$temperature),
length.out = number_of_cuts)

We can loop over these values of cutoff.

4.3. DECISION TREES 233

gini_leaves <-
map(thresholds, ~gini_split(

data_node = df_train, variable_to_predict = "y_binary",
variable_split = "temperature", threshold = ., minbucket = 7))

The resulting values of G(NL, NR) can be stored in a table:

gini_leaves_df <-
tibble(

g_leaves = map_dbl(gini_leaves, "gini_l_r"),
warning_min_bucket = map_lgl(gini_leaves, "warning_min_bucket"),
threshold = thresholds) %>%

mutate(delta = gini_node - g_leaves,
warning_min_bucket = factor(

warning_min_bucket, levels = c(TRUE, FALSE),
labels = c("Not permitted", "Permitted")))

gini_leaves_df

A tibble : 1 ,000 x 4
g_leaves warning_min_bucket threshold delta
<dbl > <fct > <dbl > <dbl >
1 0.473 Permitted -17.8 0
2 0.473 Not permitted -17.7 0.0000437
3 0.473 Not permitted -17.7 0.0000437
4 0.473 Not permitted -17.6 0.0000437
5 0.473 Not permitted -17.6 0.0000437
6 0.473 Not permitted -17.5 0.0000437
7 0.473 Not permitted -17.5 0.0000704
8 0.473 Not permitted -17.4 0.000158
9 0.473 Not permitted -17.3 0.000158
10 0.473 Not permitted -17.3 0.000158
... with 990 more rows

When the threshold lead to a split in which there were too few observations (less than 7) in
a leaf, we labelled the result as “Not permitted” in the warming_min_bucket column. The
improvement obtained with each tested cutoff value can be visualised on a graph:

ggplot(data = gini_leaves_df,
mapping = aes(x = threshold, y = delta)) +

geom_point(mapping = aes(colour = warning_min_bucket)) +

234 CHAPTER 4. TREES

scale_colour_manual(
"Threshold",
values = c("Permitted" = "blue", "Not permitted" = "red")) +

labs(x = "Temperature threshold") +
theme(plot.title.position = "plot")

0.00

0.05

0.10

0.15

−20 0 20 40
Temperature threshold

de
lta

Threshold

Permitted

Not permitted

Figure 4.27: Decrease in the impurity design.

gini_leaves_df %>%
filter(warning_min_bucket == "Permitted") %>%
arrange(desc(delta))

A tibble : 852 x 4
g_leaves warning_min_bucket threshold delta
<dbl > <fct > <dbl > <dbl >
1 0.328 Permitted 3.33 0.145
2 0.328 Permitted 3.39 0.145
3 0.329 Permitted 3.44 0.145
4 0.329 Permitted 3.50 0.145
5 0.329 Permitted 3.61 0.145
6 0.329 Permitted 3.67 0.145
7 0.329 Permitted 3.73 0.144
8 0.329 Permitted 3.79 0.144
9 0.329 Permitted 3.56 0.144
10 0.330 Permitted 3.84 0.144

4.3. DECISION TREES 235

... with 842 more rows

The best threshold for the split made with temperature is the one, among the permitted solu-
tions, that leads to the highest impurity decrease:

gini_l_r_temperature <-
gini_leaves_df %>%
filter(warning_min_bucket == "Permitted") %>%
arrange(desc(delta))

gini_l_r_temperature

A tibble : 852 x 4
g_leaves warning_min_bucket threshold delta
<dbl > <fct > <dbl > <dbl >
1 0.328 Permitted 3.33 0.145
2 0.328 Permitted 3.39 0.145
3 0.329 Permitted 3.44 0.145
4 0.329 Permitted 3.50 0.145
5 0.329 Permitted 3.61 0.145
6 0.329 Permitted 3.67 0.145
7 0.329 Permitted 3.73 0.144
8 0.329 Permitted 3.79 0.144
9 0.329 Permitted 3.56 0.144
10 0.330 Permitted 3.84 0.144
... with 842 more rows

We obtain a value very close to that reported in the graph (the specific 3.35 value was not tested
in our sequence of cutoffs).

To be exhaustive, we should consider all other variables, and not only temperature, to
select the best pair of variable/cutoff to perform the split.

If we look at the value reported in the improve column of the splits element returned by the
rpart() function, we actually get nI ×∆, where nI is the number of observations in the current
node.

head(classif_tree_gini$splits)

count ncat improve index adj
temperature 6772 1 982.9149704 3.35 0.0000000

236 CHAPTER 4. TREES

seasons 6772 4 793.1418098 1.00 0.0000000
month 6772 12 793.1418098 2.00 0.0000000
dew_point_temperature 6772 1 539.9467740 2.65 0.0000000
hour 6772 1 434.9381343 6.50 0.0000000
seasons 0 4 0.9208506 3.00 0.7357002

Compared with:

nrow(current_node) * (gini_node-gini_l_r_temperature$g_leaves[1])

[1] 982.915

More explanations on the rows of that table will be provided afterwards in this section and
in the variable importance section.

Let us just give a few examples of other competitor variables. The element splits returned
by the rpart() function contains, among other things, some information relative to those com-
petitor variables. In our example, the first five rows of this split table report the improvement
in the fit depending on the variable used to make the split (the value reported concerns the best
cutoff for each variable tested).

head(classif_tree_gini$splits, 5)

count ncat improve index adj
temperature 6772 1 982.9150 3.35 0
seasons 6772 4 793.1418 1.00 0
month 6772 12 793.1418 2.00 0
dew_point_temperature 6772 1 539.9468 2.65 0
hour 6772 1 434.9381 6.50 0

Let us recall that the value in the improve column correspond to nI × ∆. The Gini impurity
index in the root node is:

(gini_initial <- compute_gini(df_train, "y_binary"))

[1] 0.4734671

4.3. DECISION TREES 237

If we use the temperature variable as the splitting one, the increase in the goodness of fit (as
measured by the average of the Gini impurity index computed on the two resulting leaves) can
be obtained with the following code:

gini_split_temperature <-
gini_split(

data_node = df_train, variable_to_predict = "y_binary",
variable_split = "temperature", threshold = 3.35, minbucket = 7)

nrow(df_train) * (gini_initial - gini_split_temperature$gini_l_r)

[1] 982.915

For the variable seasons:

gini_split_seasons <-
gini_split(

data_node = df_train, variable_to_predict = "y_binary",
variable_split = "seasons", threshold = c("Winter"), minbucket = 7)

nrow(df_train) * (gini_initial - gini_split_seasons$gini_l_r)

[1] 793.1418

For the variable month:

gini_split_month <-
gini_split(

data_node = df_train, variable_to_predict = "y_binary",
variable_split = "month", threshold = c("Jan","Feb","Dec"), minbucket = 7)

nrow(df_train) * (gini_initial - gini_split_month$gini_l_r)

[1] 793.1418

and so on.

238 CHAPTER 4. TREES

4.3.4 Variable Importance

For a given node, the variable that is eventually used to perform the split is called a primary
variable. We have seen that the choice of the primary split is done using a metric that computes
the goodness of fit (for example, the Gini Index or the Impurity index in the case of a classification
tree).

To compute the importance of a variable, we can also consider the surrogate variables. These
variables are used to try to handle missing values. Once a primary split has been obtained, another
variable can be used to try to obtain a similar assignment in the left and right nodes. If there are
missing values when we use the primary split, then a surrogate split can be used to make the
prediction. The surrogate variable may thus be relatively important if they are able to reproduce
more or less the same results as the split obtained with the primary variable.

Let us have a quick look at how to measure the capacity of a surrogate variable to reproduce the
same results as that obtained with a primary variable. To do so, we depart from what is explained
in Section 3.4 of the vignette of {rpart}.

Once again, let us focus on the root node.

current_node <- df_train

The primary variable for that split, is temperature, and the best cutoff is 3.35. Let us use
the variable seasons as a surrogate. Among all the possible combinations of splitting rules for
seasons, the one that gives the best results in terms of error rate is "Winter".

tmp <-
current_node %>%
mutate(

Primary split
leave_primary = case_when(

temperature < 3.35 ~ "left prim.",
temperature >= 3.35 ~ "right prim."),

Surrogate split
leave_surrogate = case_when(

seasons == "Winter" ~ "left surr.",
seasons != "Winter" ~ "right surr."

))

Let us look at the results:

https://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf

4.3. DECISION TREES 239

confusion <- table(tmp$leave_primary, tmp$leave_surrogate, exclude = NULL)
confusion

##
left surr. right surr.
left prim. 1826 202
right prim. 334 4410

Using the surrogate, 1826 + 4410 = 6236 out of the 6772 observations are sent to the correct
direction. This corresponds to an average proportion of correctly sent observations of 0.9208506.

correct_direction <- (confusion["left prim.", "left surr."] + confusion["right prim.", "right surr."])
correct_direction

[1] 6236

Proportion
correct_direction/sum(confusion)

[1] 0.9208506

The majority rule gets 4744 correct:

maj_rule_correct <- sum(confusion["right prim.",])
maj_rule_correct

[1] 4744

Hence, the adjusted agreement is:

adjust <- (correct_direction - maj_rule_correct) / (sum(confusion) - maj_rule_correct)
adjust

[1] 0.7357002

240 CHAPTER 4. TREES

The relative importance of a variable is computed by accounting for when it appears as a
primary variable, and also when it appears as a surrogate variable.

The composite metrics can be accessed through the variable.importance element of the result
returned by the rpart() function.

classif_tree_gini$variable.importance

temperature month seasons
989.14552 723.13074 723.13074
dew_point_temperature hour humidity
681.60244 372.01312 371.05659
year snowfall rainfall
244.27473 179.32867 148.96535
solar_radiation visibility wind_speed
88.03473 51.16607 34.21947

When we call the summary() function on the result of the rpart() function, we get rounded
values of the relative importance of the variables:

round(100 * classif_tree_gini$variable.importance /
sum(classif_tree_gini$variable.importance))

temperature month seasons
21 16 16
dew_point_temperature hour humidity
15 8 8
year snowfall rainfall
5 4 3
solar_radiation visibility wind_speed
2 1 1

The only thing that remains is to understand how those values are obtained. To that end, we
need to better understand the content of the split element that is returned by the rpart()
function. In this table, primary variables, competitor variables (variables that would have produce
a relatively close result in term of increase in the goodness of fit), and surrogate variables are given
in a jumble.

4.3. DECISION TREES 241

splits_df <-
as_tibble(classif_tree_gini$splits, rownames = "variable")

splits_df

A tibble : 43 x 6
variable count ncat improve index adj
<chr > <dbl > <dbl > <dbl > <dbl > <dbl >
1 temperature 6772 1 983. 3.35 0
2 seasons 6772 4 793. 1 0
3 month 6772 12 793. 2 0
4 dew_point_temperature 6772 1 540. 2.65 0
5 hour 6772 1 435. 6.5 0
6 seasons 0 4 0.921 3 0.736
7 month 0 12 0.921 4 0.736
8 dew_point_temperature 0 1 0.907 -3.85 0.688
9 year 0 1 0.775 2018. 0.249
10 snowfall 0 -1 0.755 0.05 0.182
... with 33 more rows

We can use the results of table contained in the element frame of the result returned by the
rpart() function. More specifically, the columns ncompete and nsurrogate tell us how many
competitor variables and how many surrogate variables are reported in the table in the splits
element, just after the primary variable.

head(classif_tree_gini$frame)

var n wt dev yval complexity ncompete
nsurrogate yval2.V1

1 temperature 6772 6772 2606 1 0.462010744 4
5 1.000000 e+00

2 humidity 4744 4744 990 1 0.095548734 4
3 1.000000 e+00

4 hour 4117 4117 552 1 0.029163469 4
4 1.000000 e+00

8 <leaf > 3097 3097 129 1 0.000000000 0
0 1.000000 e+00

9 hour 1020 1020 423 1 0.029163469 4
5 1.000000 e+00

yval2.V2 yval2.V3 yval2.V4 yval2.V5 yval2.
nodeprob

1 4.166000 e+03 2.606000 e+03 6.151802e -01 3.848198e -01 1.000000
e+00

242 CHAPTER 4. TREES

2 3.754000 e+03 9.900000 e+02 7.913153e -01 2.086847e -01 7.005316
e -01

4 3.565000 e+03 5.520000 e+02 8.659218e -01 1.340782e -01 6.079445
e -01

8 2.968000 e+03 1.290000 e+02 9.583468e -01 4.165321e -02 4.573243
e -01

9 5.970000 e+02 4.230000 e+02 5.852941e -01 4.147059e -01 1.506202
e -01

[getOption (" max.print ") est atteint -- ligne 1 omise]

We can thus create a vector that can be added to the table that contains the information on the
splits.

Position of the primary variables in `frame`
ind_primary <- which(classif_tree_gini$frame$var != "<leaf>")

type_var_df <-
classif_tree_gini$frame %>%
slice(ind_primary) %>%
select(ncompete, nsurrogate)

type_var <- NULL
for(i in 1:nrow(type_var_df)){

type_var <- c(type_var, "primary",
rep("competitor", type_var_df[i, "ncompete"]),
rep("surrogate", type_var_df[i, "nsurrogate"])

)
}
type_var

[1] " primary " " competitor " " competitor " " competitor " "
competitor "

[6] " surrogate " " surrogate " " surrogate " " surrogate " "
surrogate "

[11] " primary " " competitor " " competitor " " competitor " "
competitor "

[16] " surrogate " " surrogate " " surrogate " " primary " "
competitor "

[21] " competitor " " competitor " " competitor " " surrogate " "
surrogate "

[26] " surrogate " " surrogate " " primary " " competitor " "
competitor "

4.3. DECISION TREES 243

[31] " competitor " " competitor " " surrogate " " surrogate " "
surrogate "

[36] " surrogate " " surrogate " " primary " " competitor " "
competitor "

[41] " competitor " " competitor " " surrogate "

This vector can then be added in splits_df:

splits_df <- splits_df %>% mutate(type_var = type_var)
splits_df

A tibble : 43 x 7
variable count ncat improve index adj

type_var
<chr > <dbl > <dbl > <dbl > <dbl > <dbl > <chr >
1 temperature 6772 1 983. 3.35 0

primary
2 seasons 6772 4 793. 1 0

competitor
3 month 6772 12 793. 2 0

competitor
4 dew_point_temperature 6772 1 540. 2.65 0

competitor
5 hour 6772 1 435. 6.5 0

competitor
6 seasons 0 4 0.921 3 0.736

surrogate
7 month 0 12 0.921 4 0.736

surrogate
8 dew_point_temperature 0 1 0.907 -3.85 0.688

surrogate
9 year 0 1 0.775 2018. 0.249

surrogate
10 snowfall 0 -1 0.755 0.05 0.182

surrogate
... with 33 more rows

Let us focus once again on the variable temperature.

variable_of_interest <- "temperature"

Each primary split for this variable is credited with the improvement value:

244 CHAPTER 4. TREES

var_imp <-
splits_df %>%
filter(variable == variable_of_interest, type_var == "primary") %>%
magrittr::extract2("improve") %>%
sum()

var_imp

[1] 982.915

And each surrogate split where temperature is used gets split$adj times the primary split’s
value. We thus need to add a column that gives the primary split’s value for each surrogate variable.

splits_df <-
splits_df %>%
mutate(primary_split_value =

ifelse(type_var == "primary", improve, NA)) %>%
fill(primary_split_value) %>%
mutate(primary_split_value =

ifelse(type_var != "surrogate", NA, primary_split_value))
splits_df

A tibble : 43 x 8
variable count ncat improve index adj type_var

primary_split_va ~
<chr > <dbl > <dbl > <dbl > <dbl > <dbl > <chr >

<dbl >
1 temperature 6772 1 983. 3.35 0 primary

NA
2 seasons 6772 4 793. 1 0 competit ~

NA
3 month 6772 12 793. 2 0 competit ~

NA
4 dew_point_temp ~ 6772 1 540. 2.65 0 competit ~

NA
5 hour 6772 1 435. 6.5 0 competit ~

NA
6 seasons 0 4 0.921 3 0.736 surrogate

983.
7 month 0 12 0.921 4 0.736 surrogate

983.
8 dew_point_temp ~ 0 1 0.907 -3.85 0.688 surrogate

983.

4.3. DECISION TREES 245

9 year 0 1 0.775 2018. 0.249 surrogate
983.

10 snowfall 0 -1 0.755 0.05 0.182 surrogate
983.

... with 33 more rows

We can compute the contribution of the variable temperature each time it is a surrogate variable
to the importance metric:

var_imp_surrogate <-
splits_df %>%
filter(variable == variable_of_interest,

type_var == "surrogate") %>%
mutate(imp_contrib = primary_split_value*adj) %>%
magrittr::extract2("imp_contrib") %>%
sum()

var_imp_surrogate

[1] 6.230553

When adding the two parts, we obtain the importance measure of the temperature variable:

var_imp+var_imp_surrogate

[1] 989.1455

To compute the importance of all variables at once:

splits_df %>%
mutate(importance = ifelse(type_var == "primary", improve, 0),

importance = ifelse(
type_var == "surrogate",
importance+primary_split_value*adj, importance)) %>%

group_by(variable) %>%
summarise(importance = sum(importance)) %>%
arrange(desc(importance))

246 CHAPTER 4. TREES

A tibble : 12 x 2
variable importance
<chr > <dbl >
1 temperature 989.
2 month 723.
3 seasons 723.
4 dew_point_temperature 682.
5 hour 372.
6 humidity 371.
7 year 244.
8 snowfall 179.
9 rainfall 149.
10 solar_radiation 88.0
11 visibility 51.2
12 wind_speed 34.2

We get the same values as those reported in the result of rpart() (although the values are rounded
in the tibble):

classif_tree_gini$variable.importance

temperature month seasons
989.14552 723.13074 723.13074
dew_point_temperature hour humidity
681.60244 372.01312 371.05659
year snowfall rainfall
244.27473 179.32867 148.96535
solar_radiation visibility wind_speed
88.03473 51.16607 34.21947

We can plot those values using a barplot:

as_tibble(classif_tree_gini$variable.importance,
rownames = "variable") %>%

mutate(rel_importace = 100*value / sum(value)) %>%
ggplot(data = .,

mapping = aes(x = rel_importace,
y = fct_reorder(variable, rel_importace))) +

geom_bar(stat = "identity") +
labs(x = "relative importance", y = NULL) +
theme(plot.title.position = "plot")

4.4. ENSEMBLE METHODS 247

wind_speed

visibility

solar_radiation

rainfall

snowfall

year

humidity

hour

dew_point_temperature

month

seasons

temperature

0 5 10 15 20
relative importance

Figure 4.28: Variable importance for the Classification Tree.

4.4 Ensemble Methods

As explained in James et al. (2021), the predictive performances of trees are not very competitive
with other machine learning algorithm. In addition, small changes in the data can lead to large
changes in the final estimated tree. A way to overcome these issues is to rely on aggregating
multiple decision trees. The basic idea is to build weak learners, i.e., simple models that will
provide predictions that may be mediocre but are consistently better than an random guessing.
These weak learners can then be combined together: this forms an ensemble method.

This section will present three methods: bagging, random forest, and then boosting. Each of
these methods are build using regression trees or classification trees as weak learners.

4.4.1 Bagging

Bagging (bootstrap aggregating) consists in generating multiple bootstrap from the data, estimate
a tree model on each sample (building weak learners), and then averaging the predictions made
by the weak learners to form new predictions. They were introduced in Leo Breiman (1996).

The new predictions are made as follows:

• in the case of a regression problem, the average of the values predicted by the weak learners
can be calculated.

248 CHAPTER 4. TREES

• in the case of a classification problem, a majority vote can be used or the estimated proba-
bilities for each class can be averaged.

Proceeding this way offers the advantage to reduce the variance of the model. A known issue
with regression trees is that they are sensitive so small changes in the data and therefore suffer
from high variance. If another variable is used to make a split, or if a cutoff is changed, the output
can be greatly modified. This issue can be reduced thanks to bootstrapping. Aggregating the
results will lower the variance. From this, we understand that if we want the bootstrapping and
aggregation to be efficient in lowering the variance, the weak learners need to be high variance
models (otherwise, they would yield approximately the same results regardless of the changes
made, and taking the average of values which do not vary much would not greatly diminish the
variance).

If we want to get an unbiased prediction, with low variance, it may be a good idea to use weak
learners with low bias. We can therefore use deep trees. Even if those deep trees will suffer from
high variance, the bagging procedure will lower this variance.

A disadvantage of bagging compared to a regression or classification tree is that the results are no
longer interpretable using a decision tree.

Let us illustrate how the method works with a regression problem. We use the same synthetic
data that was used with the regression trees.

set.seed(123)
n <- 100
x <- runif(n=n, min=0, max=10)
eps <- rnorm(n, 0, 4)
f <- function(x) .1*xˆ3-1*xˆ2+x
y <- f(x)+eps
df_sim <- tibble(x=x, y=y)

We will create B = 100 bootstrap resamples of the data. On each sample, we will build an
unpruned regression tree (cp=0).

n <- nrow(df_sim)
nb_bagg <- 100
baggin_models <- vector(mode = "list", length = nb_bagg)
for(i in 1:nb_bagg){

ind_x <- sample(1:n, size = n, replace = TRUE)
df_tmp <- df_sim %>% slice(ind_x)

4.4. ENSEMBLE METHODS 249

cart <-
rpart(y ~ x,

data = df_tmp,
method = "anova",
control = rpart.control(cp = 0)

)

baggin_models[[i]] <- cart

}

Each element of the object baggin_models contains a weak learner:

baggin_models[[1]]

n= 100
##
node), split , n, deviance , yval
* denotes terminal node
##
1) root 100 3845.46700 -4.0083810
2) x< 8.465409 89 2476.34100 -5.2637170
4) x >=3.036704 60 940.14170 -7.6988470
8) x< 7.538915 44 752.24400 -8.4066460
16) x >=5.029507 24 291.07670 -9.9336230
32) x< 6.665854 14 108.26800 -10.7958400 *
33) x >=6.665854 10 157.82980 -8.7265200 *
17) x< 5.029507 20 338.05560 -6.5742730
34) x< 3.99258 10 107.92920 -9.0906140 *
35) x >=3.99258 10 103.48700 -4.0579310 *
9) x >=7.538915 16 105.23620 -5.7524020 *
5) x< 3.036704 29 444.28740 -0.2255172
10) x >=1.637487 12 77.95662 -1.9062080 *
11) x< 1.637487 17 308.50700 0.9608528 *
3) x >=8.465409 11 94.10378 6.1484350 *

Let us create a function that will make predictions on each weak learner on some data. The
predictions for a given point obtained with the weak learners will then be averaged.

predict_bagged <- function(baggin_models, newdata){
map(baggin_models, ~predict(., newdata = newdata)) %>%

250 CHAPTER 4. TREES

bind_cols(
.name_repair = ~ vctrs::vec_as_names(

..., repair = "unique", quiet = TRUE)) %>%
rowMeans()

}

For simplicity, let us create some new data ranging from 0 to 10:

new_data <- tibble(x = seq(0, 10, by = .1))

The predictions can then easily be calculated:

pred_bagging <- predict_bagged(baggin_models, new_data)
head(pred_bagging)

[1] -0.1701479 -0.1701479 -0.1701479 -0.1701479 -0.1701479
-0.2358646

Let us plot the observed values and the predictions obtained with bagging:

df_plot <-
new_data %>%
mutate(pred = pred_bagging,

expected = f(x))

ggplot(mapping = aes(x = x, y = y)) +
geom_point(data = df_sim) +
geom_line(data = df_plot %>% pivot_longer(-x, values_to = "y"),

mapping = aes(colour = name),
size = 1.1)

4.4. ENSEMBLE METHODS 251

−10

0

10

0.0 2.5 5.0 7.5 10.0
x

y

name

expected

pred

Figure 4.29: Bagging with 100 bootstrap training sets.

4.4.1.1 Number of Trees

What happens when more trees are grown? To have an idea, let us make the number of trees
vary. A little function that samples from the data and then grow an unpruned tree may help.

train_weak_learner <- function(data, formula, method, control){
n <- nrow(data)
ind_x <- sample(1:n, size = n, replace = TRUE)
df_tmp <- data[ind_x,]
cart <- rpart(formula = formula,

data = df_tmp,
method = method,
control = control)

cart
}

This function can then be used to grow many trees. We will call it 500 times so that 500 unpruned
trees are grown. Here, we only have a few observations an a single predictor, so growing a
tree is really fast. But with bigger data, it may be interesting to grow the trees using parallel
computations. We will do so here, to present an easy way to implement parallel computations.

First, some libraries need to be loaded:

252 CHAPTER 4. TREES

library(foreach)
library(doSNOW)

We will use all the cores of the machine except for one.

ncl <- parallel::detectCores()-1
(cl <- makeCluster(ncl))

groupe de processus socket avec 7 noeuds sur l'hôte 'localhost '

registerDoSNOW(cl)

Then, a parallel loop can be defined this way:

baggin_models_2 <- foreach(
i = 1:500,
.packages=c("rpart")
) %dopar% {
train_weak_learner(

data = df_sim,
formula = y~x,
method="anova",
control = rpart.control(cp = 0))

}

Once we are finished, we can close the workers.

stopCluster(cl)

We are left with a list of 500 elements, each containing a week learner.

class(baggin_models_2) ; length(baggin_models_2)

[1] "list"

[1] 500

4.4. ENSEMBLE METHODS 253

Let us make predictions on our sequence of values ranging from 0 to 1 (new_data). Those
predictions will be made using either :

• 10 trees
• 75 trees
• 250 trees
• 500 trees

df_plot_2 <-
map(c(10, 75, 250, 500), ~add_column(
new_data,
nb_bagg = as.character(.),
pred = predict_bagged(baggin_models_2[1:.], new_data))) %>%
bind_rows()

The results can be visualized this way:

ggplot() +
geom_line(

data = tibble(x=seq(0, 10, by = .1), y=f(x)),
mapping = aes(x = x, y = y),
colour = "black", size = 1.1, linetype = "dashed") +

geom_point(data = df_sim,
mapping = aes(x = x, y = y)) +

geom_line(data = df_plot_2, size = 1.1,
mapping = aes(x = x, y = pred, colour = nb_bagg)) +

scale_colour_discrete("Number of weak learners") +
theme(plot.title.position = "plot")

254 CHAPTER 4. TREES

−10

0

10

0.0 2.5 5.0 7.5 10.0
x

y

Number of weak learners

10

250

500

75

Figure 4.30: Predictions made from the aggregations.

It can be noted that increasing the number of trees smoothes the prediction surface.

What is the effect of increasing the number of trees on the predictive capacities of the model? We
can explore this with simulation – again.

First, we need to get some out of sample data.

set.seed(234)
x_new <- runif(n=n, min=0, max=10)
eps <- rnorm(n, 0, 4)
y_new <- f(x)+eps
df_sim_new <- tibble(x=x_new, y=y_new)

We will compute the Mean Squared Error (MSE) on these unseen data. We will do this by varying
the number of weak learners, in order to visualise the evolution of the MSE as a function of the
number of trees.

mse_test_bagging <-
map(1:500, ~add_column(
df_sim_new,
nb_bagg = .,
pred = predict_bagged(baggin_models_2[1:.], df_sim_new))) %>%
map(~mutate(., mse = (y-pred)ˆ2)) %>%
map_df(~summarise(., nb_bagg=unique(nb_bagg), mse = mean(mse)))

4.4. ENSEMBLE METHODS 255

Then, the results can be plotted.

ggplot(data = mse_test_bagging,
mapping = aes(x = nb_bagg, y = mse)) +

geom_line() +
labs(x = "Number of trees (weak learners)", y = "MSE") +
theme(plot.title.position = "plot")

57.5

60.0

62.5

65.0

67.5

0 100 200 300 400 500
Number of trees (weak learners)

M
S

E

Figure 4.31: MSE vs number of trees.

We can note two things from this graph:
• after a certain number of trees used is reached, the MSE seems to stabilise: here, we

could use around 150 trees only
• using more trees than what would be enough does not lead to overfitting.

4.4.1.2 Out-of-bag estimations

We just had a look at the performance of our models using the validation set approach. Actually,
we could have a look at how the model performs on unseen data differently. When a bootstrap
sample is used to create a tree, on average, only two third of the observations end up in the
sample. Hence, the remaining observations can be used to make out-of-sample predictions. The
conventional term for these out-of-sample observations is: out-of-bag observations. Averaging

256 CHAPTER 4. TREES

the predicted value of an observation over the learners in which it was out-of-bag gives an out-
of-bag prediction. Doing it for all of the observations of the sample allows us to compute the
overall out-of-bag MSE.

As the out-of-bag predictions are made on unseen data, the out-of-bag MSE is computed
using unseen data and can therefore be used to assess the goodness of fit of the model.

This can easily be implemented with a function. After the unpruned tree is grown, all we need
to do is to use it to make predictions on the left-out data. We need to keep track on which data
it concerns, though.

train_weak_learner <- function(data, formula, method, control){
n <- nrow(data)
ind_x <- sample(1:n, size = n, replace = TRUE)
df_tmp <- data[ind_x,]
cart <- rpart(formula = formula,

data = df_tmp,
method = method,
control = control)

oob predictions
oob_pred <- predict(cart, newdata = data[-ind_x,])
names(oob_pred) <- seq(1,n)[-ind_x]

list(estim = cart, oob_pred = oob_pred)
}

Let us use a loop to build 500 trees.

library(doSNOW)
ncl <- parallel::detectCores()-1
(cl <- makeCluster(ncl))

groupe de processus socket avec 7 noeuds sur l'hôte 'localhost '

registerDoSNOW(cl)

baggin_models_3 <- foreach(

4.4. ENSEMBLE METHODS 257

i = 1:500,
.packages=c("rpart")) %dopar% {

train_weak_learner(
data = df_sim,
formula = y~x,
method="anova",
control = rpart.control(cp = 0))

}

stopCluster(cl)

The out-of-bag predictions can the be computed:

oob_pred <-
map(baggin_models_3, "oob_pred") %>%
map_df(~as_tibble(., rownames = "id")) %>%
bind_rows() %>%
mutate(id = as.numeric(id)) %>%
rename(pred = value) %>%
group_by(id) %>%
summarise(nb_seen = n(),

pred = mean(pred))
oob_pred

A tibble : 100 x 3
id nb_seen pred
<dbl > <int > <dbl >
1 1 192 -1.62
2 2 161 -6.02
3 3 202 -5.47
4 4 181 2.52
5 5 194 4.42
6 6 179 -0.985
7 7 170 -10.3
8 8 181 3.95
9 9 187 -11.3
10 10 174 -4.68
... with 90 more rows

258 CHAPTER 4. TREES

Just for the sake of it, we can check how many times each observations has been used as an
out-of-bag observation over the 500 trees:

summary(oob_pred$nb_seen)

Min. 1st Qu. Median Mean 3rd Qu. Max.
157.0 175.8 183.0 182.2 189.0 207.0

The out-of-bag MSE can then be computed:

df_sim %>%
mutate(id = row_number()) %>%
left_join(oob_pred) %>%
mutate(error_sq = (y-pred)ˆ2) %>%
summarise(mse = mean(error_sq))

A tibble : 1 x 1
mse
<dbl >
1 15.6

Now, let us make the number of tree vary and look how it affects the out-of-bag MSE. Again, a
helper function may be convenient.

#' Computes the OOB MSE using `nb_tree` trees
#' @param nb_tree number of trees used (weak learners)
compute_oob_mse_nb_trees <- function(nb_tree){

oob_pred <-
map(baggin_models_3[1:nb_tree], "oob_pred") %>%
map_df(~as_tibble(., rownames = "id")) %>%
bind_rows() %>%
mutate(id = as.numeric(id)) %>%
rename(pred = value) %>%
group_by(id) %>%
summarise(nb_seen = n(),

pred = mean(pred))

df_sim %>%
mutate(id = row_number()) %>%

4.4. ENSEMBLE METHODS 259

left_join(oob_pred, by = "id") %>%
mutate(error_sq = (y-pred)ˆ2) %>%
summarise(mse = mean(error_sq, na.rm=TRUE)) %>%
mutate(nb_tree = nb_tree)

}

Let us compute the out-of-bag MSE on models that use from 1 to 300 trees. With a too small
number of trees, as all the observations will not necessarily be left-out, computing the mean would
result in a NA value, unless we specify that NA values should be discarded before computing the
average.

oob_mse_nb_trees <- map_df(1:300, compute_oob_mse_nb_trees)

Let us visualise the results:

ggplot(data = oob_mse_nb_trees,
mapping = aes(x = nb_tree, y = mse)) +

geom_line() +
labs(x = "Number of trees grown (weak learners", y = "MSE") +
theme(plot.title.position = "plot")

15

20

25

30

0 100 200 300
Number of trees grown (weak learners

M
S

E

Figure 4.32: Out-of-bag MSE - Bagging.

As in the validation approach, we are able to see with this graph that after a certain number of

260 CHAPTER 4. TREES

trees, the error no longer decreases.

4.4.1.3 Variable Importance Measures

To assess the variable importance with bagging, we can proceed in a similar fashion to what we
have done with regression or classification trees.

For each tree, we can compute the decrease in the RSS in the case of a regression problem, or the
improvement in the Gini impurity index (or Entropy) in the case of a classification problem, for
each variable. Then, these values can be averaged over the trees. Again, if the value is large, it
hints that the variable is an important predictor.

We can go back to our bike data to illustrate the method. First, we need to grow many unpruned
trees.

library(doSNOW)
ncl <- parallel::detectCores()-1
(cl <- makeCluster(ncl))

groupe de processus socket avec 7 noeuds sur l'hôte 'localhost '

registerDoSNOW(cl)

bagging_models_bike <- foreach(
i = 1:200,
.packages=c("rpart", "dplyr")
) %dopar% {

train_weak_learner(
data = df_train %>% select(-y_binary, -date),
formula = rented_bike_count~.,
method="anova",
control = rpart.control(cp = 0))

}

stopCluster(cl)

Then, we can extract the variable importance measures from all these trees, and average the values
over the trees:

4.4. ENSEMBLE METHODS 261

variable_importance <-
map(bagging_models_bike, "estim") %>%
map("variable.importance") %>%
bind_rows() %>%
colMeans()

The relative measure can be computed as follows:

variable_importance_df <-
as_tibble(100*variable_importance/sum(variable_importance),

rownames = "variable")
variable_importance_df

A tibble : 14 x 2
variable value
<chr > <dbl >
1 temperature 18.0
2 hour 15.1
3 dew_point_temperature 14.7
4 month 14.4
5 seasons 11.2
6 solar_radiation 7.00
7 humidity 6.89
8 rainfall 3.41
9 year 2.94
10 wind_speed 2.40
11 week_day 1.91
12 visibility 1.97
13 holiday 0.0892
14 snowfall 0.0670

And we can visualise it using a barplot.

ggplot(data = variable_importance_df,
mapping = aes(x = value, y = fct_reorder(variable, value))) +

geom_bar(stat="identity")+
labs(x = NULL, y = NULL) +
theme(plot.title.position = "plot")

262 CHAPTER 4. TREES

snowfall
holiday

week_day
visibility

wind_speed
year

rainfall
humidity

solar_radiation
seasons

month
dew_point_temperature

hour
temperature

0 5 10 15

Figure 4.33: Variable relative importance.

4.4.1.4 Pre-built Function

Rather than using the previous codes which are not optimised for fast running, we can use the
bagging() function of {ipred}. Having unpacked the method, it is easy to understand the use of
this function. First, the package {ipred} can be loaded:

library(ipred)

The number of trees grown is controlled by the argument nbagg. To obtain out-of-bat estimate
of the error rate, the coob argument needs to be set to TRUE. The argument control can be fed
with a list of values for the different parameters we want for the weak learners. We want to build
unpruned trees, so we set cp=0. Then we can play with the other parameters, such as the mini-
mum number of split minsplit (but this may result in pruned trees), the minimum observations
in the terminal leaves minbucket, the number of competitor variable we want to retain in the
output maxcompete, the number of surrogate splits retained in the output maxsurrogate, etc.
Let us just set cp=0 here.

mod_bag <- bagging(
formula = rented_bike_count ~ .,
data = df_train %>% select(-y_binary, -date),
nbagg = 100,
coob = TRUE,
control = rpart.control(cp = 0)

)

The trees are stored in the element mtrees

4.4. ENSEMBLE METHODS 263

class(mod_bag$mtrees) ; length(mod_bag$mtrees)

[1] "list"

[1] 100

If we look at the first element of mtrees, we can notice that it contains two elements:

• bindx: the indices of the observations used to grow the tree (row number of the initial
data)

• btree: the estimated weak learner

names(mod_bag$mtrees[[1]])

[1] "bindx" "btree"

head(mod_bag$mtrees[[1]]$bindx)

[1] 4411 188 1348 1931 4869 2808

The out-of-bag error is stored in the err element. The reported value depends on the type of
problem:

• for regression problems, it is the root mean squared error (RMSE)
• for classification problems, it is the misclassification rate.

mod_bag$err

[1] 175.0919

The variable importance can be obtained using the methodology we used. But we can also rely
on a very convenient package (which will be used afterwards with random forests): {caret}. This
package offers a function called varImp().

264 CHAPTER 4. TREES

library(caret)
variable_importance <- varImp(mod_bag)
variable_importance

Overall
dew_point_temperature 66.062358
holiday 2.583719
hour 55.000256
humidity 60.226333
month 44.683457
rainfall 7.881722
seasons 13.489418
snowfall 5.235853
solar_radiation 41.959113
temperature 77.962421
visibility 53.343140
week_day 69.950691
wind_speed 46.141727
year 6.792069

And once again the values can be plotted on a barplot:

ggplot(data = as_tibble(variable_importance, rownames = "variable"),
mapping = aes(x = Overall, y = fct_reorder(variable, Overall))) +

geom_bar(stat="identity")+
labs(x = NULL, y = NULL) +
theme(plot.title.position = "plot")

4.4. ENSEMBLE METHODS 265

holiday
snowfall

year
rainfall

seasons
solar_radiation

month
wind_speed

visibility
hour

humidity
dew_point_temperature

week_day
temperature

0 20 40 60 80

Figure 4.34: Variable relative importance.

4.4.2 Random Forests

The idea behind random forest is very similar to what is done with bagging. Many decision
trees are build using bootstrapped training samples, but instead of considering all the variables
as candidates each time a split is attempted, only a random sample of the explanatory variables
is considered (Leo Breiman 2001). Proceeding this way allows to decorrelate the trees. In fact,
with bagging, the trees grown are not completely independent.

If wee look at the top of the first trees grown using bagging, we can notice that the variables used
to make the first splits is often the same, and the cutoff is also often very similar, despite the fact
that the observations were randomly drawn to create bootstrap training samples:

tree_1_pruned <- prune(mod_bag$mtrees[[1]]$btree, cp=.1)
tree_2_pruned <- prune(mod_bag$mtrees[[2]]$btree, cp=.1)
tree_3_pruned <- prune(mod_bag$mtrees[[3]]$btree, cp=.1)
tree_4_pruned <- prune(mod_bag$mtrees[[4]]$btree, cp=.1)

op <- par()
par(mfrow = c(2,2))
rpart.plot(tree_1_pruned, main = "Tree 1")
rpart.plot(tree_2_pruned, main = "Tree 2")
rpart.plot(tree_3_pruned, main = "Tree 3")
rpart.plot(tree_4_pruned, main = "Tree 4")

266 CHAPTER 4. TREES

Tree 1

temperature < 12

hour < 16

691
100%

292
46%

1033
54%

746
35%

1577
19%

yes no

Tree 2

temperature < 11

hour < 16

693
100%

275
44%

1018
56%

744
37%

1558
19%

yes no

Tree 3

temperature < 11

hour < 16

686
100%

269
44%

1015
56%

727
36%

1534
20%

yes no

Tree 4

temperature < 16

hour < 16

685
100%

326
53%

1082
47%

780
31%

1639
17%

yes no

Figure 4.35: Trees may be correlated when use bagging.

par(op)

By sampling m variables among the p predictors so that the former are considered as competi-
tors to make a split, random forests overcome this pitfall. Averaging the predictions made on
decorellated trees will produce better results, with less variance.

Default values for the number of variables randomly samples as competitors/candidates at
each split are usually :

• m = p/3 for regression problems
• m = √

p for classification problems.

4.4.2.1 A First Example with {randomForest}

The package {randomForest} provides a function called randomForest() which implements
Breiman’s random forest algorithm for classification and regression. Let us see how to use that
function. First, the package can be loaded.

4.4. ENSEMBLE METHODS 267

library(randomForest)

The formula and the data arguments can once again be used. Other arguments allow us
to tune the algorithm:

• ntree: number of trees to grow
• mtry: number of variables randomly sampled as candidates at each split.
• nodesize: minimum size of terminal nodes. The default value is:

– 1 for classification problems
– 5 for regressio problems

• maxnodes: maximum number of terminal nodes trees in the forest can have. If not
given, trees are grown to the maximum possible (subject to limits by nodesize). If
set larger than maximum possible, a warning is issued.

Let us grow 200 trees and set the number of variables randomly sampled as candidates at each
split (m) to 5, i.e., the square root of our number of predictors. We will define nodesize and
maxnodes with their default values.

mod_rf <-
randomForest(
formula = rented_bike_count ~ .,
data = df_train %>% select(-y_binary, -date),
ntree = 200,
mtry = round(ncol(select(df_train, -y_binary, -date))/3),
nodesize = 5,
maxnodes = NULL

)

The out-of-bag MSE computed using 1 to 100 trees are stored in the mse elements of the model:

df_plot_mse_oob_rf <-
tibble(mse = mod_rf$mse) %>%
mutate(nb_tree = row_number())

df_plot_mse_oob_rf

A tibble : 200 x 2
mse nb_tree
<dbl > <int >
1 95175. 1
2 88586. 2
3 82743. 3

268 CHAPTER 4. TREES

4 70951. 4
5 66796. 5
6 62666. 6
7 59989. 7
8 56013. 8
9 53375. 9
10 51505. 10
... with 190 more rows

For comparison, let us compute the MSE obtained on a test sample. We can use the predict()
function from {randomForest} to get the predicted values for all the trees, using the out-of-bag
sample (to my understanding, it is not possible to directly ask for the predictions made using a
single tree).

predictions_test_tree_wise <-
predict(mod_rf, newdata = df_test, predict.all = TRUE)

The individual element of the returned object contains a matrix with the predicted values.
Each column corresponds to the estimated values of a single tree.

dim(predictions_test_tree_wise$individual)

[1] 1693 200

All we need to do is to compute the MSE using up to nb_tree:

#' Computes the MSE using `nb_tree` trees
compute_mse_trees <- function(nb_tree){

pred <- predictions_test_tree_wise$individual[,1:nb_tree]
if(nb_tree > 1) pred <- rowMeans(pred)
tibble(mse = mean((df_test$rented_bike_count - pred)ˆ2),

nb_tree = nb_tree)
}

df_plot_mse_test_rf <- map_df(1:200, compute_mse_trees)
df_plot_mse_test_rf

A tibble : 200 x 2
mse nb_tree

4.4. ENSEMBLE METHODS 269

<dbl > <int >
1 336998. 1
2 246233. 2
3 232757. 3
4 194906. 4
5 167375. 5
6 163933. 6
7 161718. 7
8 161246. 8
9 158161. 9
10 157843. 10
... with 190 more rows

For the sake of comparison, let us compare these MSE to that obtained with bagging.

mod_bag <- bagging(
formula = rented_bike_count ~ .,
data = df_train %>% select(-y_binary, -date),
nbagg = 200,
coob = TRUE,
control = rpart.control(cp = 0)

)

Let us first compute the out-of-bag MSE.

#' Computes out-ob-bag predictions for the ith tree
compute_oob_bagging <- function(i, model, data){

n <- nrow(data)
current_tree <- model$mtrees[[i]]$btree
ind_x_current <- model$mtrees[[i]]$bindx
oob_pred <- predict(current_tree, newdata = data[-ind_x_current,])
as_tibble(oob_pred) %>%

mutate(ind_x = seq(1,n)[-ind_x_current], tree = i)
}

oob_bagging <-
map_df(1:length(mod_bag$mtrees),

~compute_oob_bagging(.,mod_bag, df_train))
oob_bagging

A tibble : 497 ,933 x 3

270 CHAPTER 4. TREES

value ind_x tree
<dbl > <int > <int >
1 390. 10 1
2 439. 14 1
3 405 17 1
4 412. 18 1
5 418 20 1
6 342. 24 1
7 277 25 1
8 248. 27 1
9 74.9 31 1
10 306. 35 1
... with 497 ,923 more rows

Based on those out-of-bags predictions, we can compute the out-of-bag overall MSE depending
on how many trees are considered:

#' Computes out-of-bag MSE using out-of-bag predictions
#' from `nb_tree` trees
compute_mse_oob_ntree <- function(nb_tree){

oob_pred <-
oob_bagging %>%
filter(tree <= nb_tree) %>%
group_by(ind_x) %>%
summarise(oob_pred = mean(value))

df_train %>%
mutate(ind_x = row_number()) %>%
left_join(

oob_pred,
by = "ind_x"

) %>%
mutate(error_sq = (rented_bike_count-oob_pred)ˆ2) %>%
summarise(mse = mean(error_sq, na.rm=TRUE)) %>%
mutate(nb_tree = nb_tree)

}

df_plot_mse_oob_bagging <-
map_df(1:length(mod_bag$mtrees), compute_mse_oob_ntree)

4.4. ENSEMBLE METHODS 271

df_plot_mse_oob_bagging

A tibble : 200 x 2
mse nb_tree
<dbl > <int >
1 51984. 1
2 53239. 2
3 47821. 3
4 46944. 4
5 44856. 5
6 43811. 6
7 43563. 7
8 42060. 8
9 39683. 9
10 39366. 10
... with 190 more rows

Then, let us finally compute the MSE on a test set. Let us define a helper function that computed
the predictions on the test set for the ith tree grown.

#' Computes predictions for the ith tree
#' (helper function)
compute_pred_tree <- function(i, model, newdata){

current_tree <- model$mtrees[[i]]$btree
pred <- predict(current_tree, newdata = newdata)
as_tibble(pred, rownames = "ind_x") %>%

mutate(tree = i)
}

pred_test_bagging <-
map_df(1:length(mod_bag$mtrees),

~compute_pred_tree(., mod_bag, df_test))

The MSE on the test set:

#' Compute the MSE on a test set (`df_test`)
#' @param nb_tree number of trees used to compute the MSE
compute_mse_bagging_ntree <- function(nb_tree){

pred <-

272 CHAPTER 4. TREES

pred_test_bagging %>%
mutate(ind_x = as.numeric(ind_x)) %>%
filter(tree <= nb_tree) %>%
group_by(ind_x) %>%
summarise(oob_pred = mean(value))

df_train %>%
mutate(ind_x = row_number()) %>%
left_join(

pred,
by = "ind_x"

) %>%
mutate(error_sq = (rented_bike_count-oob_pred)ˆ2) %>%
summarise(mse = mean(error_sq, na.rm=TRUE)) %>%
mutate(nb_tree = nb_tree)

}
df_plot_mse_test_bagging <-

map_df(1:length(mod_bag$mtrees), compute_mse_bagging_ntree)
df_plot_mse_test_bagging

A tibble : 200 x 2
mse nb_tree
<dbl > <int >
1 633941. 1
2 594158. 2
3 580209. 3
4 595718. 4
5 601718. 5
6 606807. 6
7 602178. 7
8 599957. 8
9 605989. 9
10 613597. 10
... with 190 more rows

We now have:

• df_plot_mse_oob_bagging: out-of-bag MSE for bagging
• df_plot_mse_test_bagging: MSE computed on the test set for bagging
• df_plot_mse_oob_rf: out-of-bag MSE for random forest

4.4. ENSEMBLE METHODS 273

• df_plot_mse_test_rf: MSE computed on the test set for random forest

Let us plot those errors:

df_plot <-
df_plot_mse_oob_bagging %>%
mutate(type = "OOB", model = "Bagging") %>%
bind_rows(

df_plot_mse_test_bagging %>%
mutate(type = "Test", model = "Bagging")

) %>%
bind_rows(

df_plot_mse_oob_rf %>%
mutate(type = "OOB", model = "Random Forests")

) %>%
bind_rows(

df_plot_mse_test_rf %>%
mutate(type = "Test", model = "Random Forests")

)

ggplot(data = df_plot,
mapping = aes(x = nb_tree, y = mse)) +

geom_line(mapping = aes(colour = model)) +
labs(x = "Number of trees", y = "Error (MSE)") +
theme(plot.title.position = "plot") +
facet_wrap(~type, scales = "free_y", ncol = 2)

274 CHAPTER 4. TREES

OOB Test

0 50 100 150 200 0 50 100 150 200
1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

40000

60000

80000

Number of trees

E
rr

or
 (

M
S

E
)

model

Bagging

Random Forests

Figure 4.36: Goodness of fit depending on the number of trees.

We note that the OOB error are lower than the errors computed on the test set.
The errors obtained with a Random Forest are usually lower than their counterpart ob-
tained with bagging (which is not the case here!).

4.4.2.2 Varying the hyperparameters

We have just seen in the last graph that the error of the model seem to stabilize after a certain
number of trees. If the number of trees is too large, it causes no overfitting, it just takes longer
to estimate the model.

4.4.2.2.1 Varying mtry Let us make the hyperparameter mtry that controls the number of
variables sampled from the predictors to perform a split. We will consider values ranging from 1
to 5. In each case, we will grow a random forest, and then look at the out-of-bag error depending
on the number of trees grown.

library(doSNOW)
ncl <- parallel::detectCores()-1
(cl <- makeCluster(ncl))

groupe de processus socket avec 7 noeuds sur l'hôte 'localhost '

4.4. ENSEMBLE METHODS 275

registerDoSNOW(cl)

With a progress bar
pb <- txtProgressBar(min=1, max = 5, style = 3)
progress <- function(n) setTxtProgressBar(pb, n)
opts <- list(progress = progress)

nb_predictors <- ncol(df_train %>% select(-y_binary, -date))

mod_rf_mtry <- foreach(
mtry=1:5,
.packages=c("randomForest", "dplyr")
.options.snow = opts) %dopar% { # With probressbar
) %dopar% {

randomForest(
formula = rented_bike_count ~ .,
data = df_train %>% select(-y_binary, -date),
ntree = 200,
mtry = mtry,
nodesize = 5,
maxnodes = NULL

)
}

close(pb)
stopCluster(cl)

From the results, we can extract the out-of-bag MSE:

df_plot_mtry <-
map(mod_rf_mtry, "mse") %>%
map_df(~tibble(mse=.) %>%

mutate(nb_tree = row_number()), .id = "mtry")
df_plot_mtry

A tibble : 1 ,000 x 3
mtry mse nb_tree
<chr > <dbl > <int >
1 1 234790. 1
2 1 198114. 2
3 1 170895. 3
4 1 181261. 4

276 CHAPTER 4. TREES

5 1 175626. 5
6 1 177187. 6
7 1 167673. 7
8 1 167372. 8
9 1 169075. 9
10 1 168488. 10
... with 990 more rows

And then we can plot the results:

ggplot(data = df_plot_mtry,
mapping = aes(x = nb_tree, y = mse)) +

geom_line(mapping = aes(colour = mtry)) +
labs(x = "Number of trees", y = "Error (MSE)")

50000

100000

150000

200000

0 50 100 150 200
Number of trees

E
rr

or
 (

M
S

E
)

mtry

1

2

3

4

5

Figure 4.37: Varying the number of variables samples to perform a split.

4.4. ENSEMBLE METHODS 277

Recall that taking only a random sample of m variables among the p available to perform
a split allows us to decorrelate the trees. Boehmke and Greenwell (2019) notes that in the
presence of a lot of noise in the data, when there are few predictors, high values for mtry
allow the selection of variables with a stronger signal. On the other hand, when there are
many relevant predictors, low values of mtry offer better performance. In practice, it is
therefore necessary to test multiple values in order to select the one that offers the most
interesting results in terms of error reduction.

We will see in a subsequent section how to create a grid search that allows to fine tune the model.
In other words, we will create a matrix that will contain combinations of different values for the
hyperparameters of the model (a grid) and we will iterate over that grid to try each possible
combination contained in it.

4.4.2.2.2 Varying nodesize Let us now consider varying the minimum size of terminal
nodes. Recall that increasing the numner of nodesize leads to smaller trees (which thus fastens
the computation).

library(doSNOW)
ncl <- parallel::detectCores()-1
(cl <- makeCluster(ncl))

groupe de processus socket avec 7 noeuds sur l'hôte 'localhost '

registerDoSNOW(cl)

pb <- txtProgressBar(min=1, max = 4, style = 3)
progress <- function(n) setTxtProgressBar(pb, n)
opts <- list(progress = progress)

nb_predictors <- ncol(df_train %>% select(-y_binary, -date))

mod_rf_nodesize <- foreach(
nodesize = c(5, 10, 15, 20),
.packages=c("randomForest", "dplyr")
.options.snow = opts # progressbar
) %dopar% {

randomForest(

278 CHAPTER 4. TREES

formula = rented_bike_count ~ .,
data = df_train %>% select(-y_binary, -date),
ntree = 200,
mtry = round(nb_predictors/3),
nodesize = nodesize,
maxnodes = NULL

)
}

close(pb)
stopCluster(cl)

The out-of-bag errors can once again be extracted from the different models:

df_plot_nodesize <-
map(mod_rf_nodesize, "mse") %>%
map_df(~tibble(mse=.) %>% mutate(nb_tree = row_number()), .id = "ind_nodesize") %>%
mutate(ind_nodesize = as.numeric(ind_nodesize)) %>%
left_join(

tibble(nodesize = c(5, 10, 15, 20)) %>% mutate(ind_nodesize = row_number()),
by = "ind_nodesize"

)

df_plot_nodesize

A tibble : 800 x 4
ind_nodesize mse nb_tree nodesize
<dbl > <dbl > <int > <dbl >
1 1 83334. 1 5
2 1 83699. 2 5
3 1 79142. 3 5
4 1 71100. 4 5
5 1 67064. 5 5
6 1 62475. 6 5
7 1 58955. 7 5
8 1 55024. 8 5
9 1 54036. 9 5
10 1 50384. 10 5
... with 790 more rows

And then we can plot the results:

4.4. ENSEMBLE METHODS 279

ggplot(data = df_plot_nodesize,
mapping = aes(x = nb_tree, y = mse)) +

geom_line(mapping = aes(colour = factor(nodesize))) +
labs(x = "Number of trees", y = "Error (MSE)") +
scale_colour_discrete("nodesize")

30000

40000

50000

60000

70000

80000

0 50 100 150 200
Number of trees

E
rr

or
 (

M
S

E
)

nodesize

5

10

15

20

Figure 4.38: Varying the minimum size of terminal nodes.

Once again, we need to loop over different values to try to find the one that will produce the best
results.

4.4.2.2.3 Varying maxnodes Lastly, let us consider the argument maxnodes that controls the
maximum number of terminal nodes trees in the forest can have. If the value is not provided, as
was the case in all our other examples, trees are grown to the maximum possible (subject to limits
by nodesize).

library(doSNOW)
ncl <- parallel::detectCores()-1
(cl <- makeCluster(ncl))

groupe de processus socket avec 7 noeuds sur l'hôte 'localhost '

280 CHAPTER 4. TREES

registerDoSNOW(cl)

pb <- txtProgressBar(min=1, max = 6, style = 3)
progress <- function(n) setTxtProgressBar(pb, n)
opts <- list(progress = progress)

nb_predictors <- ncol(df_train %>% select(-y_binary, -date))

mod_rf_maxnodes <- foreach(
max_nodes = c(5, 10, 20, 30, 40, 50),
.packages=c("randomForest", "dplyr")
.options.snow = opts # with progressbar
) %dopar% {

randomForest(
formula = rented_bike_count ~ .,
data = df_train %>% select(-y_binary, -date),
ntree = 500,
mtry = round(nb_predictors/3),
nodesize = 5,
maxnodes = max_nodes

)
}

close(pb)
stopCluster(cl)

Let us extract the out-of-bag MSE:

df_plot_maxnodes <-
map(mod_rf_maxnodes, "mse") %>%
map_df(~tibble(mse=.) %>%

mutate(nb_tree = row_number()), .id = "ind_maxnodes") %>%
mutate(ind_maxnodes = as.numeric(ind_maxnodes)) %>%
left_join(

tibble(maxnodes = c(5, 10, 20, 30, 40, 50)) %>%
mutate(ind_maxnodes = row_number()),

by = "ind_maxnodes"
)

df_plot_maxnodes

A tibble : 3 ,000 x 4

4.4. ENSEMBLE METHODS 281

ind_maxnodes mse nb_tree maxnodes
<dbl > <dbl > <int > <dbl >
1 1 271863. 1 5
2 1 230301. 2 5
3 1 207807. 3 5
4 1 209513. 4 5
5 1 203316. 5 5
6 1 197045. 6 5
7 1 197162. 7 5
8 1 194583. 8 5
9 1 193653. 9 5
10 1 190162. 10 5
... with 2 ,990 more rows

df_plot_maxnodes

A tibble : 3 ,000 x 4
ind_maxnodes mse nb_tree maxnodes
<dbl > <dbl > <int > <dbl >
1 1 271863. 1 5
2 1 230301. 2 5
3 1 207807. 3 5
4 1 209513. 4 5
5 1 203316. 5 5
6 1 197045. 6 5
7 1 197162. 7 5
8 1 194583. 8 5
9 1 193653. 9 5
10 1 190162. 10 5
... with 2 ,990 more rows

And plot the results:

ggplot(data = df_plot_maxnodes,
mapping = aes(x = nb_tree, y = mse)) +

geom_line(mapping = aes(colour = factor(maxnodes))) +
labs(x = "Number of trees", y = "Error (MSE)") +
scale_colour_discrete("maxnodes")

282 CHAPTER 4. TREES

100000

150000

200000

250000

0 100 200 300 400 500
Number of trees

E
rr

or
 (

M
S

E
)

maxnodes

5

10

20

30

40

50

Figure 4.39: Varying the maximum number of terminal nodes trees.

When the number of maximum number of terminal nodes is restricted, it leads to shallower
trees. Recall that using unpruned trees creates more sensible weak learners.

4.4.2.3 Variable importance

To get an idea of the importance of the variables, it is possible to rely on the same measures as
before, namely the average total reduction in measurement error contributed by each variable.
However, Terence Parr, Kerem Turgutlu, Christopher Csiszar, and Jeremy Howard warn us
that this default method to compute variable importance is biased (see their notebook). Quoting
them:

We’ve known for years that this common mechanism for computing feature impor-
tance is biased; i.e. it tends to inflate the importance of continuous or high-cardinality
categorical variables.

Another measure is widely used with random forests. It is based on the permutation of variables.
The procedure is as follows:

https://explained.ai/rf-importance/

4.4. ENSEMBLE METHODS 283

• For tree t ∈ {1, . . . , ntree}, using the out-of-bag sample, compute the goodness of fit
(e.g., the MSE for regression problems, or the accuracy for classification problems)
: r(t)

– For each predictor j ∈ {1, . . . , p} :
∗ generate a new matrix of predictors by permuting predictor j in the matrix

of predictors x
∗ compute the goodness of fit using the predictions made with the prermuted

data: r
(t)
j

∗ compute the permutation variable importance for the tree as either:
· PI(t)

j = r
(t)
j − r(t)

· PI(t)
j = r

(t)
j

r(t) .
• Once the tree-wise permutation importance is estimated for all trees t, for each

predictor j ∈ {1, . . . , p} :
– compute the forest-wise permutation importance as the average over all tree-

wise permutation importance:

PIj =
∑ntree

t=1 PI(t)
j

ntree
.

The idea behind this procedure is as follows, as indicated in Debeer and Strobl (2020). If the
response variable y and an explanatory variable xj have a structural dependence, adding noise
to the variable xj should destroy this structural dependence. Once the noise is added, the splits
made from xj become random splits. The contribution of the variable to the decrease in the error
criterion/impurity measure (MSE or Gini criterion) should therefore be diminished or even lost.
Swapping the values of xj is a way of noising this variable. Comparing the goodness of fit of the
tree (and the random forest) before and after the noising allows us to quantify the importance of
variable xj in predicting the response y: if the permutation had no effect, the variable xj does
not matter. If, on the other hand, the permutation results in a decrease in the predictive capacity
of the model, then the variable xj is important for predicting y.

In a first place, we need an estimated random forest. As we will need it for the sake of the illustra-
tion, we will keep the out-of-bag errors in the resulting object, setting keep.inbag = TRUE. We
will also specifically ask for the default importance metric to be return by setting importance =
TRUE.{R}.

mod_rf <-
randomForest(

formula = rented_bike_count ~ .,
data = df_train %>% select(-y_binary, -date),

284 CHAPTER 4. TREES

ntree = 100,
mtry = round(ncol(select(df_train, -y_binary, -date))/3),
nodesize = 5,
maxnodes = NULL,
keep.inbag = TRUE,
importance = TRUE

)

Let us define (one again) a function to compute the Mean Squarred Error (we face a regression
problem here).

compute_mse <- function(observed, predicted){
mean((observed-predicted)ˆ2)

}

Let us illustrate how the method works with a single tree and a single noised-up predictor in a
first place. We will extend the methodology to get an overall measure afterwards. Let us focus on
the first weak learner:

tree_number <- 1

We want to compute the MSE based on the out-of-bag sample for that tree. To get the out-of-bag
observations from the first tree, we can proceed as follows:

ind_x_oob <-
mod_rf$inbag[, tree_number][mod_rf$inbag[, tree_number] == 0] %>%
names() %>%
as.numeric()

df_oob <- df_train[ind_x_oob,]

Let us focus on the first predictor:

predictor_names <- attr(mod_rf$terms, "term.labels")
j <- 1
predictor_names[j]

[1] "hour"

4.4. ENSEMBLE METHODS 285

We can use the predict() function from {randomForest} as we did previously.

predictions_init <-
predict(mod_rf, newdata = df_oob, predict.all = TRUE)

Then we can extract only the predicted values from the first tree, and compute the initial MSE,
i.e., the MSE computed without noising up the first predictor.

predictions_init_t <- predictions_init$individual[, tree_number]
mse_init_t <- compute_mse(df_oob$rented_bike_count, predictions_init_t)
mse_init_t

[1] 78511.54

Then, using the sample() fuction, we can noise-up the first predictor.

df_oob_noised_j <- df_oob %>%
mutate(!!sym(predictor_names[j]) :=

sample(!!sym(predictor_names[j]), replace=FALSE))

We can have a glance at the first observations before and after the shuffling:

cbind(init = df_oob[[predictor_names[j]]],
noised = df_oob_noised_j[[predictor_names[j]]]) %>%

head()

init noised
[1,] 0 8
[2,] 1 9
[3,] 4 1
[4,] 9 20
[5,] 10 22
[6,] 21 21

The out-of-bag MSE with this noised-up data can then be computed:

predictions_xj <-
predict(mod_rf, newdata = df_oob_noised_j, predict.all = TRUE)

predictions_noised_j_t <-

286 CHAPTER 4. TREES

predictions_xj$individual[, tree_number]
mse_noised_j_t <-

compute_mse(df_oob_noised_j$rented_bike_count, predictions_noised_j_t)
mse_noised_j_t

[1] 350665.2

cbind(mse_before = mse_init_t, mse_after = mse_noised_j_t)

mse_before mse_after
[1,] 78511.54 350665.2

The MSE greatly rose. But we need to see if this happens with all the trees, and not just with the
first one.

Let us define a function that recreate the out-of-bag data for a given tree:

get_oob_data <- function(tree_number, model){
Indices of out-of-bag observations
ind_x_oob <-

mod_rf$inbag[, tree_number][model$inbag[, tree_number] == 0] %>%
names() %>%
as.numeric()

oob data
df_train[ind_x_oob,]

}

Now, we can wrap-up the previous code to expand the computation to all trees and all variables:

#' Computes tree-wise permutation importance
#' @param tree_number index of the t-th tree
#' @param model object of class randomForest
compute_pi_tree <- function(tree_number, model){

Out-of-bag data for tree `tree_number`
df_oob <- get_oob_data(tree_number, model)

4.4. ENSEMBLE METHODS 287

tree-wise oob MSE before noising-up predictors
predictions_init <- predict(model, newdata = df_oob, predict.all = TRUE)
predictions_init_t <- predictions_init$individual[, tree_number]
mse_init_t <- compute_mse(df_oob$rented_bike_count, predictions_init_t)

predictor_names <- attr(mod_rf$terms, "term.labels")

Looping over indices of predictors
mse_noised_t <- rep(NA, length(predictor_names))
for(j in seq_along(predictor_names)){

Noising-up data
df_oob_noised_j <- df_oob %>%

mutate(!!sym(predictor_names[j]) := sample(
!!sym(predictor_names[j]),
replace=FALSE))

tree-wise oob MSE after noising-up jth predictor
predictions_xj <-

predict(model, newdata = df_oob_noised_j, predict.all = TRUE)
predictions_noised_j_t <-

predictions_xj$individual[, tree_number]
mse_noised_j_t <-

compute_mse(df_oob_noised_j$rented_bike_count, predictions_noised_j_t)
mse_noised_t[[j]] <- mse_noised_j_t

}

tree-wise permutation importance
tree_wise_pi <- mse_noised_t-mse_init_t
names(tree_wise_pi) <- predictor_names
tree_wise_pi

}

The tree-wise permutation importance of the variables computed over the first tree can be ob-
tained as follows:

permutation_importance_t <- compute_pi_tree(tree_number = 1, model = mod_rf)
permutation_importance_t

hour temperature humidity
2.766762 e+05 2.947449 e+05 5.654866 e+04

288 CHAPTER 4. TREES

wind_speed visibility dew_point_temperature
7.344090 e+03 5.761622 e+03 1.604150 e+04
solar_radiation rainfall snowfall
1.111862 e+05 2.516485 e+04 5.721013 e+02
seasons holiday year
1.649556 e+04 1.017557 e+03 -8.320239e -02
month week_day
2.768299 e+04 4.095305 e+04

The tree-wise permutation importance values for all trees can then be obtained by looping over
the trees:

tree_wise_pi <-
map(1:mod_rf$ntree, ~compute_pi_tree(., model = mod_rf))

The results can be put in a table:

tree_wise_pi_df <-
tree_wise_pi %>%
map_df(~as_tibble(., rownames = "variable"), .id="tree")

tree_wise_pi_df

A tibble : 1 ,400 x 3
tree variable value
<chr > <chr > <dbl >
1 1 hour 281244.
2 1 temperature 286672.
3 1 humidity 62440.
4 1 wind_speed 4406.
5 1 visibility 4968.
6 1 dew_point_temperature 14472.
7 1 solar_radiation 126512.
8 1 rainfall 28872.
9 1 snowfall 739.
10 1 seasons 15761.
... with 1 ,390 more rows

Lastly, the forest-wise permutation importance of each variable can be calculated:

4.4. ENSEMBLE METHODS 289

permutation_importance <-
tree_wise_pi_df %>%
group_by(variable) %>%
summarise(permutation_importance = mean(value)) %>%
arrange(desc(permutation_importance))

These can be visualised over a barplot:

ggplot(data = permutation_importance,
mapping = aes(x = permutation_importance,

y = fct_reorder(variable, permutation_importance))) +
geom_bar(stat = "identity") +
labs(x = "Permutation importance", y = NULL)

snowfall
year

holiday
wind_speed

visibility
week_day

rainfall
seasons

dew_point_temperature
humidity

month
solar_radiation

temperature
hour

0e+00 1e+05 2e+05 3e+05
Permutation importance

Figure 4.40: Tree-wise permutation importance.

For comparison, we can have a loop at the variable importance as computed with the standard
method:

ggplot(data = as_tibble(mod_rf$importance, rownames = "variable"),
mapping = aes(x = IncNodePurity,

y = fct_reorder(variable, IncNodePurity))) +
geom_bar(stat = "identity") +

290 CHAPTER 4. TREES

labs(x = "Variable importance (Increase in node Purity)", y = NULL)

snowfall
year

holiday
visibility

wind_speed
week_day

rainfall
dew_point_temperature

seasons
solar_radiation

humidity
month

temperature
hour

0e+00 2e+08 4e+08 6e+08 8e+08
Variable importance (Increase in node Purity)

Figure 4.41: Variable importance: default method computed using the increase in node purity.

We note a few changes.

Obviously, to obtain the forest-wise permutation importance, there already exists a pre-build
function in {randomForest}: importance().

Permutation importance
imp <- importance(mod_rf, type=1, scale = F)

ggplot(data = as_tibble(imp, rownames = "variable"),
mapping = aes(x = `%IncMSE`,

y = fct_reorder(variable, `%IncMSE`))) +
geom_bar(stat = "identity") +
labs(x = "Permutation importance (% Increase in MSE)", y = NULL)

4.4. ENSEMBLE METHODS 291

snowfall
year

holiday
wind_speed

visibility
week_day

rainfall
seasons

dew_point_temperature
humidity

month
solar_radiation

temperature
hour

0e+00 1e+05 2e+05 3e+05
Permutation importance (% Increase in MSE)

Figure 4.42: Permutation importance returned by randomForest: percent increase in MSE.

4.4.2.4 Fine Tuning

We have seen that some hyperparameters of the random forest can be changed. Tweaking those
hyperparameters may affect greatly the predictive capacities of the model.

We have seen that when we increase the number of trees to be grown, the MSE stabilises. Having
too many trees does not cause overfitting. Boehmke and Greenwell (2019) suggests the following
rule of thumb to pick a first value for the number of trees to be grown: 10 times the number of
predictors.

In our Seoul bikes dataset, the number of predictors is:

number_predictors <-
df_train %>% select(-y_binary, -date) %>% ncol()

number_predictors

[1] 15

Let us grow some random forests by exploring different values for:

• mtry: number of variables randomly sampled as candidates at each split
• nodesize: minimum size of terminal nodes
• maxnodes: maximum number of terminal nodes trees in the forest can have.

292 CHAPTER 4. TREES

We make the grid here short on purpose: this is just an example, we want to avoid too long
computing times.

hyperparameters_grid <-
expand_grid(

ntree = c(number_predictors*10, number_predictors*20),
mtry = c(3,5),
nodesize = c(3, 5, 10),
maxnodes = c(-1, 10, 50, 100, 200)

)
hyperparameters_grid

A tibble : 60 x 4
ntree mtry nodesize maxnodes
<dbl > <dbl > <dbl > <dbl >
1 150 3 3 -1
2 150 3 3 10
3 150 3 3 50
4 150 3 3 100
5 150 3 3 200
6 150 3 5 -1
7 150 3 5 10
8 150 3 5 50
9 150 3 5 100
10 150 3 5 200
... with 50 more rows

library(doSNOW)
ncl <- parallel::detectCores()-1
(cl <- makeCluster(ncl))

groupe de processus socket avec 7 noeuds sur l'hôte 'localhost '

registerDoSNOW(cl)

Progress bar
pb <- txtProgressBar(min=1, max = nrow(hyperparameters_grid), style = 3)
progress <- function(n) setTxtProgressBar(pb, n)
opts <- list(progress = progress)

4.4. ENSEMBLE METHODS 293

mse_search <- foreach(
i=1:nrow(

hyperparameters_grid),
.packages=c("randomForest", "dplyr")
.options.snow = opts # with progressbar
) %dopar% {

current_hyper <- hyperparameters_grid[i,]

mod_rf_tmp <-
randomForest(

formula = rented_bike_count ~ .,
data = df_train %>% select(-y_binary, -date),
ntree = current_hyper$ntree,
mtry = current_hyper$mtry,
nodesize = current_hyper$nodesize,
maxnodes = current_hyper$maxnodes

)

current_hyper %>% mutate(mse = mean(mod_rf_tmp$mse))
}

close(pb)
stopCluster(cl)

Of the hyperparameters explored, those whose combination produces the best results in terms of
out-of-bag overall MSE are those listed in the first row of the table below:

mse_search <-
bind_rows(mse_search) %>%
arrange(mse)

mse_search

A tibble : 60 x 5
ntree mtry nodesize maxnodes mse
<dbl > <dbl > <dbl > <dbl > <dbl >
1 300 5 5 200 55951.
2 300 5 10 200 56288.
3 300 5 3 200 56675.
4 150 5 10 200 57414.
5 150 5 5 200 58106.

294 CHAPTER 4. TREES

6 150 5 3 200 59403.
7 300 5 10 100 67833.
8 150 5 10 100 68076.
9 300 3 10 200 68533.
10 300 3 3 200 68976.
... with 50 more rows

The “best” random forest can then be grown again:

best_hyper_param <- mse_search %>% slice(1)

mod_rf_best <-
randomForest(

formula = rented_bike_count ~ .,
data = df_train %>% select(-y_binary, -date),
ntree = best_hyper_param$ntree,
mtry = best_hyper_param$mtry,
nodesize = best_hyper_param$nodesize,
maxnodes = best_hyper_param$maxnodes

)

pred_rf_best <- predict(mod_rf_best, newdata = df_test)
mse_rf_best <-

compute_mse(observed = df_test$rented_bike_count,
predicted = pred_rf_best)

pred_bagging <- predict(mod_bag, newdata = df_test)
mse_bagging <-

compute_mse(observed = df_test$rented_bike_count,
predicted = pred_bagging)

mse_bagging

[1] 118766.9

mse_rf_best

4.4. ENSEMBLE METHODS 295

[1] 138780.4

296 CHAPTER 4. TREES

Chapter 5

Support Vector Machines

This chapter presents another type of classifiers known as support vector machines (SVM). It
corresponds to the 9th chapter of James et al. (2021).

We will cover:

• The maximal margin classifier, which requires the classes of the response variable to be
separable by a linear boundary.

• The support vector classifier which is a generalization of the maximal margin classifier and
allows an boundary that does not perfectly separate the classes.

• The support vector machines which further allow for non-linear boundaries.

5.1 Maximal Margin Classifier

5.1.1 Hyperplane

We will use the notion of a separating hyperplane in what follows. Hence, a little detour on
recalling what a hyperplane is seems fairly reasonable.

In a p-dimensional space, a hyperplane is a flat affine subspace of dimension p − 1 (a subspace
whose dimension is one less than that of its ambiant space).

Let us consider an example, in two dimensions, where a hyperplane is simply a line.

library(tidyverse)
x <- seq(0,1, by = .1)
y <- 2*x+1
df <- tibble(x = x, y = y)
ggplot(data = df, aes(x = x, y = y)) +

297

298 CHAPTER 5. SUPPORT VECTOR MACHINES

geom_line()+
theme(text = element_text(size=6), legend.position = "right") +
xlab(expression(x[1])) + ylab(expression(x[2]))

1.0

1.5

2.0

2.5

3.0

0.00 0.25 0.50 0.75 1.00
x1

x 2

Figure 5.1: In two dimensions (p = 2), a hyperplane is a one-dimensional subspace, a line.

In three dimension, a hyperplane is a flat two-dimensional subspace, i.e., a plane.

x <- seq(-10, 10, length= 30)
y <- x
f <- function(x, y){

2*x+4*y
}
z <- outer(x, y, f)
z[is.na(z)] <- 1
persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue",

ltheta = 120, shade = 0.15, ticktype = "detailed",
xlab = "x_1", ylab = "x_2", zlab = "x_3=2x+4y"

)

5.1. MAXIMAL MARGIN CLASSIFIER 299

x_1

−10
−5

0
5

10

x_
2

−10

−5

0
5
10

x_3=2x+4y −60
−40
−20
0

20
40
60

Figure 5.2: In three dimensions (p = 3), a hyperplane is a flat two-dimensional subspace (p = 2),
a plane.

In two dimensions, for parameters β0, β1 and β2, the following equation defines the hyperplane:

β0 + β1x1 + β2x2 = 0 (5.1.1)

Any point whose coordinates for which Eq. (5.1.1) holds is a point on the hyperplane.

In a p-dimension ambiant space, an hyperplace is defined for parameters β0, β1, . . . , βp by the
following equation:

β0 + β1x1 + . . . + βpxp = 0 (5.1.2)

Any point whose coordinates are given in a vector of length p, i.e., X =
[
x1 . . . xp

]⊤
for

which Eq. (5.1.2) holds is a point on the hyperplane.

If a point does not satisfy Eq. (5.1.2), then it lies either in one side or another side of the hyper-
plane, i.e.,

β0 + β1x1 + . . . + βpxp > 0 or
β0 + β1x1 + . . . + βpxp < 0 (5.1.3)

Hence, the hyperplane can be viewed as a subspace that divides a p-dimensional space in two
halves.

300 CHAPTER 5. SUPPORT VECTOR MACHINES

x_1 <- seq(-2,2, by = .1)
f <- function(x) (1*x+.1)*0.5
x_2 <- f(x_1)
grid <- expand.grid(x_1=seq(-1.05,1.05, by = .1),

x_2=seq(-1.05,1.05, by = .1)) %>%
tbl_df() %>%
mutate(colour = ifelse(x_1 + 0.1 - 2*x_2 > 0, "magenta", "blue"))

df <- tibble(x = x_1, y = x_2)

ggplot(data = df, aes(x = x_1, y = x_2)) +
geom_polygon(data = tibble(x = c(-2, 2, 2), y = c(f(-2), f(2), f(-2))),

aes(x=x, y = y), fill = "magenta", alpha = .2) +
geom_polygon(data = tibble(x = c(-2, -2, 2), y = c(f(-2), f(2), f(2))),

aes(x=x, y = y), fill = "blue", alpha = .2) +
geom_point(data = grid, aes(x = x_1, y = x_2, colour = colour)) +
geom_line() +
theme(legend.position = "none") +
coord_equal(xlim = c(0, 1), ylim = c(0,1)) +
xlab(expression(x[1])) + ylab(expression(x[2])) +
scale_colour_manual(

NULL, values = c("magenta" = "#D41159", "blue"="#1A85FF"))

5.1. MAXIMAL MARGIN CLASSIFIER 301

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x 2

Figure 5.3: Hyperplane x1−2x2+0.1. The blue region corresponds to the set of points for which
x1 −2x2 +0.1 > 0, the red region corresponds to the set of points for which x1 −2x2 +0.1 < 0.

Let us consider a simplified situation to begin with the classification problem.

Suppose that we have a set of n observations {(x1, y1), . . . , (xn, yn)}, where the response variable
can take two values {class 1, class 2}, depending on the relationship with the p predictors.

In a first simplified example, let us assume that it is possible to construct a separating hyperplane
that separates perfectly all observations.

In such a case, the hyperplane is such that:

{
β0 + β1x1 + . . . + βpxp > 0 if yi = class 1
β0 + β1x1 + . . . + βpxp < 0 if yi = class 2

(5.1.4)

For convenience, as it is often the case in classification problem with a binary outcome, the
response variable y can be coded as 1 and −1 (for class 1 and class 2, respectively). In that case,

302 CHAPTER 5. SUPPORT VECTOR MACHINES

the hyperplane has the property that, for all observations i = 1, . . . , n:

yi(β0 + β1xi1 + . . . + βpxip) > 0 (5.1.5)

Let us illustrate this with simulated data in two dimensions, that are perfectly separable by a line.

df <-
tibble(x_1 = c(5,7,9,12, 13,1,2,4,6,8),

x_2 = c(1,1,4,7,6,3,1,5,9,7),
y = c(rep(-1, 5), rep(1, 5))) %>%

mutate(colour = ifelse(y == -1, yes ="blue", no = "magenta"))

The data can be visualised as follows:

ggplot() +
geom_point(data = df,

mapping = aes(x = x_1,
y = x_2, colour = colour)) +

scale_colour_manual(
NULL,
values = c("blue" = "#1A85FF", "magenta" = "#D41159"))

2.5

5.0

7.5

5 10
x_1

x_
2 blue

magenta

Figure 5.4: Data in two dimensions with two classes, where a separating line can perfectly separate
the data.

There exists an infinite number of values for the slope and the intercept so that a line separates

5.1. MAXIMAL MARGIN CLASSIFIER 303

the data into two distinct parts, one in which all the blue points will be grouped, and another one
in which all the magenta points will be grouped. Some values can be picked, for example:

slope <- 1.4 ; intercept <- -5

This results in the following separating line:

ggplot() +
geom_point(data = df,

mapping = aes(x = x_1,
y = x_2, colour = colour)) +

scale_colour_manual(
NULL,
values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +

geom_abline(slope = slope, intercept = intercept) +
coord_equal(xlim = c(0, 15), ylim = c(0,10)) +
theme(legend.position = "none")

0.0

2.5

5.0

7.5

10.0

0 5 10 15
x_1

x_
2

Figure 5.5: A first line of equation x2 = 1.4x1 − 5 that perfectly separates the data.

But other values might work just fine:

slope_2 <- 1 ; intercept_2 <- -2.5

304 CHAPTER 5. SUPPORT VECTOR MACHINES

ggplot() +
geom_point(data = df,

mapping = aes(x = x_1,
y = x_2, colour = colour)) +

scale_colour_manual(
NULL, values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +

geom_abline(slope = slope, intercept = intercept) +
geom_abline(slope = slope_2, intercept = intercept_2, colour="#FE6100") +
geom_label(

data = tibble(x_1 =8, x_2=9, lab = "x_2 = 1.4x_1 - 5"),
mapping = aes(x = x_1, y = x_2, label = lab), fill = "black",
colour = "white") +

geom_label(
data = tibble(x_1 = 10, x_2=6, lab = "x_2 = x_1 - 2.5"),
mapping = aes(x = x_1, y = x_2, label = lab), fill = "#FE6100",
colour = "black") +

coord_equal(xlim = c(0, 15), ylim = c(0,10))

x_2 = 1.4x_1 − 5

x_2 = x_1 − 2.5

0.0

2.5

5.0

7.5

10.0

0 5 10 15
x_1

x_
2 blue

magenta

Figure 5.6: Two lines of equations x2 = 1.4x1 − 5 and x2 = x1 − 2.5 that perfectly separate the
data.

5.1. MAXIMAL MARGIN CLASSIFIER 305

The question is: how can values for the slope and intercept be found using an algorithm,
in an optimal way?

5.1.2 Margin

As usual, we would like to decide among the possible values, what is the optimal choice, regarding
some criterion.

A solution consists in computing the distance from each observation to a given separating hy-
perplane. The distance which is the smallest is called the margin. The objective is to select the
separating hyperplane for which the margin is the farthest from the observations, i.e., to select
the maximal margin hyperplane.

This is known as the maximal margin hyperplane.

Let us visualise a margin, for the two different values of intercept and slope that were used earlier.
To do so, the Euclidean distance of each point to the separating line needs to be computed.

df_tmp <-
df %>%
mutate(distance_margin =

abs(slope*x_1 - x_2 + intercept) /
sqrt(slopeˆ2+(-1)ˆ2))

df_tmp

A tibble : 10 x 5
x_1 x_2 y colour distance_margin
<dbl > <dbl > <dbl > <chr > <dbl >
1 5 1 -1 blue 0.581
2 7 1 -1 blue 2.21
3 9 4 -1 blue 2.09
4 12 7 -1 blue 2.79
5 13 6 -1 blue 4.18
6 1 3 1 magenta 3.84
7 2 1 1 magenta 1.86
8 4 5 1 magenta 2.56
9 6 9 1 magenta 3.25
10 8 7 1 magenta 0.465

Once these distances are calculated, the minimum needs to be kept: this define the margin, con-
ditional on the separating line that was used.

306 CHAPTER 5. SUPPORT VECTOR MACHINES

min_margin <-
df_tmp %>%
arrange(distance_margin) %>%
slice(1) %>%
magrittr::extract2("distance_margin")

min_margin

[1] 0.4649906

If we want to plot the margin, we need to further compute the intercept of the lines that define
it.

dist_intercept <- min_margin/sin(pi/2-atan(slope))

The margin obtained with a slope of 1.4 and an intercept of -5 can be visualised this way:

ggplot() +
geom_point(data = df,

mapping = aes(x = x_1, y = x_2, colour=colour)) +
scale_colour_manual(

NULL, values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +
geom_abline(slope = slope, intercept = intercept, colour = "#FE6100") +
coord_equal(xlim = c(0, 15), ylim = c(0,10)) +
geom_abline(slope = slope, intercept = intercept-dist_intercept,

colour = "black", linetype = "dashed") +
geom_abline(slope = slope, intercept = intercept+dist_intercept,

colour = "black", linetype = "dashed") +
theme(legend.position = "none")

5.1. MAXIMAL MARGIN CLASSIFIER 307

0.0

2.5

5.0

7.5

10.0

0 5 10 15
x_1

x_
2

Figure 5.7: Margin obtained using the following separating hyperplane: x2 = 1.4x1 − 5.

Now, let us get the margin with a slope of 1 and an intercept of -2.5:

df_tmp <-
df %>%
mutate(distance_margin =

abs(slope_2*x_1 - x_2 + intercept_2) /
sqrt(slope_2ˆ2+(-1)ˆ2))

min_margin <-
df_tmp %>%
arrange(distance_margin) %>%
slice(1) %>%
magrittr::extract2("distance_margin")

min_margin

[1] 1.06066

Let us look at the margin graphically:

dist_intercept <- min_margin/sin(pi/2-atan(slope_2))
ggplot() +

geom_point(data = df,

308 CHAPTER 5. SUPPORT VECTOR MACHINES

mapping = aes(x = x_1, y = x_2, colour=colour)) +
scale_colour_manual(

NULL, values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +
geom_abline(slope = slope_2, intercept = intercept_2, colour = "black") +
coord_equal(xlim = c(0, 15), ylim = c(0,10)) +
geom_abline(slope = slope_2, intercept = intercept_2-dist_intercept,

colour = "black", linetype = "dashed") +
geom_abline(slope = slope_2, intercept = intercept_2+dist_intercept,

colour = "black", linetype = "dashed") +
theme(legend.position = "none")

0.0

2.5

5.0

7.5

10.0

0 5 10 15
x_1

x_
2

Figure 5.8: Margin obtained using the following separating hyperplane: x2 = x1 − 2.5.

The obtained margin is relatively higher in the second case. The idea is to try to find the
maximal. This boils down to an optimization program.

5.1. MAXIMAL MARGIN CLASSIFIER 309

The optimization problem is the following:

max
β0,β1,...,βp,M

M (5.1.6)

s.t.
p∑

j=1
β2

j = 1 (5.1.7)

yi(β0 + β1xi1 + . . . + βpxip) ≥ M, ∀i = 1, . . . , n (5.1.8)

Constraint (5.1.8) ensures that each obs. is on the correct side of the hyperplane.

Constraint (5.1.7) ensures that the perpendicular distance from the ith observation to the hyper-
plane is given by:

yi(β0 + β1xi1 + . . . + βpxip)
Together, constraints (5.1.7) and (5.1.8) impose that each observation is on the correct side of
the hyperplane and at least a distance M from the hyperplane.

We will see how this optimization problem can be implemented in R in a moment. For now, let
us admit that the maximum margin is the one obtained with the values 1 for the slope and -2.5
for the intercept.

ggplot() +
geom_point(data = df,

mapping = aes(x = x_1, y = x_2, colour=colour)) +
geom_point(data =

tibble(
x_1 = c(5,2,8),
x_2 = c(1,1,7),
colour = c("blue", "magenta", "magenta")),

mapping = aes(x = x_1, y = x_2, fill = colour),
colour="black", size = 4, shape = 21) +

scale_colour_manual(
NULL, values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +

scale_fill_manual(
NULL,values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +

geom_abline(slope = slope_2, intercept = intercept_2, colour = "black") +
geom_abline(slope = slope_2, intercept = intercept_2-dist_intercept,

colour = "black", linetype = "dashed") +
geom_abline(slope = slope_2, intercept = intercept_2+dist_intercept,

colour = "black", linetype = "dashed") +
coord_equal(xlim = c(0, 15), ylim = c(0,10)) +
theme(legend.position = "none")

310 CHAPTER 5. SUPPORT VECTOR MACHINES

0.0

2.5

5.0

7.5

10.0

0 5 10 15
x_1

x_
2

Figure 5.9: Maximum margin classifier for a perfectly separable binary outcome variable.

In the graph above, 3 observations from the training set that are equidistant from the maximal
margin hyperplane were highlighted. These points are known as the support vectors:

• they are vectors in p-dimensional space
• they “support” the maximal margin hyperplane (if they move, the maximal margin hyper-

plane also moves).

For any other points, if they move but stay outside the boundary set by the margin, this does
not affect the separating hyperplane. So the observations that fall in top of the fences are called
support vector because they directly determine where the fences will be located.

In our example, the maximal margin hyperplane only depends on three points, but this is
not a general result. The number of support vectors can vary according to the data.

Once the maximum margin is known, classification follows directly:

• cases that fall on one side of the maximal margin hyperplane are labelled as one class
• cases that fall on the other side of the maximal margin hyperplane are labelled as the other

class.

The classification rule that follows from the decision boundary is known as hard thresholding.

So far, we were in a simplified situation in which it is possible to find a perfectly separable hyper-
plane. In reality, data are not always that cooperative, in that:

5.2. SUPPORT VECTOR CLASSIFIERS 311

• there is no maximal margin classifier (the set of values are no longer linearly separable)
• the optimization problem gives no solution with M > 0.

In such cases, we can allow some number of observations to violate the rules so that they can lie
on the wrong side of the margin boundaries. We can develop a hyperplane that almost separates
the classes. The generalization of the maximal margin classifier to the non-separable case is known
as the support vector classifier.

5.2 Support Vector Classifiers

Let us consider the case in which finding a maximal margin classifier is either not possible or not
desirable.

A maximal margin classifier may not be desired as:

• its margins can be too narrow and therefore lead to relatively higher generalization errors
• the maximal margin hyperplane may be too sensitive to a change in a single observation.

As it is usually the case in statistical methods, a trade-off thus arises: here it consists in trading
some accuracy in the classification for more robustness in the results.

Let us add some data (four observations) to the synthetic dataset at hand:

new_data <-
tibble(x_1 = c(7, 10, 5, 8.5),

x_2 = c(3.5, 9.5, 2.3, 3.5),
y = c(1, -1, -1, 1),
colour = c("magenta", "blue", "blue", "magenta"))

df_2 <-
df %>%
bind_rows(new_data) %>%
mutate(class = factor(colour, levels = c("blue", "magenta")))

Let us plot the data on the previous graph.

ggplot() +
geom_point(data = df_2,

mapping = aes(x = x_1, y = x_2, colour=colour)) +
geom_point(data = new_data,

mapping = aes(x = x_1, y = x_2, fill = colour),
colour="black", size = 4, shape = 21) +

scale_colour_manual(

312 CHAPTER 5. SUPPORT VECTOR MACHINES

NULL, values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +
scale_fill_manual(

NULL, values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +
geom_abline(slope = slope_2, intercept = intercept_2, colour = "black") +
geom_abline(slope = slope_2, intercept = intercept_2-dist_intercept,

colour = "black", linetype = "dashed") +
geom_abline(slope = slope_2, intercept = intercept_2+dist_intercept,

colour = "black", linetype = "dashed") +
coord_equal(xlim = c(0, 15), ylim = c(0,10)) +
theme(legend.position = "none")

0.0

2.5

5.0

7.5

10.0

0 5 10 15
x_1

x_
2

Figure 5.10: The new observations violate the previous margin.

As can be noted, the now observations that were added lie between the fences of the previous
margin. In addition, the two magenta points lie in the wrong side of the hyperplane. One of
the blue point (the one on top) is also on the wrong side of the hyperplane, while the second
blue point (at the bottom) is on the correct side of the hyperplane but on the wrong side of the
margin.

The support vector classifier will allow some points to violate the buffer zone. The optimization

5.2. SUPPORT VECTOR CLASSIFIERS 313

problem becomes:

max
β0,β1,...,βp,ε1,...,εn,M

M (5.2.1)

s.t.
p∑

j=1
β2

j = 1, (5.2.2)

yi(β0 + β1xi1 + . . . + βpxip) ≥ M(1 − εt), ∀i = 1, . . . , (5.2.3)
n) (5.2.4)

εi ≥ 0,
n∑

i=1
εi ≤ C, (5.2.5)

where C is a nonnegative tuning parameter, M is the width of the margin.

ε1, . . . , εn allow individual observations to lie on the wrong side of the margin or the hyperplane,
they are called slack variables (more details on those are provided below).

Once the optimization problem is solved, the classification follows instantly by looking at which
side of the hyperplane the observation lies. For a new observation x0, the classification is based
on the sign of β0 + β1x0 + . . . + βpx0.

The slack variable εi indicates where the ith observation is located relative to both the hyperplane
and the margin:

• εi = 0: the ith observation is on the correct side of the margin
• εi > 0: the ith observation is on the wrong side of the margin
• εi > 1: the ith observation is on the wrong side of the hyperplane

The tuning parameter C from Eq. (5.2.5) reflects a measure of how permissive we were when
the margin was maximized, as it bounds the sum of εi. Setting a value of C to 0 implies that we do
not allow any observations from the training sample to lie in the wrong side of the hyperplane.
The optimization problem then boils down to that of the maximum margin (if the two classes
are perfectly separable). If the value of C is greater than 0, then no more than C observations
can be on the wrong side of the hyperplane:

• εi > 0 for each observation that lies on the wrong side of the hyperplane
•
∑n

i=1 εi ≤ C

So, the idea of the support vector classifier can be viewed as maximizing the width of the buffer
zone conditional on the slack variables. But the distance of some slack variables to the boundary
can vary from one observation to another. The sum of these distances can then be viewed as a
measure of how permissive we were when the margin was maximized.

314 CHAPTER 5. SUPPORT VECTOR MACHINES

• the more permissive, the larger the sum, the higher the number of support vectors,
and the easier to locate a separating hyperplane within the margin

• but on the other hand, being more permissive can lead to a higher bias as we intro-
duce more misclassifications.

Let us illustrate how the method works in R. We will use the function svm() from the package
{e1071}.

It should be noted that the optimization problem that svm() addresses is written differently
(see Karatzoglou, Meyer, and Hornik (2006)). The cost parameter of the function svm()
allows us to control the penalty paid by the SVM for missclassifying a training point:

• a high cost value will be used to missclassify as few observations as possible
• a low cost (strictly greater than 0) will allow for more observations to be missclas-

sified (the prediction function will be simpler).

With our initial data (perfectly separable date), let us set a high cost in the function, corresponding
to penalise a lot missclassifications made with the training observations. We will therefore obtain
a hard-margin. We will set cost = 1000. Here, we also set kernel = "linear" to use a linear
kernel. More details on kernels will be provided in the next section, to consider non linear
decision boundaries.

Before using the svm() function, let us create a factor variable in our initial dataset:

df <- df %>% mutate(class=factor(colour))

library(e1071)
svm_fit <- svm(

class~x_1+x_2,
data = df,
cost = 1000,
Using a linear kernel
kernel = "linear",
Not scaling the variables
Scaling: transforming y and X to get 0 mean and unit variance
scale = FALSE)

svm_fit

##
Call:

5.2. SUPPORT VECTOR CLASSIFIERS 315

svm(formula = class ~ x_1 + x_2 , data = df , cost = 1000 , kernel =
" linear ",

scale = FALSE)
##
##
Parameters :
SVM -Type: C- classification
SVM - Kernel : linear
cost: 1000
##
Number of Support Vectors : 3

Only tree observations define the support vector. Their index can be accessed as follows:

svm_fit$index

[1] 1 7 10

Which corresponds to those points:

df_support_vector <-
tibble(df %>% slice(svm_fit$index))

df_support_vector

A tibble : 3 x 5
x_1 x_2 y colour class
<dbl > <dbl > <dbl > <chr > <fct >
1 5 1 -1 blue blue
2 2 1 1 magenta magenta
3 8 7 1 magenta magenta

The negative intercept is in the element rho from the returned object. Hence, the coefficient β0
can be computed this way:

beta_0 <- -svm_fit$rho
beta_0

[1] -1.666317

316 CHAPTER 5. SUPPORT VECTOR MACHINES

The coefficient β1,can be obtained as follows:

beta_1 <- sum(svm_fit$coefs * df$x_1[svm_fit$index])
beta_1

[1] 0.6664919

And β2:

beta_2 <- sum(svm_fit$coefs * df$x_2[svm_fit$index])
beta_2

[1] -0.6664919

We can thus deduct the values for the intercept in our two dimensional case:

intercept <- -beta_0/beta_2
intercept

[1] -2.500131

And the slode:

slope <- -beta_1/beta_2
slope

[1] 1

ggplot() +
geom_point(data = df,

mapping = aes(x = x_1, y = x_2, colour=colour)) +
geom_point(data = df_support_vector,

mapping = aes(x = x_1, y = x_2, fill = colour),
colour="black", size = 4, shape = 21) +

scale_colour_manual(

5.2. SUPPORT VECTOR CLASSIFIERS 317

NULL, values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +
geom_abline(slope = slope, intercept = intercept, colour = "black") +
coord_equal(xlim = c(0, 15), ylim = c(0,10)) +
geom_abline(intercept = -beta_0/beta_2, slope = -beta_1/beta_2,

colour = "black") +
geom_abline(slope = slope, intercept = (-beta_0-1)/beta_2,

colour = "black", linetype = "dashed") +
geom_abline(slope = slope, intercept = (-beta_0+1)/beta_2,

colour = "black", linetype = "dashed") +
theme(legend.position = "none")

0.0

2.5

5.0

7.5

10.0

0 5 10 15
x_1

x_
2

Figure 5.11: Maximal margin classifier for the initial dataset with linearly separable observation.

Now, let us simulate some new data that are not perfectly linearly separable. First, we begin with
perfectly separable data:

set.seed(1234)
x_1 <- rbeta(n=5000, shape1 = 1, shape2 = 1)
x_2 <- rbeta(n=5000, shape1 = 1, shape2 = 1)
df <- tibble(x_1 = x_1, x_2 = x_2)

df <-
df %>%

318 CHAPTER 5. SUPPORT VECTOR MACHINES

mutate(
flag = (0.5* x_1 + x_2 - 0.6 > 0 & 3*x_1 + x_2 - 1.5 < 0) |

(3*x_1 + x_2 - 1.5 > 0 & 0.5* x_1 + x_2 - 0.6 < 0) |
(3*x_1 + x_2 - 1.5 > 0 & 1.5* x_1 + x_2 - 1 < 0)) %>%

filter(!flag) %>%
mutate(

class = ifelse(3*x_1 + x_2 - 1.5 > 0 & 1.5*x_1 + x_2 - 1 > 0 &
0.5*x_1 + x_2 - 0.6 > 0,

yes = "blue", no = "magenta")) %>%
group_by(class) %>%
sample_n(200) %>%
ungroup()

And then, let us create some data that will be on the wrong side of the separating line.

df_new <-
df %>%
mutate(

flag = (0.5* x_1 + x_2 - 0.6 > 0 & 3*x_1 + x_2 - 1.5 < 0) |
(3*x_1 + x_2 - 1.5 > 0 & 0.5* x_1 + x_2 - 0.6 < 0) |
(3*x_1 + x_2 - 1.5 > 0 & 1.5* x_1 + x_2 - 1 < 0)) %>%

filter(!flag) %>%
mutate(

class = ifelse(3*x_1 + x_2 - 1.5 > 0 & 1.5*x_1 + x_2 - 1 > 0 &
0.5*x_1 + x_2 - 0.6 > 0,

yes = "magenta", no = "blue")) %>%
group_by(class) %>%
sample_n(20) %>%
ungroup()

These two datasets can be merged:

df_2 <-
df %>%
bind_rows(df_new) %>%
mutate(class = factor(class)) %>%
sample_frac(1)

Let us have a look:

5.2. SUPPORT VECTOR CLASSIFIERS 319

ggplot() +
geom_point(data = df_2,

mapping = aes(x = x_1, y = x_2, colour = class)) +
scale_colour_manual(

NULL,
values = c("blue" = "#1A85FF", "magenta" = "#D41159"))

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x_1

x_
2 blue

magenta

Figure 5.12: Simulated almost linearly-separable data.

Data are no longer linearly separable (but they are almost linearly separable), hence it will not be
possible to obtain a hard-margin. The cost parameter can however be used to allow more or less
missclassified training observations. Let us begin with a value of 100 :

svm_fit_2 <- svm(
formula = class~x_1+x_2,
data = df_2,
cost = 100,
Using a linear kernel
kernel = "linear",
Not scaling the variables
Scaling: transforming y and X to get 0 mean and unit variance
scale = FALSE)

svm_fit_2

320 CHAPTER 5. SUPPORT VECTOR MACHINES

##
Call:
svm(formula = class ~ x_1 + x_2 , data = df_2 , cost = 100, kernel

= " linear ",
scale = FALSE)
##
##
Parameters :
SVM -Type: C- classification
SVM - Kernel : linear
cost: 100
##
Number of Support Vectors : 142

There are 142 points that define the support vector. Let us visualise the soft-margin. First we
need to compute some elements for the plot to be made. Let us make a function to make things
more compact.

plot_results <- function(svm_result){
df_support_vector <-

tibble(df_2 %>% slice(svm_result$index))
beta_0 <- -svm_result$rho
beta_1 <- sum(svm_result$coefs * df_2$x_1[svm_result$index])
beta_2 <- sum(svm_result$coefs * df_2$x_2[svm_result$index])
intercept <- -beta_0/beta_2
slope <- -beta_1/beta_2
f <- function(x) x*slope+intercept
ggplot() +

geom_polygon(
data = tibble(x = c(-2, 2, 2), y = c(f(-2), f(2), f(-2))),
aes(x=x, y = y), fill = "blue", alpha = .2) +

geom_polygon(
data = tibble(x = c(-2, -2, 2), y = c(f(-2), f(2), f(2))),
aes(x=x, y = y), fill = "magenta", alpha = .2) +

geom_point(data = df_2, aes(x = x_1, y = x_2, colour=class)) +
scale_colour_manual(

NULL, values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +
scale_fill_manual(

NULL, values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +
geom_abline(intercept = -beta_0/beta_2, slope = -beta_1/beta_2,

5.2. SUPPORT VECTOR CLASSIFIERS 321

colour = "black") +
geom_abline(slope = slope, intercept = (-beta_0-1)/beta_2,

colour = "black", linetype = "dashed") +
geom_abline(slope = slope, intercept = (-beta_0+1)/beta_2,

colour = "black", linetype = "dashed") +
coord_equal(xlim = c(0, 1), ylim = c(0,1)) +
theme(legend.position = "none")

}

The results can be plotted:

plot_results(svm_fit_2)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

y

Figure 5.13: Support vector classifier with c = 100.

The confusion table:

322 CHAPTER 5. SUPPORT VECTOR MACHINES

confusion_t <-
table(observed = df_2$class,

predicted = predict(svm_fit_2, df_2))
confusion_t

predicted
observed blue magenta
blue 195 25
magenta 20 200

There are thus 45 missclassified observations.

1 - sum(diag(confusion_t)) / sum(confusion_t)

[1] 0.1022727

Let us consider a smaller value for the cost parameter of the svm() function. Recall that reducing
the value of this argument should allow more observations to be missclassified.

svm_fit_3 <- svm(
formula = class~x_1+x_2,
data = df_2,
cost = .1,
Using a linear kernel
kernel = "linear",
Not scaling the variables
Scaling: transforming y and X to get 0 mean and unit variance
scale = FALSE)

svm_fit_3

##
Call:
svm(formula = class ~ x_1 + x_2 , data = df_2 , cost = 0.1, kernel

= " linear ",
scale = FALSE)
##
##
Parameters :
SVM -Type: C- classification

5.2. SUPPORT VECTOR CLASSIFIERS 323

SVM - Kernel : linear
cost: 0.1
##
Number of Support Vectors : 267

The results can be plotted:

plot_results(svm_fit_3)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

y

Figure 5.14: Support vector classifier with c = .1.

The confusion table:

confusion_t <-
table(observed = df_2$class,

predicted = predict(svm_fit_3, df_2))
confusion_t

324 CHAPTER 5. SUPPORT VECTOR MACHINES

predicted
observed blue magenta
blue 193 27
magenta 20 200

There are thus 47 missclassified observations.

1 - sum(diag(confusion_t)) / sum(confusion_t)

[1] 0.1068182

It can be noted that the decision boundary has changed when the cost parameter was
modified.

The choice of the cost parameter can be obtained using cross validation, thanks to the tune()
function from {e1071}. A grid of values need to be provided.

values_cost <- 10ˆseq(3, -2, length = 50)

Then the tune() can be used:

tune_out <- tune(svm,
train.x = class~x_1+x_2,
data=df_2,
kernel="linear",
ranges=list(cost=values_cost))

By default, 10-fold cross validation is used. The function tune.control() passed on to
the argument tunecontrol of the tune() function allows to change this.

The results:

tune_out

##
Parameter tuning of 'svm ':
##

5.2. SUPPORT VECTOR CLASSIFIERS 325

- sampling method : 10- fold cross validation
##
- best parameters :
cost
1000
##
- best performance : 0.1022727

The cost parameter that provided the best results (with respect to the the classification error):

tune_out$best.parameters

cost
1 1000

The best model is returned (hence, there is no need to evaluate it a second time).

tune_out$best.model

##
Call:
best.tune(method = svm , train.x = class ~ x_1 + x_2 , data = df_2 ,
ranges = list(cost = values_cost), kernel = " linear ")
##
##
Parameters :
SVM -Type: C- classification
SVM - Kernel : linear
cost: 1000
##
Number of Support Vectors : 142

The confusion table:

confusion_t <-
table(observed = df_2$class, predicted = predict(tune_out$best.model, df_2))

confusion_t

predicted
observed blue magenta

326 CHAPTER 5. SUPPORT VECTOR MACHINES

blue 195 25
magenta 20 200

There are thus 45 missclassified observations.

1 - sum(diag(confusion_t)) / sum(confusion_t)

[1] 0.1022727

plot_results(tune_out$best.model)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

y

Figure 5.15: Support vector classifier with the cost parameter obtained by cross-validation.

5.3. SUPPORT VECTOR MACHINES 327

5.3 Support Vector Machines

In this section, we will look at a solution to classification problems when the classes are not
linearly separable. The basic idea is to convert a linear classifier into a classifier that produced
non-linear decision boundaries.

Let us consider the following illustrative example. Let us generate some data.

set.seed(1234)
x_1 <- runif(n = 90, 0, 10)
x_2 <- 2*x_1+3 + rnorm(n = length(x_1))

df <- tibble(x_1 = x_1, x_2 = x_2) %>%
arrange(x_1)

Now, let us assign a class to each observation.

df <-
df %>%
slice(16:30) %>%
mutate(class = "blue") %>%
bind_rows(

df %>%
slice(31:60) %>%
mutate(class = "magenta")

) %>%
bind_rows(

df %>%
slice(61:75) %>%
mutate(class = "blue")

) %>%
mutate(class = factor(class))

The data can be visualised:

ggplot(data = df, aes(x = x_1, y = x_2, colour = class)) +
geom_point() +
scale_colour_manual(

NULL, values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +
coord_equal(xlim = c(1, 10), ylim = c(5,20)) +
theme(legend.position = "none")

328 CHAPTER 5. SUPPORT VECTOR MACHINES

5

10

15

20

2.5 5.0 7.5 10.0
x_1

x_
2

Figure 5.16: Non linearly-separable data.

Let us try to fit a support vector classifier:

svm_fit_lin <-
svm(class~x_1+x_2, data = df, kernel = "linear", scale = FALSE)

beta_0 <- -svm_fit_lin$rho
beta_1 <- sum(svm_fit_lin$coefs * df$x_1[svm_fit_lin$index])
beta_2 <- sum(svm_fit_lin$coefs * df$x_2[svm_fit_lin$index])

intercept <- -beta_0/beta_2
slope = -beta_1/beta_2

f <- function(x) slope*x+intercept

ggplot() +

5.3. SUPPORT VECTOR MACHINES 329

geom_polygon(
data = tibble(x = c(-2, 12, 12), y = c(f(-2), f(12), f(-2))),
aes(x=x, y = y), fill = "magenta", alpha = .2) +

geom_polygon(
data = tibble(x = c(-2, -2, 12), y = c(f(-2), f(12), f(12))),
aes(x=x, y = y), fill = "blue", alpha = .2) +

geom_point(data = df, aes(x = x_1, y = x_2, colour=class)) +
scale_colour_manual(

NULL, values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +
scale_fill_manual(

NULL, values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +
geom_abline(intercept = -beta_0/beta_2, slope = -beta_1/beta_2,

colour = "black") +
geom_abline(slope = slope, intercept = (-beta_0-1)/beta_2,

colour = "black", linetype = "dashed") +
geom_abline(slope = slope, intercept = (-beta_0+1)/beta_2,

colour = "black", linetype = "dashed") +
coord_equal(xlim = c(1, 10), ylim = c(5,20)) +
theme(legend.position = "none")

330 CHAPTER 5. SUPPORT VECTOR MACHINES

5

10

15

20

2.5 5.0 7.5 10.0
x

y

Figure 5.17: Decision boundary of the Support Vector Classifier trained on non linearly-separable
data.

Obviously, the results give poor predictive performances.

To account for non-linear boundaries, it is possible to add more dimensions to the observation
space, either by adding polynomial functions of the predictors, or by adding interaction terms
between the predictors. However, as the number of predictors is enlarged, the computations
become harder. . .

The support vector machine allows to enlarge the number of predictors while keeping efficient
computations. The idea of the support vector machine is to fit a separating hyperplane in a space
with a higher dimension than the predictor space. Instead of using the set of predictors, the idea
is to use a kernel.

The solution of the optimization problem given by Eq. (5.2.1) to Eq. (5.2.5) involves only the
inner products of the observations. The inner product of two observations x1 and x2 is given by
⟨x1, x2⟩ =

∑p
j=1 x1jx2j .

5.3. SUPPORT VECTOR MACHINES 331

The linear support vector classifier can be represented as:

f(x) = β0 +
n∑

i=1
αi⟨x, xi⟩, (5.3.1)

where the n parameters αi need to be estimated, as well as the parameter β0. This requires to
compute all the

(n
2
)

inner products ⟨xi, xi′⟩ between all pairs of training observations.

We can see in Eq. (6.1.2) that if we want to evaluate the function f for a new point x0, we need
to compute the inner product between x0 and each of the points xi from the training sample. If
a point xi from the training sample is not from the set S of the support vectors, then it can be
shown that αi is equal to zero.

Hence, Eq. (6.1.2) eventually writes:

f(x) = β0 +
∑
i∈S

αi⟨x, xi⟩, (5.3.2)

thus reducing the computational effort to perform when evaluating f .

Now, rather than using the actual inner product ⟨xi, xi′⟩ =
∑p

j=1 xijxi′j when it needs to be
computed, let us assume that we replace it with a generalization of the inner product, following
some functional form K known as a kernel: K(xi, xi′).

A kernel will compute the similarities of two observations. For example, if we pick the following
functional form:

K(xi, xi′) =
p∑

j=1
xijxi′j , (5.3.3)

it leads back to the support vector classifier (or the linear kernel).

5.3.1 Polynomial Kernel

We can use a non-linear kernel, for example a polynomial kernel of degree d:

K(xi, xi′) =

1 +
p∑

j=1
xijxi′j

d

, (5.3.4)

If we do so, the decision boundary will be more flexible. The functional form of the classifier
becomes:

f(x) = β0 +
∑
i∈S

αiK(x, xi) (5.3.5)

332 CHAPTER 5. SUPPORT VECTOR MACHINES

an is such a case, when the support vector classifier is combined with a non-linear kernel, the
resulting classifier is known as a support vector machine.

In R, with the function svm(), all we need to do is to specify the argument kernel with the
desired kernel. For the polynomial kernel, we need to set kernel = "polynomial". The degree
of the polynomial is set through the degree argument.

For example, with a 10th order polynomial kernel:

degree <- 10
svm_fit_poly <-

svm(class~x_1+x_2, data = df, kernel = "polynomial",
degree = degree,
scale = FALSE, cost=1000, coef0=1)

To visualise the decision boundary, we can create a grid and then use the predict() method to
predict the class on each point of the grid.

grid <-
expand_grid(x_1=seq(0, 11, length.out = 300),

x_2=seq(4, 21, length.out = 300)) %>%
tbl_df()

The predicted class:

grid$pred <- predict(svm_fit_poly, newdata = grid)
head(grid)

A tibble : 6 x 3
x_1 x_2 pred
<dbl > <dbl > <fct >
1 0 4 blue
2 0 4.06 blue
3 0 4.11 blue
4 0 4.17 blue
5 0 4.23 blue
6 0 4.28 blue

ggplot() +
geom_tile(data = grid, aes(x = x_1, y = x_2, fill = pred), alpha = .2) +
geom_point(data = df, aes(x = x_1, y = x_2, colour=class)) +

5.3. SUPPORT VECTOR MACHINES 333

scale_colour_manual(
NULL, values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +

scale_fill_manual(
NULL, values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +

coord_equal(xlim = c(1, 10), ylim = c(5,20)) +
theme(legend.position = "none") +
geom_contour(data = grid %>%

mutate(pre_val = as.numeric(pred)),
mapping = aes(x = x_1, y = x_2, z=pre_val),
breaks = 1.5, colour = "black", linetype = "solid")

5

10

15

20

2.5 5.0 7.5 10.0
x_1

x_
2

Figure 5.18: Polynomial Kernel, degree 10.

Let us use 10-fold cross-validation to select the couple degree/cost among tested values in a grid
search:

334 CHAPTER 5. SUPPORT VECTOR MACHINES

hyperparam_grid <- list(
cost = 10ˆseq(3, -2, length = 50),
degree = seq(2, 10, by = 2)

)

Then the tune() can be used, again:

tune_out <- tune(svm,
train.x = class~x_1+x_2,
data=df,
kernel="polynomial",
ranges=hyperparam_grid)

The results of the cross-validation:

tune_out

##
Parameter tuning of 'svm ':
##
- sampling method : 10- fold cross validation
##
- best parameters :
cost degree
29.47052 2
##
- best performance : 0

And the selected hyperparameters:

tune_out$best.parameters

cost degree
16 29.47052 2

The confusion table:

5.3. SUPPORT VECTOR MACHINES 335

confusion_t <-
table(observed = df$class, predicted = predict(tune_out$best.model, df))

confusion_t

predicted
observed blue magenta
blue 30 0
magenta 0 30

There are thus 0 missclassified observations.

1 - sum(diag(confusion_t)) / sum(confusion_t)

[1] 0

The predicted class for each observation on our grid of points:

grid$pred <- predict(tune_out$best.model, newdata = grid)

ggplot() +
geom_tile(data = grid, aes(x = x_1, y = x_2, fill = pred), alpha = .2) +
geom_point(data = df, aes(x = x_1, y = x_2, colour=class)) +
scale_colour_manual(

NULL, values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +
scale_fill_manual(

NULL, values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +
coord_equal(xlim = c(1, 10), ylim = c(5,20)) +
theme(legend.position = "none") +
geom_contour(data = grid %>%

mutate(pre_val = as.numeric(pred)),
mapping = aes(x = x_1, y = x_2, z=pre_val),
breaks = 1.5, colour = "black", linetype = "solid")

336 CHAPTER 5. SUPPORT VECTOR MACHINES

5

10

15

20

2.5 5.0 7.5 10.0
x_1

x_
2

Figure 5.19: Polynomial Kernel, degree 2.

5.3.2 Radial kernel

Other kernels are possible, such as the radial kernel:

K(xi, xi′) = exp

−γ
p∑

j=1

(
xij − xi′j

)2 , (5.3.6)

where γ is a positive constant that accounts for the smoothness of the decision boundary (and
also controls the variance of the model):

• very large values lead to fluctuating decision boundaries that accounts for high variance (and
may lead to overfitting)

• small values lead to smoother boundaries and low variance.

5.3. SUPPORT VECTOR MACHINES 337

If a test observation x0 is far (considering the Euclidean distance) from a training observa-
tion xi:

•
∑p

j=1(x0j − xij)2 will be large

• hence K(x0, xi) = exp
(
−γ

∑p
j=1 (x0j − xij)2

)
will be really small

• hence xi will play no role in f(x0)
So, observations far from x0 will play no role in its predicted class: the radial kernel
therefore has a local behaviour.

Once again, in R, we need to specify the kernel argument of the svm() function, and provide a
value to the argument gamma.

gamma <- .1
svm_fit_poly <-

svm(class~x_1+x_2, data = df, kernel = "radial", gamma = .1,
scale = FALSE, cost=1000)

Again, let us define a grid of points for which the predictions will be made using the SVM, to
visually observe the decision boundaries.

grid <-
expand_grid(

x_1=seq(0, 11, length.out = 300),
x_2=seq(4, 21, length.out = 300)) %>%

tbl_df()

grid$pred <- predict(svm_fit_poly, newdata = grid)

The decision boundaries can be plotted:

ggplot() +
geom_tile(data = grid,

mapping = aes(x = x_1, y = x_2, fill = pred),
alpha = .2) +

geom_point(data = df,
mapping = aes(x = x_1, y = x_2, colour=class)) +

scale_colour_manual(
NULL, values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +

scale_fill_manual(
NULL, values = c("blue" = "#1A85FF", "magenta" = "#D41159")) +

338 CHAPTER 5. SUPPORT VECTOR MACHINES

coord_equal(xlim = c(1, 10), ylim = c(5,20)) +
theme(legend.position = "none") +
geom_contour(data = grid %>%

mutate(pre_val = as.numeric(pred)),
mapping = aes(x = x_1, y = x_2, z=pre_val),
breaks = 1.5, colour = "black", linetype = "solid")

5

10

15

20

2.5 5.0 7.5 10.0
x_1

x_
2

Figure 5.20: Radial Kernel, γ = .1.

Chapter 6

Deep Learning

When we use linear regression, logistic regression, or SVM what we do can be viewed as using a
“simple” two-layer architecture:

• first layer: the input data
• second layer: the output data

In a nutshell, the idea behind deep learning is to :

• extract linear combinations of the inputs as derived predictors
• use a combination of simple non-linear functions on these predictors to predict the output.

Instead of a two-layer architecture, deep learning allows for more layers. Deep learning is built
on a combination of neural networks, which, when combined, form a deep neural network.

Different types of architecture exist for neural networks, among which:

• the multilayer perceptrons (MLP). This is the oldest and simplest technique. The input
data goes through the nodes and exit on the output nodes.

• the convolutional neural networks (CNN) [not part of this notebook]. They are based on
using convolutions in place of general matrix multiplication in at least one of the layers.
Convolutional neural networks are used to process data that has a grid-like topology (e.g.,
time series in 1D or images in 2D)

• the recurrent neural networks (RNN). With these neural networks, the output of a layer
is saved and fed back to the input. At each step, each neuron remembers some information
from the previous step. This is useful for sequential data (e.g., text or time series).

This notebook will first present densely connected networks and then mode to recurrent neural
networks. It is build using the following main references: James et al. (2021), Chollet and Allaire
(2018), Goodfellow et al. (2016), and Ng and Katanforoosh (2018).

339

340 CHAPTER 6. DEEP LEARNING

Throughout the notebook, the functions from the tidyverse environment will be needed.

library(tidyverse)

6.1 Neural Networks

A neural network takes an output y and some input data x with p predictors and n observations.
It builds a nonlinear function f(x) to predict the output y.

6.1.1 Neural Network with a Single Hidden Layer

To make things clear, let us rely on the excellent example provided in James et al. (2021). It
consists in looking at a feed-forward neural network with p = 4 predictors (features), a single
hidden layer with S = 5 units.

X"

X#

X$

X%

A"

A#

A$

A%

A'

f(X)

Input Layer Hidden Layer Output Layer

β"

β#

β$

β%

β'

y

X- = 1 A- = 1

Features

Intercept
(bias)

β-

Figure 6.1: A simple Neural Network with 4 predictors and a single hidden layer.

6.1. NEURAL NETWORKS 341

The nonlinear function can be written as follows:

f(x) = β0 +
S∑

s=1
βshs(x) (6.1.1)

= β0 +
S∑

s=1
βsg

ws0 +
p∑

j=1
wsjxj

 (6.1.2)

This function is build in two steps. First, each activation (or neuron) As, s = 1, . . . , S in the
hidden layer are computed as a linear combination of the p features and an intercept (also known
as a neuron bias):

As = hs(xj) = gs

ws0 +
p∑

j=1
wsjxj

 .

The s-th activation is a function hs(·) of:

• the input xj
• weighted by a vector of connection weights w10, w11, w12, . . . , w1p between unit s and the

m inputs (here m = p = 4)
• and an intercept parameter ws0 (also known as a neuron bias)
• associated to an activation function gs(·) (more details on the functional form of the acti-

vation function will be provided after).

The second step in building the nonlinear function f(·) consists in making a linear combination
of all the activation functions:

f(x) = β0 +
S∑

s=1
βsAs

The parameters β0, . . . , βk need to be estimated, as well as the other parameters w10, w11, w12,
. . ., w1p, w20, . . ., wSp.

To estimate these parameters, we seek to minimize a non convex cost function. It can be done
by computing the gradient of the neural network (this is known as backpropagation of the
gradient). The cost function may be, for example, the Mean Squared Error in a regression
problem.

Different activation functions can be chosen. Let us define those in R.

• the identify function: g(z) = z

– R → R

342 CHAPTER 6. DEEP LEARNING

• the sigmoid/logistic function: g(z) = 1
1+exp(−z)

– R → [0, 1]

sigmoid_f <- function(z) 1/(1+exp(-z))

• the softmax function: g(z)j =
(

exp(zj)∑K

k=1 exp zk

)
, for j ∈ {1, . . . , K}, where K is the number

of elements of the input vector

– Generalization of the logistic function

– R → [0, 1]K

• the hyperbolic tangent function: g(z) = tanh(z) = exp(z)−exp(−z)
exp(z)+exp(−z) = exp(2z)−1

exp(2z)+1

– R → [−1, 1]

hyperbolic_tan_f <- function(z) (exp(2*z) - 1)/(exp(2*z)+1)

• the hard threshold function: gβ(z) = 1(x≥β)

– R → [0, 1]

hard_threshold_f <- function(z, beta) as.numeric(z >= beta)

• the Rectified Linear Unit function (ReLU): g(z) = max(0, z)

– R → [0, max(z)], allows to predict positive values. The ReLu function is continuous
but not derivable.

relu_f <- function(z) pmax(0, z)

Let us look at their graphical representation

x <- seq(-2, 2, length.out = 1000)
df <- tibble(

x = x,
identity = x,
sigmoid = sigmoid_f(x),
tanh = hyperbolic_tan_f(x),
threshold = hard_threshold_f(x, beta = 1),
ReLU = relu_f(x))

6.1. NEURAL NETWORKS 343

df <-
df %>%
gather(type, value, -x) %>%
mutate(type = factor(

type,
levels = c("identity", "sigmoid",

"tanh", "threshold", "ReLU"),
labels = c("Identity", "Sigmoid",

"Tanh", "Threshold (beta=1)", "ReLU")))

ggplot(data = df, aes(x = x, y = value, colour = type)) +
geom_line(size = 1.1) +
labs(x = "z", y = "f(z)") +
scale_colour_manual(

NULL, values = c("Identity" = "#648FFF",
"Sigmoid" = "#785EF0",
"Tanh" = "#DC267F",
"Threshold (beta=1)" = "#FE6100",
"ReLU" = "#FFB000"))

344 CHAPTER 6. DEEP LEARNING

−2

−1

0

1

2

−2 −1 0 1 2
z

f(
z)

Identity

Sigmoid

Tanh

Threshold (beta=1)

ReLU

Figure 6.2: Different activation functions.

Figure 6.1, illustrates that after passing through the hidden layer and in particular having been
fed to each of the 5 neurons, the model creates 5 new variables which are then fed to the next
layer (the output layer in the figure). The activation function in the output layer depends on the
domain of the response function.

• for example, if the variable y is real valued, the identity function can used
• on the other hand, if the variable y is a binary variable, we would like to obtain a probability

of being classified as the reference. In that case, a sigmoid function can be used.

The number of neurons in the output layer are picked depending on the type of the variable to
predict:

• if it is numerical, the output layer contains a single neuron
• if the variable that needs to be predicted is categorical with more than two classes, the

output layer must contain as many neurons as the output variable contains classes. The
activation function of each of the neurons in the output layer can then be picked as the
sigmoid function to obtain a probability of being classified in each category.

6.1. NEURAL NETWORKS 345

6.1.2 Multilayer Perception

The Multilayer perceptron is a structure composed of several hidden layers of neurons/units.
We will use ℓ to denote the ℓth layer among the L layers of the neural network. The output of
the ith neuron of the ℓth layer becomes the input of the ℓ + 1 layer.

The activation function is the same for all units in a given layer. Once again, in the last layer,
the choice of the activation function depends on the domain of the variable to predict and the
number of units depends on the type of the data.

While Hornik, Stinchcombe, and White (1989) has shown that a feed-forward 3-layers (only
one hidden) Neural Network with a finite number of neurons, with the same activation for
each neuron in the hidden layer and the identity activation function for the output layer can
approximate any bounded and regular function from Rp to R. This universal approximation
theorem therefore states that simple neural networks can represent a wide variety of functions.
But, as stated by Goodfellow et al. (2016) :

“we are not guaranteed that the training algorithm will be able to learn that function.”

The optimisation algorithm may not be able to find the value of the parameters that corresponds
to the desired function. Besides, there is a risk of overfitting:

“the layer may be infeasibly large and may fail to learn and generalize correctly”

Adding more hidden layers with a modest number of neurons in each should make the learning
task easier, as stated in James et al. (2021).

We can illustrate how a multilayer perceptron works by being original (or not) and by taking
the example of the famous MNIST dataset (Modified National Institute of Standards) database
(Lecun et al. 1998). It contains a training set of 60,000 examples of handwritten digits (0 to 9) and
a test set of 10,000 examples. In this database, the digits have been size-normalized and centered
to fit into a 28 × 28 pixel bounding box. Each pixel of each 28 × 28 image have a grayscale value
in the range 0 : 255.

The data can be accessed through the package {keras}. Keras is a deep learning framework which
allows us to build and train deep-learning models. We will use the R interface to Keras (https:
//keras.rstudio.com/). To be able to use Keras, not only do we need to install the {keras} package,
but we also need to install a backend tensor engine. We can, for instance, install TensorFlow.

We can first install the {tensorflow} package:

install.packages("tensorflow")

Then the {keras} package:

http://yann.lecun.com/exdb/mnist/
https://keras.io/
https://keras.rstudio.com/
https://keras.rstudio.com/
https://www.tensorflow.org/

346 CHAPTER 6. DEEP LEARNING

install.packages("keras")

Once the package is installed, it can be loaded.

library(keras)

Then, TensorFlow can be installed:

tensorflow::install_tensorflow()

And can be configured:

tensorflow::tf_config()

Then, we need to install the core Keras library (we only do it once). If no python environment
is found, we may agree to install Miniconda.

install_keras()

On one of my computers running on MacOS Big Sur version 11.6, with R 4.0.5, I had
an error during the installation (“error code 1”). I used the following instructions to solve
the problem:

unlink(reticulate::miniconda_path(), recursive = TRUE)
reticulate::install_miniconda(path = reticulate::miniconda_path(),

update = TRUE, force = FALSE)
keras::install_keras()

If our computer is equipped with an NVIDIA GPU (Graphics Processing Unit) and our system
configured with CUDA and cuDNN libraries, we can install the GPU-based version of the back-
end engine. Otherwise, we can stick with the CPU-based (Central Processing Unit) version. The
installation needs to be done only once.

install_keras(tensorflow = "gpu")

Let us load the MNIST dataset:

https://docs.conda.io/en/latest/miniconda.html

6.1. NEURAL NETWORKS 347

mnist <- dataset_mnist()

It is a list of two arguments: the train set, and the test set. The train set contains n = 60, 000
images (observations/training examples). They are stored as an array. Recall that each image is
made of 28x28 pixels. Hence, each example has p = 28 × 28 = 784 predictors/features.

x_train <- mnist$train$x
dim(x_train)

[1] 60000 28 28

There are 10, 000 observations in the test set:

x_test <- mnist$test$x
dim(x_test)

[1] 10000 28 28

The corresponding labels (true values), y:

y_train <- mnist$train$y
head(y_train)

[1] 5 0 4 1 9 2

And for the test set:

y_test <- mnist$test$y
head(y_test)

[1] 7 2 1 0 4 1

348 CHAPTER 6. DEEP LEARNING

Another way to assign the content of the elements of the list mnist to the four objects
(x_train, y_train, x_test, and y_test) is to use the multi-assignment operator %<-%
from {zeallot} (the operator is available if {keras} is loaded).

c(c(x_train, y_train), c(x_test, y_test)) %<-% mnist

There is approximatively 10% of each of the 10 different classes (0, 1, 2, . . . , 9):

round(100*prop.table(table(y_train)),1)

y_train
0 1 2 3 4 5 6 7 8 9
9.9 11.2 9.9 10.2 9.7 9.0 9.9 10.4 9.8 9.9

We can visualize on a graph how the first example looks like. It is labelled as 5:

y_train[1]

[1] 5

Let us create a function to change a training example with its 784 characteristics back to a matrix
of 28x28 pixels, and then, let us define another small function to plot this matrix.

rotate <- function(x) t(apply(x, 2, rev))
convert_example_tibble <- function(example){

rotate(example) %>%
reshape2::melt(c("xx", "yy"),

value.name = "grey_scale") %>%
as_tibble()

}

plot_example <- function(example){
ggplot(data = convert_example_tibble(example),

mapping = aes(x = xx, y = yy, fill = grey_scale))+
geom_tile() +
coord_equal() +

6.1. NEURAL NETWORKS 349

scale_fill_gradient("Grey Scale", low = "white", high = "black")
}

plot_example(x_train[1,,])

0

10

20

0 10 20
xx

yy

0

50

100

150

200

250
Grey Scale

Figure 6.3: The first observation in the training set is a 5.

The first 10 observations from MNIST training set :

map_df(1:10, ~convert_example_tibble(x_train[.,,]), .id = "ind") %>%
mutate(ind = as.numeric(ind)) %>%
left_join(tibble(y = y_train[1:10], ind = 1:10),

by = "ind") %>%
mutate(lab = str_c("ex. ", ind, ": ", y)) %>%
ggplot(data = .,

mapping = aes(x = xx, y = yy, fill = grey_scale))+
geom_tile() +
coord_equal() +
scale_fill_gradient("Grey Scale", low = "white", high = "black") +
facet_wrap(~lab, ncol = 5) +
theme(axis.text = element_blank(), axis.ticks = element_blank()) +
labs(x = NULL, y = NULL)

350 CHAPTER 6. DEEP LEARNING

ex. 5: 9 ex. 6: 2 ex. 7: 1 ex. 8: 3 ex. 9: 1

ex. 1: 5 ex. 10: 4 ex. 2: 0 ex. 3: 4 ex. 4: 1

0

50

100

150

200

250
Grey Scale

Figure 6.4: The first 10 observations from the MNIST dataset.

Figure 6.5 shows a diagram explaining the architecture of a multilayer perceptron suitable to
classify the observations from the MNIST dataset. It has two hidden layers.

X"

X#

…

X%

A"(")

A#(")

A)(")

…

A*+
(")

Input Layer Hidden Layer
L" Output Layer

0
X. = 1 A.(") = 1

Features

Intercept
(bias)

f.(X)

f"(X)

f#(X)

f)(X)

f2(X)

f3(X)

f4(X)

f5(X)

f6(X)

A"(#)

A#(#)

…

A*7
(#)

A.(#) = 1

Hidden Layer
L#

f8(X)

1

2

3

4

5

6

7

8

9W" W# β

Figure 6.5: A Neural Network with p predictors, two hidden layer, and 10 outputs.

6.1. NEURAL NETWORKS 351

Input Layer

The first layer is the input layer. It contains 784 neurons (p = 784 pixels for an observation.

First Hidden Layer

The first hidden layer is made of S1 units/neurons. The s-th activation writes, for s = 1, . . . , S1:

A(1)
s = h(1)

s (x) (6.1.3)

= g

w(1)
s0 +

p∑
j=1

w
(1)
sj xj

 (6.1.4)

Each unit applies a nonlinear transformation to a linear combination of the data fed as input.
The input of the first hidden layer are the observations: the 784 features, and an intercept/bias.
The output of the S1 activations can then be used as inputs for the next layer. In total, there are
(784 + 1) × S1 weights to estimate in the matrix W1 of weights.

Second Hidden Layer

The second hidden layer is make of S2 units. The s-th activation writes, for s = 1, . . . , S2:

A(2)
s = h(2)

s (x) (6.1.5)

= g

w(2)
s0 +

S1∑
k=1

w
(2)
sk A

(1)
k

 (6.1.6)

Each unit receives the output of the previous layer as an input as well as an intercept. It then applies
a nonlinear transformation function g to a linear combination of the output of the previous layer
and an intercept. The output of the S2 units can then be given as input to the next layer. In total,
there are (S1 + 1) × S2 weights to estimate in the matrix W2 of weights.

Output Layer

The last layer is the output layer. As we wish to build a classifier for M = 10 classes, the last
output needs to contain M = 10 units. In a first step, 10 different models will be constructed,
using a linear combination of the input provided by the previous layer, i.e., the S2 values and an
intercept. Hence, for model m, with m = 0, 1, . . . , 9

352 CHAPTER 6. DEEP LEARNING

Zm = β0,m +
S2∑

s=1
βs,mh(2)

s (x) (6.1.7)

= β0,m +
S2∑

s=1
βs,mA(2)

s (6.1.8)

Each unit receives the output of the previous layer as an input as well as an intercept. It computes
a linear combination of these outputs of the previous layer and this intercept. In total, there are
(S2 + 1) × M weights to estimate in the matrix β of weights.

Then, in a second step, an activation function can be applied. Here, as we wish to obtain proba-
bilities associated to each of the classes (0, 1, . . . 9), the activation function is not applied to each
unit separately. We would like each unit to return the probability that an observation is of class
m, i.e., for m = 0, 1, . . . , 9), we would like to obtain:

fm(x) = P (y = m|x) . (6.1.9)

A way to do so is to use a softmax activation function:

fm(x) = exp(Zm)∑9
s=0 exp(Zs)

. (6.1.10)

6.1.2.1 Practice With Keras: classifier

Let us use Keras to create the architecture. We will use the keras_model_sequential() func-
tion to create a linear stack of layers. Our neural network will be made of two hidden layers with
S1 = 256 and S2 = 128 units in the first and in the second layers, respectively. These layers will
be densely connected (or, fully connected): each output from the previous layer is connected to
each input in the current layer. To create a layer, we can use the layer_dense() function. The
number of units in a later are specified with the units argument, while the activation function
is specified using the activation argument (if no activation is specified, the identity function is
applied).

Recall that each observation/training example is, in our case, a 28×28 matrix, stored in an array.
We will use the array_reshape() function from {reticulate} to reshape the observation to obtain
a matrix with each row corresponding to an observation and each column to a predictor.

x_train <- array_reshape(x_train, dim = c(nrow(x_train), 784))
x_test <- array_reshape(x_test, dim = c(nrow(x_test), 784))

6.1. NEURAL NETWORKS 353

Before feeding the data to the model, we need to preprocess it so that the values are scaled down
to [0, 1]. This helps the algorithm to converge to a solution. (The weights used are randomly
chosen with small values at the beginning of the optimisation iterative process. Scaling the input
– and output if it is a numeric variable – will reduce the problem complexity of the problem that
the neural network tries to solve). Here, as the pixels correspond to grayscale intensity (0: black,
255:white), we can simply divide the values by the maximum and will get values between 0 and
1.

x_train <- x_train/255

The response variable is for now numerical. Let us transform it to a qualitative (factor) variable.
Since the target has 10 classes, we will get a matrix with 10 columns, each containing a dummy
variable. We thus convert a vector of integers to a binary class matrix. This process is referred to
as one-hot encoding.

y_train <- to_categorical(y_train)

We also need to apply the same transformation to the test set:

x_test <- x_test/255
y_test <- to_categorical(y_test)

Lastly, just before we set up the architecture of the model, let us set some observations aside to
observe the performances of the model during the iterative training process. The model will train
on some data (train set), we will monitor its performances on unseen data (validation set). We do
this, because if we change the structure of the model, we need to be able to know which model
performs best. The test data will then be used to know how the “best” model may perform when
used on entirely new data. In a way, the data in the validation set may not serve to train the
model, but they are used to fine tune it. They are thus not entirely unseen.

n_valid <- round(.2*nrow(x_train))
ind_partial_valid <-

sample(1:nrow(x_train), size = n_valid, replace = FALSE)

x_train_partial <- x_train[-ind_partial_valid,]
x_validation <- x_train[ind_partial_valid,]

y_train_partial <- y_train[-ind_partial_valid,]
y_validation <- y_train[ind_partial_valid,]

354 CHAPTER 6. DEEP LEARNING

dim(x_train_partial)

[1] 48000 784

dim(x_validation)

[1] 12000 784

dim(y_train_partial)

[1] 48000 10

dim(y_validation)

[1] 12000 10

Here is our sequential model:

model_architecture <-
keras_model_sequential(name = "MNIST_Model") %>%
First hidden layer
layer_dense(units = 256, activation = "relu",

input_shape = 784) %>%
Second hidden layer
layer_dense(units = 128, activation = "relu") %>%
Output layer
layer_dense(units = 10, activation = 'softmax')

Let us have a look at the informations provided:

model_architecture

Model
Model: " MNIST_Model "

6.1. NEURAL NETWORKS 355

##
__

Layer (type) Output Shape
Param #

##
==

dense_2 (Dense) (None , 256)
200960

##
dense_1 (Dense) (None , 128)

32896
##
dense (Dense) (None , 10)

1290
##
##

==

Total params : 235 ,146
Trainable params : 235 ,146
Non - trainable params : 0
##

__

The first layer is the input data: there is 60,000 training examples, but we have not yet fed them
to the model. In the first hidden layer (dense_2) L1, the number of parameters to estimate is
(784+1)×256 = 200, 960. In the second hidden layer (dense_1) L2, the number of parameters
to estimate is (256 + 1) × 128 = 32, 896. In the output layer (dense), the number of parameters
to estimate is (128 + 1) × 10 = 1, 290.

Once the architecture of the model is set, we still need to decide:

1. which objective function to use (which loss function)
2. which optimizer to use
3. which metrics to evaluate during training and testing.

These three aspects are set through the compile() from {generics}. Let us use the following:

1. loss: since we want to build a classifier (the response variable/target is qualitative), we
can use the cross entropy (the model will seek to minimise the negative multinomial log-
likelihood)

356 CHAPTER 6. DEEP LEARNING

−
60,000∑

i=1

9∑
m=0

= yi,m log(fm(xi))

2. optimizer: we will use the default optimizer, called “rmsprop,” which is an extension of
gradient descent

• if we want to specifically set the learning rate and the decay to values, let us say 0.01
and 10−6, respectively, we can set the optimizer to :

optimizer_rmsprop(lr=0.01, decay = 1e-6)

3. metrics: the model will evaluate the accuracy through the iterations.

Let us do it (the changes are made in-place, we do not make a new assignment with <-):

model_architecture %>%
compile(

loss = "categorical_crossentropy",
optimizer = "rmsprop",
metrics = c("accuracy")

)

It is possible to use a user-defined loss function, and/or metrics.
To define a custom metric function, it is possible to use the custom_metric() function
from {keras}. The syntax is the following:

custom_metric(name, metric_fn)

where name is the desired name of the metric (a string), and metric_fn is a function with
the following signature function(y_true, y_pred), that accepts tensors.
However, there is a high chance that the metric we want to use has already been coded
(mean squarred error, accuracy, auc, crossentropy, cosine similarity, . . .)
To get the list of all the ready-to-use loss functions, we can type ?loss-functions in the
console.

Now that we are all set, the neural network can be trained, using the fit() function. We can
specify the number of epochs (we will only use 10 here) as well as the size of the batches (we will
set it to 128). Recall from the first hands-on session that increasing the size of the batches leads
to less noisy optimisation process (but fasten the computation). During the training, it is possible
to follow the loss and the desired metrics on the validation sample: we just need to provide the
validation set through a list to the validation_data argument.

6.1. NEURAL NETWORKS 357

mnist_model_hist <-
model_architecture %>%
fit(x_train_partial, y_train_partial,

epochs = 20, batch_size = 128,
validation_data = list(x_validation, y_validation))

During the training, after each epoch, the loss function is evaluated and the result is printed in
the console as well as plotted on a graph to monitor the process. As we also asked the accuracy
to be reported, it is computed after each epoch and reported both on the console and on a graph
too.

We assigned the output returned by fit() to an object we named mnist_model_hist. This
way, we can access the different metrics computed during the training process.

mnist_model_hist$metrics

$loss
[1] 0.294749498 0.115315005 0.076535478 0.054404959 0.041911248

0.031840410
[7] 0.024246907 0.018707141 0.015080354 0.012119832 0.009452516

0.007689864
[13] 0.006182983 0.005007274 0.005078920 0.004429060 0.003973258

0.003519077
[19] 0.002576303 0.002296944
##
$accuracy
[1] 0.9130625 0.9658750 0.9762292 0.9831458 0.9873750 0.9902500

0.9926667
[8] 0.9942709 0.9952708 0.9961458 0.9968750 0.9974583 0.9978750

0.9983959
[15] 0.9984583 0.9986042 0.9988125 0.9987292 0.9991041 0.9991875
##
$val_loss
[1] 0.15497054 0.11522171 0.08932213 0.09704802 0.09755370

0.10156651
[7] 0.08734521 0.08598512 0.09692394 0.09851355 0.12780029

0.11920659
[13] 0.12321968 0.14193113 0.13232668 0.14073463 0.13415202

0.14239880
[19] 0.16715638 0.16219296
##
$val_accuracy
[1] 0.9535000 0.9659167 0.9726667 0.9704167 0.9716667 0.9729167

0.9765834

358 CHAPTER 6. DEEP LEARNING

[8] 0.9760000 0.9762500 0.9773333 0.9742500 0.9760833 0.9780833
0.9743333

[15] 0.9771667 0.9757500 0.9780000 0.9778333 0.9756666 0.9775000

plot(mnist_model_hist)

lo
ss

ac
cu

ra
cy

5 10 15 20

0.0

0.1

0.2

0.3

0.925

0.950

0.975

1.000

epoch

data

training

validation

Figure 6.6: Accuracy and loss after each epoch, both on the training and validation sets.

Just for fun, we can also create our own graph:

as_tibble(mnist_model_hist$metrics) %>%
mutate(epoch = row_number()) %>%
pivot_longer(cols = -epoch) %>%
mutate(data = ifelse(str_detect(name, "ˆval_"), "validation", "training"),

name = str_remove(name, "ˆval_")) %>%
ggplot(data = .,

mapping = aes(x = epoch, y = value, colour = data)) +
geom_line() +

6.1. NEURAL NETWORKS 359

geom_point() +
scale_colour_manual("Sample",

values = c("validation" = "#E69F00",
"training" = "#0072B2")) +

facet_wrap(~name, scales = "free_y", ncol = 1)

loss

accuracy

5 10 15 20

0.925

0.950

0.975

1.000

0.0

0.1

0.2

0.3

epoch

va
lu

e

Sample

validation

training

Figure 6.7: Accuracy and loss after each epoch, custom made graph.

We reached an accuracy 99.92%.

We notice that after the third epoch, the accuracy in the training set becomes higher than that of
the validation set: we therefore face overfitting. We could then stop the training earlier to avoid
overfitting and still have fair predictive capacities.

Let us have a look at the performances of the model on the test set. To do so, we can use the
evaluate() function.

performances_test <- model_architecture %>%
evaluate(x_test, y_test)

360 CHAPTER 6. DEEP LEARNING

performances_test

loss accuracy
0.149107 0.979500

The accuracy in the test set is 97.95%.

To use the estimated model to make predictions, the function predict() can be used.

mnist_pred_test <- model_architecture %>% predict(x_test)

As we have a multi-class target variable (10 classes), the model returned probabilities of belonging
to each class. Hence, when we applied the predict() function on the test sample with 10, 000
observations, we obtain a matrix with 10, 000 rows and 10 columns.

For the first observation from the test sample, the predicted probabilities are the following:

mnist_pred_test[1,]

[1] 5.216950e -22 5.249442e -25 1.699038e -18 6.831150e -16 2.110166
e -27

[6] 5.990859e -20 3.190818e -32 1.000000 e+00 1.109502e -25 7.978255
e -18

While the observed value is:

y_test[1,]

[1] 0 0 0 0 0 0 0 1 0 0

The first observation from the test set, if we predict the class based on the highest estimated
probability is correctly predicted by the model.

6.1. NEURAL NETWORKS 361

We can make sure that the sum of the predicted probabilities, thanks to the softmax func-
tion used in the output layer, sum up to 1.

sum(mnist_pred_test[1,])

[1] 1

Let us have a look at the predictive capacities for each categories. To do so, we first need to obtain
the predicted class for each observation. We will predict the class of an observation based on the
highest probability estimated by the model among the k classes.

mnist_pred_test_class <-
as_tibble(mnist_pred_test, .name_repair = "unique") %>%
mutate(pred_class = max.col(.),

pred_class = seq(0,9)[pred_class]) %>%
magrittr::extract2("pred_class")

The observed class:

mnist_test_class <-
y_test %>%
as_tibble(.name_repair = "unique") %>%
mutate(y_class = max.col(.),

y_class = seq(0,9)[y_class]) %>%
magrittr::extract2("y_class")

The confusion table writes:

table(observed = mnist_test_class,
predicted = mnist_pred_test_class)

predicted
observed 0 1 2 3 4 5 6 7 8 9
0 974 0 0 2 0 0 1 1 2 0
1 0 1128 1 1 0 0 2 1 2 0
2 4 8 995 4 2 0 2 8 9 0
3 0 0 5 983 0 8 1 5 2 6
4 2 0 2 0 964 0 3 3 1 7
5 2 0 0 6 3 872 4 1 3 1

362 CHAPTER 6. DEEP LEARNING

6 4 3 1 1 9 2 936 0 2 0
7 0 6 5 1 1 0 0 1011 1 3
[getOption (" max.print ") est atteint -- 2 lignes omises]

A graph showing the percentage of correct predictions can be made. To that end, let us obtain
the percentage of correct predictions for each class.

table_pct_pred <-
tibble(
observed = factor(mnist_test_class, levels = 0:9),
predicted = factor(mnist_pred_test_class, levels = 0:9)

) %>%
group_by(observed) %>%
mutate(n_k = sum(n())) %>%
group_by(observed, predicted, n_k) %>%
count() %>%
mutate(pred_pct = n / n_k) %>%
ungroup() %>%
select(observed, predicted, pred_pct)

table_pct_pred

A tibble : 73 x 3
observed predicted pred_pct
<fct > <fct > <dbl >
1 0 0 0.994
2 0 3 0.00204
3 0 6 0.00102
4 0 7 0.00102
5 0 8 0.00204
6 1 1 0.994
7 1 2 0.000881
8 1 3 0.000881
9 1 6 0.00176
10 1 7 0.000881
... with 63 more rows

If we use this table directly, there will be missing cases. Let us complete it with 0 values when
there are 0 predictions made for a given class when the true class is of class k.

6.1. NEURAL NETWORKS 363

classes_mnist <-
levels(factor(mnist_test_class, levels = 0:9))

df_plot_pred_mnist <-
expand_grid(
observed = classes_mnist,
predicted = classes_mnist) %>%
left_join(

table_pct_pred
) %>%
mutate(pred_pct = replace_na(pred_pct, 0))

The graph showing the percentage of predicted classes for each observed class can then be plotted.

ggplot(data = df_plot_pred_mnist,
mapping = aes(x = predicted, y = observed,

fill = pred_pct,
label = round(pred_pct, 2))) +

geom_tile() +
geom_text(color = "white") +
scale_fill_gradient("% of\n correct pred.",

low = "#1E88E5", high = "#D81B60") +
labs(x = "Predicted", y = "Observed") +
theme(panel.background = element_blank())

364 CHAPTER 6. DEEP LEARNING

0.99 0 0 0 0 0 0 0 0 0

0 0.99 0 0 0 0 0 0 0 0

0 0.01 0.96 0 0 0 0 0.01 0.01 0

0 0 0 0.97 0 0.01 0 0 0 0.01

0 0 0 0 0.98 0 0 0 0 0.01

0 0 0 0.01 0 0.98 0 0 0 0

0 0 0 0 0.01 0 0.98 0 0 0

0 0.01 0 0 0 0 0 0.98 0 0

0 0 0 0.01 0.01 0 0 0 0.97 0.01

0 0 0 0 0.01 0 0 0.01 0 0.98

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9
Predicted

O
bs

er
ve

d

0.00

0.25

0.50

0.75

% of
 correct pred.

Figure 6.8: Percentage of predicted classes for each observed class.

Another way of looking at the predictive capacities consists in looking at the percentage of cor-
rectly predicted observation per class.

table_pct_pred_2 <-
tibble(
observed = factor(mnist_test_class, levels = 0:9),
predicted = factor(mnist_pred_test_class, levels = 0:9)

) %>%
mutate(correct = observed == predicted) %>%
group_by(observed) %>%
summarise(pct_correct = sum(correct) / n()) %>%
mutate(pct_incorrect = 1-pct_correct) %>%
pivot_longer(cols = -observed) %>%
mutate(name = factor(name,

levels = c("pct_correct", "pct_incorrect"),
labels = c("Correctly predicted",

"Incorrect predicted")))

6.1. NEURAL NETWORKS 365

The following graph can then be plotted.

ggplot(data = table_pct_pred_2,
mapping = aes(x = name, y = observed,

fill = value,
label = round(value, 2))) +

geom_tile() +
geom_text(color = "white") +
scale_fill_gradient("% of\n correct pred.",

low = "#1E88E5", high = "#D81B60") +
labs(x = "Accuracy of prediction", y = "Observed") +
theme(panel.background = element_blank())

0.99 0.01

0.99 0.01

0.96 0.04

0.97 0.03

0.98 0.02

0.98 0.02

0.98 0.02

0.98 0.02

0.97 0.03

0.98 0.02

0

1

2

3

4

5

6

7

8

9

Correctly predicted Incorrect predicted
Accuracy of prediction

O
bs

er
ve

d

0.25

0.50

0.75

% of
 correct pred.

Figure 6.9: Percentage of correctly or incorrectly predicted observations by observed class.

The output layer is made of 10 units. Let us have a look at what happens if we just change one
thing : the number of units in one of the hidden layers, such that it becomes very small compared
to the number of classes to be predicted. We will here set the number of units in the second layer
to only 2.

366 CHAPTER 6. DEEP LEARNING

model_architecture_2 <-
keras_model_sequential(name = "MNIST_Model_2") %>%
First hidden layer
layer_dense(units = 256, activation = "relu",

input_shape = 784) %>%
Second hidden layer
layer_dense(units = 2, activation = "relu") %>%
Output layer
layer_dense(units = 10, activation = 'softmax')

This is the only change. We will use the same optimizer and the same loss function.

model_architecture_2 %>%
compile(

loss = "categorical_crossentropy",
optimizer = "rmsprop",
metrics = c("accuracy")

)

Let us train the model over 20 epochs and a batch size of 128, as earlier.

mnist_model_2_hist <-
model_architecture_2 %>%
fit(x_train_partial, y_train_partial,

epochs = 20, batch_size = 128,
validation_data = list(x_validation, y_validation))

mnist_model_2_hist

We clearly note that the accuracy of the model dropped. This is because the information was too
compressed when going through the second layer.

as_tibble(mnist_model_hist$metrics) %>%
mutate(model = "Initial model",

epoch = row_number()) %>%
bind_rows(as_tibble(mnist_model_2_hist$metrics) %>%

mutate(model = "Second model",
epoch = row_number())) %>%

pivot_longer(cols = -c(epoch, model)) %>%
mutate(data = ifelse(str_detect(name, "ˆval_"),

6.1. NEURAL NETWORKS 367

"validation", "training"),
name = str_remove(name, "ˆval_")) %>%

ggplot(data = .,
mapping = aes(x = epoch, y = value, colour = data,

linetype = model)) +
geom_line() +
geom_point() +
scale_colour_manual("Sample",

values = c("validation" = "#E69F00",
"training" = "#0072B2")) +

facet_wrap(~name, scales = "free_y", ncol = 1) +
labs(y = NULL)

loss

accuracy

5 10 15 20

0.4

0.6

0.8

1.0

0.0

0.5

1.0

1.5

epoch

model

Initial model

Second model

Sample

validation

training

Figure 6.10: Accuracy and loss after each epoch, custom made graph.

To save the model using HDF5 files, {keras} provides the function save_model_hdf5().

368 CHAPTER 6. DEEP LEARNING

if(!dir.exists("deep_learning_models"))
dir.create("deep_learning_models")

model_architecture_2 %>%
save_model_hdf5("deep_learning_models/mnist_model.h5")

A model saved in a HDF5 file can then be loaded using the load_model_hdf5() function:

model_architecture_2 <-
load_model_hdf5("deep_learning_models/mnist_model.h5")

To destroy the current TensorFlow graph and create a new one, the function k_clear_session()
can be used. This is useful to avoid clutter from previous models or layers.

k_clear_session()

6.1.2.2 Practice With Keras: Regression

To illustrate how to build and estimate a neural network in a regression context, let us use the
Seoul bike data from the second hands-on session.

load(url("http://egallic.fr/Enseignement/ML/ECB/data/bike.rda"))

We have created new variable in the data during the second hands-on session. However, we still
need to pre-process the data a little bit. While some functions such as lm(), svm() or glm()
automatically create dummy variables in the design matrix whenever it contains a qualitative
variable, this is not the case with the functions we use in {keras}. We thus need to manually
transform categorical variables to dummy variables. We can use the dummy_cols() function
from {fastDummies} to create dummy variables from character or factors. Here is a simple
example:

library(fastDummies)
tibble(x = c("A", "B", "C"),

y = factor(c("mon", "tue", "wed")),
z = 1:3) %>%

Creating dummies for chr and fct
dummy_cols(

remove_first_dummy = TRUE,
remove_selected_columns = TRUE)

A tibble : 3 x 5

6.1. NEURAL NETWORKS 369

z x_B x_C y_tue y_wed
<int > <int > <int > <int > <int >
1 1 0 0 0 0
2 2 1 0 1 0
3 3 0 1 0 1

By setting remove_first_dummy = TRUE, we make sure to remove the first dummy of each
categorical variable (to avoid colinearity), and by setting remove_selected_columns = TRUE
we remove the original column from the table.

Let us do it with the bike dataset:

x_data <-
bike %>%
select(-date, -rented_bike_count, -y_binary) %>%
dummy_cols(

remove_first_dummy = TRUE,
remove_selected_columns = TRUE)

The variable to predict (the target) is the number of bikes rented each hour:

y_data <- bike$rented_bike_count

Let us create the training and the test sets. For the moment, let us ignore the fact that bicycle
rental data can be regarded as time-series. We will discuss sequentiality in the data later.

n_train <- round(.8*nrow(x_data))
set.seed(123)
ind_train <- sample(1:nrow(x_data), size = n_train, replace = FALSE)

The train set:

x_train <- x_data[ind_train,]
y_train <- y_data[ind_train]
dim(x_train)

[1] 6772 31

370 CHAPTER 6. DEEP LEARNING

length(y_train)

[1] 6772

And the test set:

x_test <- x_data[-ind_train,]
y_test <- y_data[-ind_train]
dim(x_test)

[1] 1693 31

length(y_test)

[1] 1693

Let us scale the data, by removing to each variable xj , j = 1, . . . , p its mean xj and by dividing
the result by its standard deviation σxk

: xj−xj

σxj
. We thus need to compute the mean and standard

deviation of each variable in the training test:

mean_train <- apply(x_test, 2, mean)
std_train <- apply(x_test, 2, sd)

Then, the data from both the train and test set can be scaled:

x_train <- scale(x_train, center = mean_train, scale = std_train)
x_test <- scale(x_test, center = mean_train, scale = std_train)

Note that the data from the test set were scaled using the means and standard deviations
computed on the train set.

Let us create a function that defines the model depending on the train data. As the number of
observation is modest, we will only consider a small network with three hidden layers. We will
monitor the Mean Absolute Error (MAE) :

6.1. NEURAL NETWORKS 371

MAE = 1
n

n∑
i=1

|yi − ŷi|.

model_structure_bike <- function(train_data) {
model <-

keras_model_sequential() %>%
First hidden layer
layer_dense(units = 128, activation = "relu",

input_shape = dim(train_data)[[2]]) %>%
Second hidden layer
layer_dense(units = 128, activation = "relu") %>%
Third hidden layer
layer_dense(units = 64, activation = "relu") %>%
Output layer
layer_dense(units = 1)

model %>%
compile(
optimizer = "rmsprop",
loss = "mse",
metrics = c("mae")

) }

We will use 5-fold cross-validation to evaluate the neural network. We do so because we will need
to adjust some parameters of the model to find one that suits us (we can change the number of
hidden layers and their number of respective units, the number of epochs, the batch size, and so
on). We therefore need to compare the models with each other.

nb_folds <- 5

Here are the assignment of the folds:

set.seed(123)
folds <- sample(rep(1:nb_folds, length=nrow(x_train)))

Let us set the number of epoch to 10 and the batch size to 1. Recall from the first hands-on
session that setting the batch size to 1 means that during an epoch, each observation will be used
in turn to update the parameters of the models.

372 CHAPTER 6. DEEP LEARNING

num_epochs <- 10
batch_size <- 32

loss_and_metrics <- NULL

By using verbose = 0 in the functions fit() and evaluate(), the model is trained silently,
without either plotting the loss and MAE nor printing the values in the console.

for(k in 1:nb_folds){
cat(str_c("\nFold number: ", k, "\n"))

ind_current <- folds != k

Train set
x_train_partial <- x_train[which(ind_current),]
y_train_partial <- y_train[which(ind_current)]

Validation set
x_train_valid <- x_train[which(!ind_current),]
y_train_valid <- y_train[which(!ind_current)]

Building the model
model <- model_structure_bike(x_train_partial)

Training the model on the training set
model %>%

fit(x_train_partial, y_train_partial,
epochs = num_epochs, batch_size = batch_size, verbose = 0)

Evaluating its performances on test data
results_current <- model %>%

evaluate(x_train_valid, y_train_valid, verbose = 0)

Store loss and metrics
loss_and_metrics <-

loss_and_metrics %>% bind_rows(
as_tibble(t(results_current)) %>%

mutate(fold = k)
)

6.1. NEURAL NETWORKS 373

}

The computed metrics with thus version of the neural network:

loss_and_metrics

A tibble : 5 x 3
loss mae fold
<dbl > <dbl > <int >
1 131442. 243. 1
2 140303. 255. 2
3 123807. 239. 3
4 119251. 234. 4
5 120723. 243. 5

The average of the the Mean Average Error over the folds is:

mean(loss_and_metrics$mae)

[1] 242.6967

That means that on average, our predictions are off by NA bikes. This is quite high, when
compared to the distribution of the target variable.

summary(y_train)

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.0 214.0 539.5 730.0 1087.0 3556.0

Let us train the model over more epochs to see if it yields better results. Let us train it over 50
epochs.

num_epochs <- 800
batch_size <- 32

loss_and_metrics_2 <- vector(mode = "list", length = nb_folds)

374 CHAPTER 6. DEEP LEARNING

Warning: the following code takes about 15 minutes to run on a standard computer.

This time, let us keep track of the training history as in the first example with the MNIST dataset.

library(tictoc)

results <- vector(mode = "list", length = nb_folds)

tic()
for(k in 1:nb_folds){

cat(str_c("\nFold number: ", k, "\n"))

ind_current <- folds != k

Train set
x_train_partial <- x_train[which(ind_current),]
y_train_partial <- y_train[which(ind_current)]

Validation set
x_train_valid <- x_train[which(!ind_current),]
y_train_valid <- y_train[which(!ind_current)]

Building the model
model <- model_structure_bike(x_train_partial)

Training the model on the training set
history <-

model %>%
fit(x_train_partial, y_train_partial,

validation_data = list(x_train_valid, y_train_valid),
epochs = num_epochs, batch_size = batch_size, verbose = 0)

Evaluating its performances on test data
results_current <- model %>%

evaluate(x_train_valid, y_train_valid, verbose = 0)

results[[k]] <- results_current

Store loss and metrics

6.1. NEURAL NETWORKS 375

loss_and_metrics_2[[k]] <- history
}
toc()

Let us compute, for each epoch, the average of the 5-folds MAE both on the train and on the
validation samples:

mae_mean_folds <-
map(loss_and_metrics_2, "metrics") %>%
map("val_mae") %>%
map_df(~as_tibble(.) %>% mutate(epoch = row_number()),

.id = "fold") %>%
mutate(sample = "validation") %>%
bind_rows(

map(loss_and_metrics_2, "metrics") %>%
map("mae") %>%
map_df(~as_tibble(.) %>% mutate(epoch = row_number()),

.id = "fold") %>%
mutate(sample = "train")

) %>%
group_by(epoch, sample) %>%
summarise(mae = mean(value), .groups = "drop")

mae_mean_folds

A tibble : 1 ,600 x 3
epoch sample mae
<int > <chr > <dbl >
1 1 train 440.
2 1 validation 300.
3 2 train 281.
4 2 validation 269.
5 3 train 263.
6 3 validation 264.
7 4 train 255.
8 4 validation 255.
9 5 train 250.
10 5 validation 258.
... with 1 ,590 more rows

Let us have a look at the metrics over the epochs:

376 CHAPTER 6. DEEP LEARNING

ggplot(data = mae_mean_folds,
mapping = aes(x = epoch, y = mae, colour = sample)) +

geom_line() +
scale_colour_manual("Sample",

values = c("validation" = "#E69F00",
"train" = "#0072B2")) +

labs(x = "Epoch", y = "MAE (validation sample)")

100

200

300

400

0 200 400 600 800
Epoch

M
A

E
 (

va
lid

at
io

n
sa

m
pl

e)

Sample

validation

train

Figure 6.11: Mean Absolute Error (MAE) computed on the validation samples, over the epochs

The model overfits. The MAE seems to be stable after around 400 epochs. To avoid overfitting
while keeping the number of observations constant, we can reduce both the number of layers and
the number of units in them. We could also add weight regularization and add dropout. More on
those aspects will be presented below.

Trying to adjust the model to find an architecture and hyperparameters that provides good results
takes some time (this process is . It is possible to use a grid as in the second hands-on session to
loop over different configurations of the network. After we have found a model that suits us, we
can train a final one, which can then be used to make predictions on unseen data.

6.1. NEURAL NETWORKS 377

Warning: the following code takes about 5 minutes to run on a standard machine.

Let us say our final model is the following one:

num_epochs <- 400
batch_size <- 32
model <- model_structure_bike(x_train)
model %>%

fit(x_train, y_train,
epochs = num_epochs, batch_size = batch_size, verbose = 0)

When estimating the final model, we use the hyperparameters that lead to the best results, and
we use the whole training dataset to train the algorithm.

The predictive abilities of the model on unseen data:

results_test <- model %>% evaluate(x_test, y_test)
results_test

loss mae
31469.1484 105.7719

6.1.2.3 Regularisation techniques

6.1.2.3.1 Weight Regularization Recall Emanuelle Flachaire’s course about penalised regres-
sions such as Lasso, Ridge, or Elastic Net. In those regressions, the model is penalised for having
too many variables. This is done through the introduction of a constraint in the model equation
(and therefore in the loss function to be minimised).

The same idea of regularisation has been introduced in neural networks, to put some constraints
on the complexity of the network, to avoid overfitting. These constraints are applied to the
weights to force them to take only small values. Lasso (L1 norm) or Ridge (L2 norm/weight
decay) regularisation on weights can be used.

Weight regularisation to the neural network with Keras is done by specifying the layer_dense()
function with the argument kernel_regularizer. For example, for a L1 norm, we can use
kernel_regularizer = regularizer_l1(l = 0.01), while for a L2 norm, we can use
kernel_regularizer = regularizer_l2(l = 0.01).

To illustrate how regularisation techniques help to avoid overfitting, we will create a network
that overfits. The risk of overfitting increases with the complexity of the model (controlled by

378 CHAPTER 6. DEEP LEARNING

the number of hidden layers and their respective number of units) and with the number of epochs
the model is trained over.

Consider, again, the Seoul bike data. We will build a classifier to try to predict the binary variable
y_binary that indicates whether the number of bikes rented per hours is belo 300 (“Low”) or
not (“High”).

x_data <-
bike %>%
select(-date, -rented_bike_count, -y_binary) %>%
dummy_cols(

remove_first_dummy = TRUE,
remove_selected_columns = TRUE)

1 if "Low", 0 otherwise
y_data <- to_categorical(ifelse(bike$y_binary == "Low", yes = 1, no = 0))
y_data <- ifelse(bike$y_binary == "Low", yes = 1, no = 0)

The first 80% observations are kept for the train set and the remaining for the test set.

n_train <- round(.8*nrow(x_data))
set.seed(123)
ind_train <- sample(1:nrow(x_data), size = n_train, replace = FALSE)

The training test is thus:

x_train <- x_data[ind_train,]
y_train <- y_data[ind_train]
dim(x_train)

[1] 6772 31

length(y_train)

[1] 6772

And the test set:

6.1. NEURAL NETWORKS 379

x_test <- x_data[-ind_train,]
y_test <- y_data[-ind_train]
dim(x_test)

[1] 1693 31

length(y_test)

[1] 1693

The predictors can be scaled as previously, by demeaning with the values from the train set and
dividing by the standard deviation, for each predictor.

mean_train <- apply(x_test, 2, mean)
std_train <- apply(x_test, 2, sd)
x_train <- scale(x_train, center = mean_train, scale = std_train)
x_test <- scale(x_test, center = mean_train, scale = std_train)

The predictive capacities of the model will be assessed on unseen data using 3-fold cross validation.
The folds are assigned randomly:

nb_folds <- 3
set.seed(123)
folds <- sample(rep(1:nb_folds, length=nrow(x_train)))

Let us define a function constructing the architecture of the model, depending on the regularisa-
tion parameter of the L2 regularisation.

model_structure_bike_l2 <- function(train_data, l=0.01) {
model <-

keras_model_sequential() %>%
First hidden layer
layer_dense(units = 32, activation = "relu",

input_shape = dim(train_data)[[2]],
kernel_regularizer = regularizer_l2(l)) %>%

Second hidden layer

380 CHAPTER 6. DEEP LEARNING

layer_dense(units = 64, activation = "relu",
kernel_regularizer = regularizer_l2(l)) %>%

Third hidden layer
layer_dense(units = 32, activation = "relu",

kernel_regularizer = regularizer_l2(l)) %>%
Output layer
layer_dense(units = 1, activation = "sigmoid")

model %>%
compile(

optimizer = "rmsprop",
loss = "binary_crossentropy",
metrics = c("accuracy",

metric_true_positives(name = "tp"),
metric_true_negatives(name = "tn"),
metric_false_positives(name = "fp"),
metric_false_negatives(name = "fn"))

)
}

Notice that the metrics argument of the compile() function takes a vector of arguments.
Along with the accuracy, the number of true positives, true negatives, false positives, and
false negatives will be reported, both for the train and the validation sets at each epoch,
for each step of the k-fold cross-validation.

Let us train a model on 300 epochs, with a batch size of 512 observations.

num_epochs <- 300
batch_size <- 512

metrics_regul <-
vector(mode = "list", length = nb_folds)

for(k in 1:nb_folds){
cat(str_c("\nFold number: ", k, "\n"))

ind_current <- folds != k

6.1. NEURAL NETWORKS 381

Train set
x_train_partial <- x_train[which(ind_current),]
y_train_partial <- y_train[which(ind_current)]

Validation set
x_train_valid <- x_train[which(!ind_current),]
y_train_valid <- y_train[which(!ind_current)]

Building the model
model_with_regul <- model_structure_bike_l2(x_train_partial, l = 0.01)

Training the model on the training set
history <-

model_with_regul %>%
fit(x_train_partial, y_train_partial,

validation_data = list(x_train_valid, y_train_valid),
epochs = num_epochs, batch_size = batch_size, verbose = 0)

Store loss and metrics
metrics_regul[[k]] <- history

}

For comparison, a model without regularisation can be trained. First, a function that creates the
architecture of the model can be defined.

model_structure_bike <- function(train_data) {
model <-

keras_model_sequential() %>%
First hidden layer
layer_dense(units = 32, activation = "relu",

input_shape = dim(train_data)[[2]]) %>%
Second hidden layer
layer_dense(units = 64, activation = "relu") %>%
Third hidden layer
layer_dense(units = 32, activation = "relu") %>%
Output layer
layer_dense(units = 1, activation = "sigmoid")

model %>%

382 CHAPTER 6. DEEP LEARNING

compile(
optimizer = "rmsprop",
loss = "binary_crossentropy",
metrics = c("accuracy",

metric_true_positives(name = "tp"),
metric_true_negatives(name = "tn"),
metric_false_positives(name = "fp"),
metric_false_negatives(name = "fn"))

)
}

Then, the predictive abilities of the model can be assessed on the validation sets during the 3-fold
cross-validation.

num_epochs <- 500
batch_size <- 512

metrics_without_regul <-
vector(mode = "list", length = nb_folds)

for(k in 1:nb_folds){
cat(str_c("\nFold number: ", k, "\n"))

ind_current <- folds != k

Train set
x_train_partial <- x_train[which(ind_current),]
y_train_partial <- y_train[which(ind_current)]

Validation set
x_train_valid <- x_train[which(!ind_current),]
y_train_valid <- y_train[which(!ind_current)]

Building the model
model <- model_structure_bike(x_train_partial)

Training the model on the training set
history <-

6.1. NEURAL NETWORKS 383

model %>%
fit(x_train_partial, y_train_partial,

validation_data = list(x_train_valid, y_train_valid),
epochs = num_epochs, batch_size = batch_size, verbose = 0)

Store loss and metrics
metrics_without_regul[[k]] <- history

}

Let us define a function to extract the metric values from the history stored during the k-fold
cross-validation process. This function will return the average over the k folds for each epoch, in
a tibble.

#' @param k_fold_history list with the training history during the k-fold CV
#' @param metric (string) name of the metric to extract from the history
history_to_tibble <- function(k_fold_history, metric){

map(k_fold_history, "metrics") %>%
Metrics on the validation sets
map(str_c("val_",metric)) %>%
map_df(~as_tibble(.) %>% mutate(epoch = row_number()),

.id = "fold") %>%
mutate(sample = "validation") %>%
bind_rows(

map(k_fold_history, "metrics") %>%
map(metric) %>%
map_df(~as_tibble(.) %>% mutate(epoch = row_number()),

.id = "fold") %>%
mutate(sample = "train")

) %>%
group_by(epoch, sample) %>%
summarise(!!sym(metric) := mean(value), .groups = "drop") %>%
mutate(sample = factor(sample, levels = c("validation", "train")))

}

Let us apply this function to the list containing the history of the training without regulation,
and then with a L2 regularization.

df_metrics_regul <-
history_to_tibble(metrics_without_regul, "accuracy") %>%

384 CHAPTER 6. DEEP LEARNING

mutate(type = "Without regularisation") %>%
bind_rows(

history_to_tibble(metrics_regul, "accuracy") %>%
mutate(type = "L2 regularisation (l=0.01)")

)

df_metrics_regul

A tibble : 1 ,200 x 4
epoch sample accuracy type
<int > <fct > <dbl > <chr >
1 1 train 0.685 Without regularisation
2 1 validation 0.737 Without regularisation
3 2 train 0.769 Without regularisation
4 2 validation 0.789 Without regularisation
5 3 train 0.800 Without regularisation
6 3 validation 0.807 Without regularisation
7 4 train 0.814 Without regularisation
8 4 validation 0.816 Without regularisation
9 5 train 0.823 Without regularisation
10 5 validation 0.822 Without regularisation
... with 1 ,190 more rows

Then we can look at the results:

6.1. NEURAL NETWORKS 385

0.7

0.8

0.9

0 100 200 300
Epoch

A
cc

ur
ac

y

Sample validation train

Regularisation Without regularisation L2 regularisation (l=0.01)

Figure 6.12: Accuracy with or without regularisation.

We note that the model with L2 regularisation is less prone to overfitting than the model
where no penalisation on the weights was applied.

6.1.2.3.2 Dropout Consider a layer with its S1 units: it outputs S1 values. When dropout is
applied to a layer, some of its outputs are randomly set to 0: they are dropped out. During the
training process, a fraction of the outputs of the layer to which dropout is applied are set to zero:
this fraction is called the dropout rate.

This corresponds to assigning to each unit of the layer a probability of being dropped out, during
each iterations of the training phase. Usually, the droupout rate rate of a hidden layer is set to
0.5.

During the test phase, none of the outputs of the units will be set to 0. Instead, the output of the
layer, at the time of the test, is scaled to take into account that the outputs of some of the units
have been randomly set to 0.

386 CHAPTER 6. DEEP LEARNING

It is therefore a technique that adds noise, in order to prevent the model from learning certain
particularities that are specific to the training data and that cannot then be generalised to the whole
data set.

Let us look at a simple example with a small neural network with. Then, we can look at how to
perform dropout in R.

Assume that we have only 4 explanatory variables, 2 hidden layers (the first one with 5 unites and
the second with 4 unit), and that we want to predict a numerical output variable. Let us apply
dropout regularisation only on the second hidden layer. The corresponding architecture of the
network is depicted in Figure 6.13.

X"

X#

X$

X%

A"(")

A#(")

A$(")

A%(")

A)
(")

Input Layer Hidden Layer
L" Output Layer

X+ = 1 A+(") = 1

Features

Intercept
(bias)

f+(X)

A"(#)

A#(#)

A$(#)

A%(#)

A+(#) = 1

Hidden Layer
L#

W" W# β

Figure 6.13: Estimated parameters of the model before applying the droupout.

Now, let us say that we apply dropout regularisation to the first and second hidden layers, using
a dropout rate of .5. For each layer, on average, .5 of the units will be dropped out at each
iteration. Assume that for our current example, the 2nd and 4th unit of the first hidden layer
were randomly picked to be dropped out, as well as the first two units of the second hidden layer.
The situation is illustrated in 6.14.

6.1. NEURAL NETWORKS 387

X"

X#

X$

X%

A"(")

A#(")

A$(")

A%(")

A)
(")

Input Layer Hidden Layer
L" Output Layer

X+ = 1 A+(") = 1

Features

Intercept
(bias)

f+(X)

A"(#)

A#(#)

A$(#)

A%(#)

A+(#) = 1

Hidden Layer
L#

W" W# β

Figure 6.14: Dropout regularisation: each unit of the hidden layer has a probability to be dropped
out.

One of the most used techniques to implement this dropout regularisation is called inverted
dropout. Let us use some R codes to illustrate how it is applied. Let us define the weight matrices
as well as the matrix of coefficients β (we assume the following values obtained from previous
iteration of the backward propagation algorithm).

Let us simulate some data.

set.seed(123)
x <- rnorm(4)

Assume that our weight matrix W1 is:

W_1 <- matrix(round(rnorm(20), 2), ncol = 5)
colnames(W_1) <- str_c("L1 Unit ", 1:5)
W_1

L1 Unit 1 L1 Unit 2 L1 Unit 3 L1 Unit 4 L1 Unit 5
[1,] 0.13 -0.69 0.40 0.50 -1.07
[2,] 1.72 -0.45 0.11 -1.97 -0.22
[3,] 0.46 1.22 -0.56 0.70 -1.03

388 CHAPTER 6. DEEP LEARNING

[4,] -1.27 0.36 1.79 -0.47 -0.73

The weight matrix W2:

W_2 <- matrix(round(rnorm(20), 2), ncol = 4)
colnames(W_2) <- str_c("L2 Unit ", 1:4)
W_2

L2 Unit 1 L2 Unit 2 L2 Unit 3 L2 Unit 4
[1,] -0.63 1.25 0.82 -0.38
[2,] -1.69 0.43 0.69 -0.69
[3,] 0.84 -0.30 0.55 -0.21
[4,] 0.15 0.90 -0.06 -1.27
[5,] -1.14 0.88 -0.31 2.17

And the β matrix:

beta <- c(0.23, -0.10, 0.13, 0.02)

Then the bias:

bias_0 <- rnorm(5)
bias_1 <- rnorm(4)
bias_2 <- rnorm(1)

bias_0

[1] 1.2079620 -1.1231086 -0.4028848 -0.4666554 0.7799651

bias_1

[1] -0.08336907 0.25331851 -0.02854676 -0.04287046

bias_2

6.1. NEURAL NETWORKS 389

[1] 1.368602

Each unit of the first hidden layer makes a linear combination of the inputs, using the current
weights.

linear_comb_layer_1 <- x %*% W_1 + bias_0
linear_comb_layer_1

L1 Unit 1 L1 Unit 2 L1 Unit 3 L1 Unit 4 L1 Unit 5
[1,] 1.366655 1.294207 -1.399061 0.7645134 -0.2266276

Then, let us say we use a ReLU function for the first hidden layer. The output value of each unit
is then:

A_k_layer_1 <- relu_f(linear_comb_layer_1)
A_k_layer_1

[1] 1.3666550 1.2942066 0.0000000 0.7645134 0.0000000

The linear combination made in the second layer, by each unit:

linear_comb_layer_2 <- A_k_layer_1 %*% W_2 + bias_1
linear_comb_layer_2

L2 Unit 1 L2 Unit 2 L2 Unit 3 L2 Unit 4
[1,] -3.016894 3.206208 1.939242 -2.426134

Assume we also use a ReLU function for the second hidden layer. The output value of each unit
is then:

A_k_layer_2 <- relu_f(linear_comb_layer_2)
A_k_layer_2

[1] 0.000000 3.206208 1.939242 0.000000

390 CHAPTER 6. DEEP LEARNING

Lastly, assuming the identity function as the activation function in the output layer, the prediction
is:

pred <- A_k_layer_2 %*% beta + bias_2
pred

[,1]
[1,] 1.300083

Now, let us apply inverted dropout regularisation. If we want a dropout rate of .2 (and not .5 as
previously), it means that the proportion of the units we want to keep is equal to .8.

keep_rate <- .8

The choice of which units is made silent or not, is actually made through the weights. A random
draw from a Bernoulli distribution with parameter p = .8 is made for each of the weights.

kept_units_L1 <-
matrix(rbinom(n=length(W_1), size = 1, prob = keep_rate), ncol = ncol(W_1))

kept_units_L1

[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 1 1
[2,] 1 0 0 1 0
[3,] 0 1 1 1 1
[4,] 1 1 1 1 1

The same applies for the second hidden layer:

kept_units_L2 <-
matrix(rbinom(n=length(W_2), size = 1, prob = keep_rate), ncol = ncol(W_2))

kept_units_L2

[,1] [,2] [,3] [,4]
[1,] 1 1 0 1
[2,] 1 1 1 0
[3,] 1 1 1 1
[4,] 0 0 1 1
[5,] 1 1 1 1

6.1. NEURAL NETWORKS 391

The matrix of weights W1 then becomes:

W_1_dropout <- W_1 * kept_units_L1
W_1_dropout

L1 Unit 1 L1 Unit 2 L1 Unit 3 L1 Unit 4 L1 Unit 5
[1,] 0.13 -0.69 0.40 0.50 -1.07
[2,] 1.72 0.00 0.00 -1.97 0.00
[3,] 0.00 1.22 -0.56 0.70 -1.03
[4,] -1.27 0.36 1.79 -0.47 -0.73

These weight still need some adjustments: they need to be scaled. Recall from earlier that the
k-th activation in the second layer writes:

A
(2)
k = g

w
(2)
k0

+
S1∑

s=1
w

(2)
ks A(1)

s

As on average, a proportion of weights equal to the probability for a unit to be kept is forced to
be zero, the expected value of

∑S1
s=1 w

(2)
ks A

(1)
s) will be lowered by the dropout rate (i.e., 20% in

our example). A way to avoid this diminished expected value consists in dividing the weights by
the theoretical proportion of kept units:

W_1_dropout <- W_1_dropout/keep_rate
W_1_dropout

L1 Unit 1 L1 Unit 2 L1 Unit 3 L1 Unit 4 L1 Unit 5
[1,] 0.1625 -0.8625 0.5000 0.6250 -1.3375
[2,] 2.1500 0.0000 0.0000 -2.4625 0.0000
[3,] 0.0000 1.5250 -0.7000 0.8750 -1.2875
[4,] -1.5875 0.4500 2.2375 -0.5875 -0.9125

The activations then become:

A_k_layer_1_dropout <- relu_f(x %*% W_1_dropout + bias_0)
A_k_layer_1_dropout

[1] 0.510071 1.769061 0.000000 1.072306 0.000000

392 CHAPTER 6. DEEP LEARNING

The matrix of weights W2 becomes:

W_2_dropout <- W_2 * kept_units_L2 / keep_rate
W_2_dropout

L2 Unit 1 L2 Unit 2 L2 Unit 3 L2 Unit 4
[1,] -0.7875 1.5625 0.0000 -0.4750
[2,] -2.1125 0.5375 0.8625 0.0000
[3,] 1.0500 -0.3750 0.6875 -0.2625
[4,] 0.0000 0.0000 -0.0750 -1.5875
[5,] -1.4250 1.1000 -0.3875 2.7125

The activations of the second layer are then:

A_k_layer_2_dropout <- relu_f(A_k_layer_1_dropout %*% W_2_dropout + bias_1)
A_k_layer_2_dropout

[1] 0.000000 2.001175 1.416845 0.000000

Then the prediction becomes:

pred_dropout <- A_k_layer_2_dropout %*% beta + bias_2
pred_dropout

[,1]
[1,] 1.352675

Then a backward pass can be made to compute gradient and then the parameters can be updated.
At each iteration of the algorithm, the units that are dropped out are randomly selected. This
whole process creates noise in the in the output values of the layers. The model generalises better
and thus avoids capturing specificities of the learning sample.

When making predictions with the trained network, no units are dropped out.

To use dropout regularisation with Keras is set with the layer_dropout() function from {keras}.
This function needs to be applied right before the layer_dense() function. The dropout rate
is specified through the rate argument.

6.1. NEURAL NETWORKS 393

model_structure_bike_dropout <- function(train_data) {
model <-

keras_model_sequential() %>%
First hidden layer
layer_dense(units = 32, activation = "relu",

input_shape = dim(train_data)[[2]]) %>%
Second hidden layer
layer_dropout(rate = .4) %>%
layer_dense(units = 64, activation = "relu") %>%
Third hidden layer
layer_dropout(rate = .4) %>%
layer_dense(units = 32, activation = "relu") %>%
Output layer
layer_dense(units = 1, activation = "sigmoid")

model %>%
compile(

optimizer = "rmsprop",
loss = "binary_crossentropy",
metrics = c("accuracy",

metric_true_positives(name = "tp"),
metric_true_negatives(name = "tn"),
metric_false_positives(name = "fp"),
metric_false_negatives(name = "fn"))

)
}

The model can be trained using 3-fold cross validation and a dropout rate of .2 applied to the
second and third hidden layers. As earlier, the model is trained over 300 epochs, using a batch
size of 512 observations.

num_epochs <- 300
batch_size <- 512

metrics_dropout <-
vector(mode = "list", length = nb_folds)

for(k in 1:nb_folds){
cat(str_c("\nFold number: ", k, "\n"))

394 CHAPTER 6. DEEP LEARNING

ind_current <- folds != k

Train set
x_train_partial <- x_train[which(ind_current),]
y_train_partial <- y_train[which(ind_current)]

Validation set
x_train_valid <- x_train[which(!ind_current),]
y_train_valid <- y_train[which(!ind_current)]

Building the model
model_with_dropout <- model_structure_bike_dropout(x_train_partial)

Training the model on the training set
history <-

model_with_dropout %>%
fit(x_train_partial, y_train_partial,

validation_data = list(x_train_valid, y_train_valid),
epochs = num_epochs, batch_size = batch_size, verbose = 0)

Store loss and metrics
metrics_dropout[[k]] <- history

}

Let us apply the function we previously defined (history_to_tibble()) to the list containing
the history of the training with the dropout regulation

df_metrics_regul <-
history_to_tibble(metrics_without_regul, "accuracy") %>%
mutate(type = "Without regularisation") %>%
bind_rows(

history_to_tibble(metrics_regul, "accuracy") %>%
mutate(type = "L2 regularisation (l=0.01)")

) %>%
bind_rows(

history_to_tibble(metrics_dropout, "accuracy") %>%
mutate(type = "Dropout regularisation (rate=.4)")

)

6.2. RECURRENT NEURAL NETWORKS 395

Then we can look at the results:

0.6

0.7

0.8

0.9

0 100 200 300
Epoch

A
cc

ur
ac

y
(v

al
id

at
io

n
sa

m
pl

e)

Regularisation Without regularisation L2 regularisation (l=0.01) Dropout regularisation (rate=.4)

Sample validation train

Figure 6.15: Accuracy with or without regularisation (L2 or dropout)

We note that using regularisation techniques, the model is less prone to overfitting.

6.2 Recurrent Neural Networks

This section presents models that can be used to predict sequence data. The focus will be made
on time series here.

Densely connected networks as those presented earlier have no memory. In contrast, recurrent
neural networks will process each training example as a sequence, it will loop over the elements
of the sequence before turning to another training example. During the loop, the network will
iterate over the elements of the training example (for time series, these elements will be the lagged
values).

The input given the the network is a 2D tensor. The first dimension of the tensor is the time

396 CHAPTER 6. DEEP LEARNING

step, while the second is made of the predictors. The network loops over the time steps. At
each time step ℓ, it considers the input values at ℓ as well as some state values at time ℓ. The
state values correspond to what the network has seen over the previous iterations of the current
sequence (which is initialised to 0 for the first time step).

Each observation/example can be represented as a sequence of L points in time, so
Xt = {LLXt, . . . , L2Xt, LXt}, where L is the lag operator such that LXt = Xt−1,
L2Xt = Xt−2, and so on. The output Y is the point value to be predicted.

Figure 6.16 illustrates how a recurrent neural network operates, considering a time series with
3 lags accounted for (i.e., a sequence of length 3), where X = {L3Xt, L2Xt, LXt}, an output
Y to predict, and a hidden-layer sequence {As}S

1 = {A1, A2, . . . , AS}. Each Xℓ is a vector
[Xℓ,1, Xℓ,2, . . . , Xℓ,p].

L"X$,& L"X',(… L"X$,*

A,(&)

…

/((&)

A&(&)

State
1

Output

1 1

Features at t-3Intercept
(bias)

1(O&

A,(()

…

A((()

A&(()

b(= 1

State
2

W

U

8

L(X$,& L(X',(… L(X$,*

9& = 1

1

1"

A,(")

…

A((")

A&(")

b" = 1

LX',& LX',(… LX$,*

State
3

Features at t-2Intercept
(bias) Featuresat t-1Intercept

(bias)

Output Output

β β

U

W W

A,(<)
=0

…

/((&)
=0

A&(<)
= 0

U

Figure 6.16: A simple recurrent neural network which processes sequences of length 3.

At each time step ℓ, the activations A
(ℓ)
1 , A

(ℓ)
2 , . . . , A

(ℓ)
S are updated using:

• a linear combination of the previous activations A
(ℓ−1)
1 , A

(ℓ−1)
2 , . . . , A

(ℓ−1)
S weighted by a

matrix of weights U
• a linear combination of the inputs Xℓ weighted by a matrix of weights W
• and a bias (intercept) ws0 .

6.2. RECURRENT NEURAL NETWORKS 397

The s-th activation in time step ℓ, with k = 1, . . . , S writes:

A(ℓ)
s = g

ws0 +
p∑

j=1
wkjXℓ,j +

S∑
s=1

uksA(ℓ−1)
s

 , (6.2.1)

where A
(0)
s = 0 for all s = 1, . . . , S.

Then, each activations at time step ℓ is fed to the output layer:

Oℓ = f

(
β0 +

S∑
s=1

βsA(ℓ)
s

)
,

where f(·) is an activation function (the identity function for a quantitative response).

Figure 6.17 shows a more compact schematic of the same architecture as that shown in Figure
6.16.

Xℓ

A(ℓ)

Output

1

Oℓ

W

)

*+

U

FeatureIntercept
(bias)

Figure 6.17: The more compact schematic of the simple recurrent neural network which processes
sequences of length 3.

398 CHAPTER 6. DEEP LEARNING

For a regression problem, the loss function to be optimised is the residual sum of squares:

n∑
i=1

(
yi − o

(L)
i

)2
,

for i = 1, . . . , n, where o
(L)
i is the output for the i-th observation (the prediction).

Observe that only the last output OL is used in the minimisation problem.

6.2.1 Practice with Keras

Let us return to the Seoul bike dataset. Up until now, we have ignored the fact that these data
can be processed as time series. Let us follow the example on weather data provided in the 6th
chapter of Chollet and Allaire (2018) and adapt it to the Seoul bike data.

First, as noticed by one of the participants during the second hands-on session, the hour variable
could be considered in a more intelligent way than was done with the trees. Let us create two
variables from it:

• one indicating whether is evening (from 7pm to 9pm), night (from 10pm to 6am), day
(7am to 6pm)

• another one indicating whether each observation is recorded at 8 am (morning peek), 6pm
(afternoon peak), or outside peak periods.

Other feature engineering could be considered, of course.

bike <-
bike %>%
mutate(day_moment = case_when(

hour > 18 & hour <= 22 ~ "evening",
hour > 22 | hour <= 6 ~ "night",
hour > 6 & hour <= 18 ~ "day",
TRUE ~ "problem"

)) %>%
mutate(day_peak = case_when(

hour == 18 ~ "evening",
hour == 8 ~ "morning",
TRUE ~ "none"

))

Let us have a look at the distribution of those new variables:

6.2. RECURRENT NEURAL NETWORKS 399

prop.table(table(bike$day_moment))

##
day evening night
0.5004135 0.1668045 0.3327820

prop.table(table(bike$day_peak))

##
evening morning none
0.04170112 0.04170112 0.91659776

The data spans from 2017-12-01 to 2018-11-30:

range(bike$date)

[1] "2017 -12 -01" "2018 -11 -30"

As the training, validation and test samples will be constituted while keeping the notion of tem-
porality, it is not possible to use the variable indicating the months as a qualitative variable. There
are not enough observations to include this variable in the model. The hour variable will also
be discarded from the features, as two other variables were just created to avoid using the former
as a numerical variable. (It could have been possible to just create dummy 11 variables from the
hour variable instead.)

Let us remove the unnecessary variables from the sample, and in the mean time, let us create
dummy variables for all qualitative variables.

data_bikes <-
bike %>%
select(-date, -y_binary, -month, -seasons, -hour) %>%
dummy_cols(

remove_first_dummy = TRUE,
remove_selected_columns = TRUE)

400 CHAPTER 6. DEEP LEARNING

6.2.1.1 Preparing Training, Validation and Test Datasets

The whole dataset can be split into three parts:

• the train set: from the first observation to the five-thousandth (1:5000)
• the validation set: from the five-and-a-half thousandth to the six-thousand-and-five-

hundredth (5001:6500)
• the test set: the remainder

ind_train <- 1:5000
ind_valid <- 5001:6500

Let us store in an object the index of the column of the target variable in the dataset:

ind_target <- which(colnames(data_bikes) == "rented_bike_count")
ind_target

[1] 1

The observations need to be scaled, as in the previous examples, to make the optimisation problem
look for solutions in a less complex dimension.

train_data <- data_bikes[ind_train, -ind_target]

In order to get a better idea of the model’s capabilities when exposed to unseen data, the mean
and standard deviation for scaling each explanatory variable should be calculated on the training
data.

(mean <- apply(train_data, 2, mean))

temperature humidity wind_speed
7.659700 55.265200 1.864140
visibility dew_point_temperature solar_radiation
1334.842400 -1.634220 0.537718
rainfall snowfall year
0.126340 0.106920 2017.851200
holiday_No Holiday week_day_Tue week_day_Wed
0.942400 0.144000 0.139200
week_day_Thu week_day_Fri week_day_Sat
0.139200 0.145600 0.144000
week_day_Sun day_moment_evening day_moment_night
0.144000 0.166400 0.334200

6.2. RECURRENT NEURAL NETWORKS 401

day_peak_morning day_peak_none
0.041600 0.916800

(std <- apply(train_data, 2, sd))

temperature humidity wind_speed
11.1084170 21.2841883 1.0904797
visibility dew_point_temperature solar_radiation
639.5248880 12.2944269 0.8582797
rainfall snowfall year
1.0224565 0.4750508 0.3559268
holiday_No Holiday week_day_Tue week_day_Wed
0.2330088 0.3511248 0.3461897
week_day_Thu week_day_Fri week_day_Sat
0.3461897 0.3527400 0.3511248
week_day_Sun day_moment_evening day_moment_night
0.3511248 0.3724766 0.4717572
day_peak_morning day_peak_none
0.1996933 0.2762119

It is important to check that no standard deviation is exactly equal to 0, which could be
the case if a dummy variable takes a single value in the training set and another one in the
validation or the test sets. Any variable for which the standard deviation computed on the
training set should therefore be removed from the features.

The data can then be scaled:

data_bikes_x <- data_bikes[, -ind_target]
data_bikes_x <- scale(data_bikes_x, center = mean, scale = std)

Let us scale the target variable a bit differently, as it is count data:

max_target <- max(data_bikes[[ind_target]])
target_bikes <- data_bikes[[ind_target]]/max_target

Let us add the target variable:

402 CHAPTER 6. DEEP LEARNING

data_bikes <- cbind(target_bikes, data_bikes_x)
ind_target <- 1

To update the parameters of the model, we will rely on batches of training data. The samples will
be generated on the fly. To do so, the approach provided in the 6th chapter of Chollet and Allaire
(2018) will be used. Such an approach is particularly useful when the data at hand is huge and
cannot be stored in memory: instead of loading all the training examples, they are loaded only
when sampled to be included in a batch.

As previously stated, we will feed to model with 2D tensors. The first dimension will be the time
step ℓ while the second dimension will be the matrix of predictors at the corresponding time step
ℓ.

Let us say that we want to:

• make predictions 24 hours ahead: we will set a parameter named delay to 24, as the unit
of time in the bike dataset is the hour

• rely on the previous 3-days data: we will set a parameter named lookback to 3*24
• sample the observations every steps=1 time steps.

We will use a batch size of 32.

lookback <- 3*24
step <- 1
delay <- 24
batch_size <- 32

The function that generates samples expects some indices to specify where in the whole dataset
to sample from. This allows us to generate batches of observations for the training sample, for
the validation sample, and for the test sample. Note, however, that we will also define another
function to generate all the examples from the test sample with another function, to look at the
predicted values.

#' WARNING: as variable `i_gen` is updated in the
#' global environment you should make sure that no variable
#' with the same name is used in your code.
#' Otherwise, some conflicts may appear.
#' Function from Chollet & Allaire (2018)
#' @param data Data frame with all the observations in rows
#' @param lookback Number of lags
#' @param delay Horizon for the prediction

6.2. RECURRENT NEURAL NETWORKS 403

#' @param min_index,max_index Index of the first and last
#' examples in `data` in which sampling
#' is to take place
#' @param shuffle Should the rows of the dataset from which
#' samples are drawn be randomly swapped before
#' sampling?
#' @param batch_size Number of samples per batch
#' @param step Period, in time steps, at which samples are drawn
#' for daily data, if `step=3`, samples are drawn
#' every 3 days
#' @param ind_target col index of the target variable in `data`
generator <-

function(data, lookback, delay, min_index, max_index,
shuffle = FALSE, batch_size = 128, step = 6,
ind_target) {

if (is.null(max_index))
max_index <- nrow(data) - delay - 1

i_gen <- min_index + lookback
function() {

if (shuffle) {
rows <- sample(c((min_index+lookback):max_index),

size = batch_size)
} else {

if (i_gen + batch_size >= max_index)
i_gen <<- min_index + lookback

rows <- c(i_gen:min(i_gen+batch_size, max_index))
i_gen <<- i_gen + length(rows)

}
samples <- array(0, dim = c(length(rows),

lookback / step,
dim(data)[[-1]]))

targets <- array(0, dim = c(length(rows)))
targets_j <- array(0, dim = c(length(rows)))
for (j in 1:length(rows)) {

indices <- seq(rows[[j]] - lookback, rows[[j]],
length.out = dim(samples)[[2]])

samples[j,,] <- data[indices,]
targets[[j]] <- data[rows[[j]] + delay, ind_target]

404 CHAPTER 6. DEEP LEARNING

targets_j[[j]] <- rows[[j]] + delay
}
list(samples, targets)

}
}

The generator() function returns a list with two elements:

1. samples: the observations sampled, stored in an array of dimensions [batch_size,
lookback, number_of_predictors], where number_of_predictors is, as you surely
already guessed, the number of predictors

2. targets: the vector of the corresponding targets for the batch_size examples drawn.

Let us define an object that will draw observations from the training set when it will be called
during the training of the network:

train_gen <- generator(
data = data_bikes,
lookback = lookback,
delay = delay,
min_index = 1,
max_index = max(ind_train),
shuffle = TRUE,
step = step,
batch_size = batch_size,
ind_target = ind_target

)

The same can be done for the objects that will draw observations from the validation set, and for
the test set:

val_gen <- generator(
data = data_bikes,
lookback = lookback,
delay = delay,
min_index = min(ind_valid),
max_index = max(ind_valid),
shuffle = FALSE,
step = step,
batch_size = batch_size,

6.2. RECURRENT NEURAL NETWORKS 405

ind_target = ind_target
)

test_gen <- generator(
data = data_bikes,
lookback = lookback,
delay = delay,
min_index = max(ind_valid)+1,
max_index = NULL,
shuffle = FALSE,
step = step,
batch_size = batch_size,
ind_target = ind_target

)

You may have noticed that for val_gen() and test_gen(), the argument shuffle was set to
FALSE. We can thus have an idea of how many steps are needed to draw from these functions in
order to see the entire validation and entire set, respectively.

val_steps <-
(max(ind_valid)-min(ind_valid)-lookback)/batch_size

val_steps

[1] 44.59375

test_steps <-
(nrow(data_bikes)-(max(ind_valid)+1)-lookback)/batch_size

test_steps

[1] 59.125

As mentioned earlier, we can also create a function to create the complete set of tensors from the
training sample:

generate_data_full <-
function(data, lookback, delay, min_index, max_index,

step = 1, ind_target) {

406 CHAPTER 6. DEEP LEARNING

rows_min <- max(min_index, lookback)
rows_max <- max_index-delay
rows <- rows_min:rows_max
function(){

samples <-
array(0, dim = c(length(rows),

lookback / step,
dim(data)[[-1]]))

targets <- array(0, dim = c(length(rows)))
for (j in 1:length(rows)) {

indices <-
seq(rows[[j]] - (lookback-1), rows[[j]],

length.out = dim(samples)[[2]])
samples[j,,] <- data[indices,]
targets[[j]] <- data[rows[[j]]+delay, ind_target]

}
list(samples, targets)

}
}

This generate_data_full() works in the same spirit as the previous generation function, ex-
cept that it does not perform sampling.

The positions of the values in the training sample can be stored:

ind_test <- (last(ind_valid)+1):nrow(data_bikes)

Let us also create an object that will contain the generate_data_full() function and will return
a list with two elements:

1. samples: the test examples, stored in an array of dimensions [n_test,lookback,
number_of_predictors], where n_test corresponds to the number of observations in
the test sample minus delay.

2. targets: the corresponding values of the target variable.

data_test <-
generate_data_full(

data = data_bikes,
lookback = lookback,
delay = delay,

6.2. RECURRENT NEURAL NETWORKS 407

min_index = ind_test[1],
max_index = last(ind_test),
step = 1,
ind_target = ind_target

)

Let us create the tensors containing the all the observations from the test sample:

c(x_data_test, y_data_test) %<-% data_test()

There are 1941 observations and 21 predictors, for which the past 72 values are stored (from
earliest to latest date).

dim(x_data_test)

[1] 1941 72 21

There are 1941 corresponding target values:

dim(y_data_test)

[1] 1941

6.2.1.2 Naive Benchmark

Assume that the number of bikes rented per hour is a continuous variable (which is debatable,
since it is actually count data). Further assume that the number of bikes rented is periodical with
a daily period. Then you can assume that the number of bikes rented at the same time the next
day will be identical to the number of bikes rented now. Under these asumption, what would the
mean absolute error be?

#' Computes the average of MAE obtained on batches drawn
#' from the validation sample.
#' The number of batches drawn is `val_steps`
#' Function from Chollet & Allaire (2018)
evaluate_naive_method <- function() {

batch_maes <- rep(NA, val_steps)

408 CHAPTER 6. DEEP LEARNING

for (step in 1:val_steps) {
Gen. batches of data from the validation sample
c(samples, targets) %<-% val_gen()
Take the last observed values for each example
in the batch, i.e., target_{t-1}
preds <- samples[, dim(samples)[[2]], ind_target]
CMAE using target_{t-1} as the predicted value
mae <- mean(abs(preds - targets))
batch_maes[step] <- mae

}
Avg of MAE obtained over the different batches
mean(batch_maes)

}
batch_mae <- evaluate_naive_method()
batch_mae

[1] 0.0748107

The average absolute error, under these hypotheses would therefore be equal to 266.03:

batch_mae*max_target

[1] 266.0269

Can a recurrent neural network beat this? Easier said than done.

6.2.1.3 A Densely Connected Model

In a first step, let us try to predict the number of rented bikes with a simple densely connected
model. A recurrent neural network will be trained after and the predictive capacities on the
validation sets can be compared.

Let us use a single hidden layer with 16 units. The data will be flatten using the layer_flatten()
function. Hence, the lagged values will be used as predictors, but the model will not consider that
the data are sequential. As the target variable is numerical with values in R+, let us use a ReLU
activation in the output layer.

6.2. RECURRENT NEURAL NETWORKS 409

model_benchmark <-
keras_model_sequential() %>%
layer_flatten(

input_shape = c(lookback / step, dim(data_bikes)[-1])) %>%
layer_dense(units = 16, activation = "relu") %>%
layer_dense(units = 1, activation = "relu")

The loss function that will be used is the MAE.

model_benchmark %>% compile(
optimizer = "rmsprop",
loss = "mae"

)

The model can be trained over 50 epochs. At each epoch, 60 batches of data will be drawn from
the generator. The MAE will also be computed on val_steps.{R}=44.59375 validation samples
drawn from the generator.

history_benchmark <-
model_benchmark %>%
fit(

train_gen,
steps_per_epoch = 60,
epochs = 50,
validation_data = val_gen,
validation_steps = val_steps

)

The results can be saved:

model_benchmark %>%
save_model_hdf5(

"deep_learning_models/bikes_model_benchmark.h5")
save(history_benchmark,

file =
"deep_learning_models/history_benchmark.rda")

Let us have a look at the MAE computed both on the training and the validation sets during the
training.

410 CHAPTER 6. DEEP LEARNING

plot(history_benchmark)
lo

ss

0 10 20 30 40 50

0.1

0.2

0.3

epoch

data

training

validation

Figure 6.18: Training and validation MAE on bike data, with the densely connected network.

The results obtained with both the training and validation samples are quite poor. In addition,
the model overfits.

The MAE on the test set:

mae_nn <-
evaluate(model_benchmark, x=x_data_test, y=y_data_test)

mae_nn*max_target

loss
506.5381

6.2. RECURRENT NEURAL NETWORKS 411

We have poor performances on the test set here.

The predictions on the test set can be obtained as follows (recall the x_data_test was created
earlier):

preds_nn <- predict(model_benchmark, x = x_data_test)

Let us have a look at the predicted values hour by hour over the test sample.

ind_in_data <- ind_test[(delay+1):length(ind_test)]
df_test_pred_nn <-

tibble(obs = bike$rented_bike_count[ind_in_data],
pred = preds_nn[,1]*max_target) %>%

mutate(date = bike$date[ind_in_data],
hour = bike$hour[ind_in_data],
hm = lubridate::ymd_h(str_c(date, " ", hour))
) %>%

mutate(month = lubridate::month(date))

Let us plot the results:

df_test_pred_nn %>%
pivot_longer(cols = c(obs, pred),

names_to = "type", values_to = "bike") %>%
ggplot(data = .,

mapping = aes(x = hm, y = bike,
colour = type, linetype = type)) +

geom_line() +
facet_wrap(~month, scale = "free", ncol=1) +
labs(x = "Date", y = "Number of rented bikes") +
scale_colour_manual(

NULL,
values = c("obs" = "#648FFF", "pred" = "#DC267F")) +

scale_linetype_discrete(NULL)

412 CHAPTER 6. DEEP LEARNING

11

10

9

8

nov 05 nov 12 nov 19 nov 26

oct 01 oct 08 oct 15 oct 22 oct 29

sep 03 sep 10 sep 17 sep 24 oct 01

20:00 21:00 22:00 23:00

1500

1750

2000

2250

0

4000

8000

12000

0

1000

2000

3000

0
500

1000
1500
2000

Date

N
um

be
r

of
 r

en
te

d
bi

ke
s

obs

pred

Figure 6.19: Predictions for the densely connected network, by month.

We can also look at the residuals:

df_test_pred_nn %>%
mutate(residuals = obs-pred) %>%
ggplot(data = ., mapping = aes(x=hm, y = residuals)) +
geom_line() +
geom_hline(yintercept = 0, colour = "#648FFF",

linetype = "dashed") +

6.2. RECURRENT NEURAL NETWORKS 413

labs(x = "Date", y = "Residuals")

−8000

−4000

0

sep oct nov déc
Date

R
es

id
ua

ls

Figure 6.20: Residuals for the densely connected network, estimations made on the test sample.

6.2.1.4 Recurrent Network without Dropout

Now, let us consider the data as sequential and build our first recurrent network. We will use the
GRU layer (Gated recurrent unit), as in the example from Chollet and Allaire (2018), and as in
Emanuelle Flachaire’s course.

model_rnn <-
keras_model_sequential() %>%
layer_gru(

units = 16,
input_shape = list(NULL, dim(data_bikes)[[-1]])) %>%

layer_dense(units = 1, activation = "relu")

414 CHAPTER 6. DEEP LEARNING

The MAE will once again be the loss function being optimised:

model_rnn %>%
compile(

optimizer = "rmsprop",
loss = "mae"

)

The model can be trained over 50 epochs, drawing 60 batches per epoch. At each epoch, 44.59375
batch samples will be drawn from the validation set, and the MAE will be computed on those
samples.

history_rnn <-
model_rnn %>%
fit(

train_gen,
steps_per_epoch = 60,
epochs = 50,
validation_data = val_gen,
validation_steps = val_steps

)

Once the model is estimated, it can be saved.

model_rnn %>% save_model_hdf5("deep_learning_models/model_rnn.h5")
save(history_rnn, file = "deep_learning_models/history_rnn.rda")

Let us have a look at the MAE over the epochs.

plot(history_rnn)

6.2. RECURRENT NEURAL NETWORKS 415
lo

ss

0 10 20 30 40 50

0.05

0.10

0.15

0.20

epoch

data

training

validation

Figure 6.21: Training and validation MAE on bike data, with the first recurrent network.

The performances seem almost correct here (maybe a bit more epochs could lead to lower MAE
on the validation set: the algorithm does not seem to have converged yet). We note that the model
overfits.

The performances of the model on the test data can be assessed as well:

mae_rnn <- evaluate(model_rnn, x=x_data_test, y=y_data_test)
mae_rnn*max_target

loss
280.2893

Not so bad.

The predictions using that model can be obtained as follows:

416 CHAPTER 6. DEEP LEARNING

preds_rnn <- predict(model_rnn, x=x_data_test)

Let us put those predicted values in a tibble:

ind_in_data <- ind_test[(delay+1):length(ind_test)]
df_test_pred_rnn <-

tibble(obs = bike$rented_bike_count[ind_in_data],
pred = preds_rnn[,1]*max_target) %>%

mutate(date = bike$date[ind_in_data],
hour = bike$hour[ind_in_data],
hm = lubridate::ymd_h(str_c(date, " ", hour))
) %>%

mutate(month = lubridate::month(date))

The predicted values and the observed values on the test sample can be plotted:

df_test_pred_rnn %>%
pivot_longer(cols = c(obs, pred),

names_to = "type", values_to = "bike") %>%
ggplot(data = .,

mapping = aes(x = hm, y = bike,
colour = type, linetype = type)) +

geom_line() +
facet_wrap(~month, scale = "free", ncol=1) +
labs(x = "Date", y = "Number of rented bikes") +
scale_colour_manual(

NULL,
values = c("obs" = "#648FFF", "pred" = "#DC267F")) +

scale_linetype_discrete(NULL)

6.2. RECURRENT NEURAL NETWORKS 417

11

10

9

8

nov 05 nov 12 nov 19 nov 26

oct 01 oct 08 oct 15 oct 22 oct 29

sep 03 sep 10 sep 17 sep 24 oct 01

20:00 21:00 22:00 23:00
1200

1400

1600

1800

2000

0

1000

2000

3000

0

1000

2000

0
500

1000
1500
2000

Date

N
um

be
r

of
 r

en
te

d
bi

ke
s

obs

pred

Figure 6.22: Predictions for the first recurrent network, by month.

Let us look at the residuals:

df_test_pred_rnn %>%
mutate(residuals = obs-pred) %>%
ggplot(data = ., mapping = aes(x=hm, y = residuals)) +
geom_line() +
geom_hline(yintercept = 0, colour = "#648FFF",

linetype = "dashed") +

418 CHAPTER 6. DEEP LEARNING

labs(x = "Date", y = "Residuals")

−2000

−1000

0

1000

2000

sep oct nov déc
Date

R
es

id
ua

ls

Figure 6.23: Residuals with the first recurrent network.

The model tends to underestimate the number of rented bikes at the end og the period. Having
more data to capture seasonnal patterns over the year may help.

6.2.1.5 Recurrent Network with Dropout

We observe some overfitting with the previous recurrent network. Let us try to fight it using
dropout. As explained in Chollet and Allaire (2018), with recurrent neural networks, the activa-
tions that are temporarily set to 0 should be the same for every time step (to propagate the learning
error through time). Such a mechanisme is already in use in Keras. The argument dropout of a
layer controls the dropout rate applied to this layer. In addition, a dropout rate can be applied to
the recurrent activations of a layer (the A

(ℓ−1)
s): a temporally constant mask should be used. The

dropout rate of the recurrent activations is controlled by the argument recurrent_dropout of
the layer.

6.2. RECURRENT NEURAL NETWORKS 419

model_rnn_drop <-
keras_model_sequential() %>%
layer_lstm(

units = 16,
dropout = 0.3,
recurrent_dropout = 0.4,
input_shape = list(NULL, dim(data_bikes)[[-1]])) %>%

layer_dense(units = 1, activation = "relu")

Once again, the loss function is the MAE:

model_rnn_drop %>% compile(
optimizer = "rmsprop",
loss = "mae"

)

Networks for which regularisation methods are applied usually need mode epochs to converge.
A rule of thumb is to aim about twice the number of epochs.

history_rnn_drop <-
model_rnn_drop %>%
fit(

train_gen,
steps_per_epoch = 60,
epochs = 100,
validation_data = val_gen,
validation_steps = val_steps

)

The trained model can be saved:

model_rnn_drop %>%
save_model_hdf5("deep_learning_models/model_rnn_drop.h5")

save(history_rnn_drop,
file = "deep_learning_models/history_rnn_drop.rda")

Let us have a look at the evolution of the MAE over the training process:

420 CHAPTER 6. DEEP LEARNING

plot(history_rnn_drop)
lo

ss

0 20 40 60 80 100

0.04

0.08

0.12

0.16

epoch

data

training

validation

Figure 6.24: Training and validation MAE on bike data, with the regularised recurrent network.

The model still overfits and the predictions are not very good.

The MAE on the test set:

mae_rnn_drop <-
evaluate(model_rnn_drop,

x=x_data_test, y=y_data_test)
mae_rnn_drop*max_target

loss
314.8936

6.2. RECURRENT NEURAL NETWORKS 421

Let us make some prediction using the model:

preds_rnn_drop <-
predict(model_rnn_drop, x = x_data_test)

Let us put those predicted values in a tibble:

ind_in_data <- ind_test[(delay+1):length(ind_test)]
df_test_pred_rnn_drop <-

tibble(obs = bike$rented_bike_count[ind_in_data],
pred = preds_rnn_drop[,1]*max_target) %>%

mutate(date = bike$date[ind_in_data],
hour = bike$hour[ind_in_data],
hm = lubridate::ymd_h(str_c(date, " ", hour))
) %>%

mutate(month = lubridate::month(date))

The predicted values and the observed values on the test sample can be plotted:

df_test_pred_rnn_drop %>%
pivot_longer(cols = c(obs, pred),

names_to = "type", values_to = "bike") %>%
ggplot(data = .,

mapping = aes(x = hm, y = bike,
colour = type, linetype = type)) +

geom_line() +
facet_wrap(~month, scale = "free", ncol=1) +
labs(x = "Date", y = "Number of rented bikes") +
scale_colour_manual(

NULL,
values = c("obs" = "#648FFF", "pred" = "#DC267F")) +

scale_linetype_discrete(NULL)

422 CHAPTER 6. DEEP LEARNING

11

10

9

8

nov 05 nov 12 nov 19 nov 26

oct 01 oct 08 oct 15 oct 22 oct 29

sep 03 sep 10 sep 17 sep 24 oct 01

20:00 21:00 22:00 23:00

1500

1750

2000

2250

0

1000

2000

3000

0

1000

2000

0
500

1000
1500
2000

Date

N
um

be
r

of
 r

en
te

d
bi

ke
s

obs

pred

Figure 6.25: Predictions for the regularised recurrent network, by month.

The model still underestimate the needs at the end of the period.

df_test_pred_rnn_drop %>%
mutate(residuals = obs-pred) %>%
ggplot(data = ., mapping = aes(x=hm, y = residuals)) +
geom_line() +
geom_hline(yintercept = 0, colour = "#648FFF",

linetype = "dashed") +

6.2. RECURRENT NEURAL NETWORKS 423

labs(x = "Date", y = "Residuals")

−3000

−2000

−1000

0

1000

sep oct nov déc
Date

R
es

id
ua

ls

Figure 6.26: Residuals with the regularised recurrent network.

The models that were trained need to be fine tuned to get better results. But to better
account for the cyclical components of the data over the year, multiple years are needed.

Now it is your turn: compare the performances obtained with a neural network and those ob-
tained with an ARIMA model.

424 CHAPTER 6. DEEP LEARNING

References

Boehmke, Brad, and Brandon Greenwell. 2019. Hands-on Machine Learning with r. Chapman;
Hall/CRC. https://doi.org/10.1201/9780367816377.

Breiman, L., J. Friedman, C. J. Stone, and R. A. Olshen. 1984. Classification and Regression
Trees. Taylor & Francis.

Breiman, Leo. 1996. “Bagging Predictors.” Machine Learning 24 (2): 123–40. https://doi.org/
10.1007/bf00058655.

———. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. https://doi.org/10.1023/a:
1010933404324.

Charpentier, Arthur. 2020. “Act6100 Analyse Des Données En Actuariat.” https://github.
com/freakonometrics/ACT6100.

Chollet, François, and J. J. Allaire. 2018. Deep Learning with R. Manning Publications.

Debeer, Dries, and Carolin Strobl. 2020. “Conditional Permutation Importance Revisited.”
BMC Bioinformatics 21 (1). https://doi.org/10.1186/s12859-020-03622-2.

Demšar, Blaž, Janez AND Zupan. 2021. “Hands-on Training about Overfitting.” PLOS Com-
putational Biology 17 (3): 1–19. https://doi.org/10.1371/journal.pcbi.1008671.

Goodfellow, Ian, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep Learning.
Vol. 1. MIT press Cambridge.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989. “Multilayer Feedforward Net-
works Are Universal Approximators.” Neural Networks 2 (5): 359–66. https://doi.org/10.
1016/0893-6080(89)90020-8.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2021. An Introduction to
Statistical Learning. 2nd ed. Springer.

Karatzoglou, Alexandros, David Meyer, and Kurt Hornik. 2006. “Support Vector Machines
inR.” Journal of Statistical Software 15 (9). https://doi.org/10.18637/jss.v015.i09.

425

https://doi.org/10.1201/9780367816377
https://doi.org/10.1007/bf00058655
https://doi.org/10.1007/bf00058655
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://github.com/freakonometrics/ACT6100
https://github.com/freakonometrics/ACT6100
https://doi.org/10.1186/s12859-020-03622-2
https://doi.org/10.1371/journal.pcbi.1008671
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.18637/jss.v015.i09

426 CHAPTER 6. DEEP LEARNING

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. “Gradient-Based Learning Applied to
Document Recognition.” Proceedings of the IEEE 86 (11): 2278–2324. https://doi.org/10.
1109/5.726791.

Ng, Andrew, and Kian Katanforoosh. 2018. “Deep Learning.” http://cs229.stanford.edu/
notes/cs229-notes-deep_learning.pdf.

Nutini, Julie. 2015. “Coordinate Descent and Ascent Methods.” https://www.cs.ubc.ca/labs/
lci/mlrg/slides/mlrg_CD.pdf.

Sathishkumar, V. E., Park Jangwoo, and Cho Yongyun. 2020. “Using Data Mining Techniques
for Bike Sharing Demand Prediction in Metropolitan City.” Computer Communications 153
(March): 353–66. https://doi.org/10.1016/j.comcom.2020.02.007.

Sathishkumar, V. E., and Cho Yongyun. 2020. “A Rule-Based Model for Seoul Bike Sharing
Demand Prediction Using Weather Data.” European Journal of Remote Sensing 53 (sup1):
166–83. https://doi.org/10.1080/22797254.2020.1725789.

Tibshirani, Ryan. 2019. “Convex Optimization Course.” https://www.stat.cmu.edu/
~ryantibs/convexopt/.

Yeh, I-Cheng, and Che-hui Lien. 2009. “The Comparisons of Data Mining Techniques for the
Predictive Accuracy of Probability of Default of Credit Card Clients.” Expert Systems with
Applications 36 (2): 2473–80. https://doi.org/10.1016/j.eswa.2007.12.020.

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
http://cs229.stanford.edu/notes/cs229-notes-deep_learning.pdf
http://cs229.stanford.edu/notes/cs229-notes-deep_learning.pdf
https://www.cs.ubc.ca/labs/lci/mlrg/slides/mlrg_CD.pdf
https://www.cs.ubc.ca/labs/lci/mlrg/slides/mlrg_CD.pdf
https://doi.org/10.1016/j.comcom.2020.02.007
https://doi.org/10.1080/22797254.2020.1725789
https://www.stat.cmu.edu/~ryantibs/convexopt/
https://www.stat.cmu.edu/~ryantibs/convexopt/
https://doi.org/10.1016/j.eswa.2007.12.020

	List of Tables
	List of Figures
	Hands-on
	Required packages

	Install R
	Windows Users
	Install R
	Install RStudio
	Install Rtools
	Once installed
	Troubleshooting

	Mac OS Users
	Install R
	Install RStudio
	Once installed
	Troubleshooting

	Linux Users
	Install RStudio
	Once installed

	Gradient Descent
	Vanilla Gradient Descent
	Concept
	A First Example in Dimension 1
	Moving to Higher Dimensions Optimisation Problems
	Case Study: Linear Regression

	Variants of the Gradient Descent Algorithm
	Frequency of Updates & Samples Used
	Stochastic Gradient Descent
	Batch Gradient Descent
	Mini-Batch Gradient Descent

	Varying the Learning Rate
	Linear Decaying Rate
	Quadratic Decaying Rate
	Exponential Decaying Rate

	Other Algorithms
	Newton's Method
	Coordinate Descent Algorithm
	When the Function to Optimize is not Differentiable in all Points

	Overfitting
	First Example: Default of Credit Card
	Somme Summary Statistics on the Whole Dataset
	Fitting the Model
	Randomly Assigning the Classes
	Performances on Unseen Data
	K-fold Cross Validation
	Leave-one-out Cross Validation

	Second Example: Selling Price of Cars
	Predicting the Price with a Random Forest
	Cross-validation to Select the Hyperparameters

	Third Example: Choice of Lambda in Lasso Regression
	First Method: Without Cross-Validation
	Second Method: With Cross-Validation
	Comparing the Capacities of the Models on Unseen Data
	Repeating the Comparison 100 times

	Trees
	Data Used in the Notebook
	Training and Test Sets
	Decision Trees
	Regression Trees
	Stopping the Recursive Splitting Process
	Pruning

	Classification Trees
	Variable Importance

	Ensemble Methods
	Bagging
	Number of Trees
	Out-of-bag estimations
	Variable Importance Measures
	Pre-built Function

	Random Forests
	A First Example with {randomForest}
	Varying the hyperparameters
	Variable importance
	Fine Tuning

	Support Vector Machines
	Maximal Margin Classifier
	Hyperplane
	Margin

	Support Vector Classifiers
	Support Vector Machines
	Polynomial Kernel
	Radial kernel

	Deep Learning
	Neural Networks
	Neural Network with a Single Hidden Layer
	Multilayer Perception
	Input Layer
	First Hidden Layer
	Second Hidden Layer
	Output Layer
	Practice With Keras: classifier
	Practice With Keras: Regression
	Regularisation techniques

	Recurrent Neural Networks
	Practice with Keras
	Preparing Training, Validation and Test Datasets
	Naive Benchmark
	A Densely Connected Model
	Recurrent Network without Dropout
	Recurrent Network with Dropout

	References

