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Statistical Modeling: The two Cultures1

There are two cultures in the use of statistical modeling to reach
conclusions from data:

Data Modeling Culture: one assumes that the data are
generated by a given stochastic data model (econometrics)

Algorithmic Modeling Culture: one uses algorithmic models
and treats the data mechanism as unknown (machine learning)

1Léo Breiman, Statistical Science, 2001, Vol. 16, No. 3, 199-231
Emmanuel Flachaire Econometrics & Machine Learning



Statistical Modeling: The two Cultures

Léo Breiman (Statistical Science, 2001):

. . . an uncritical use of data models.

Emmanuel Flachaire Econometrics & Machine Learning



Misspecification bias

Let’s consider a quite general model:2 y = m(X ) + ε

Assume that X is fixed. The expected (squared) prediction
error, or EPE, is equal to

E (y − ŷ)2 = E [m(X ) + ε− m̂(X )]2

= E [m(X )− m̂(X )]2︸ ︷︷ ︸
Reducible

+ Var(ε)︸ ︷︷ ︸
Irreducible

The focus of Machine Learning is to estimate m with the aim
of minimizing the reducible error

Reducible error = MSE = [Bias(m̂(X ))]2+Var(m̂(X ))

Assuming that the data are generated by a specific model, or
that the model is correctly specified, remains to assume that
the (misspecification) bias is zero: Bias(m̂)=0

2y is a vector and X a matrix of observations, m a function, ε an error term
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Misspecification bias: linear model

(Source: Berk, 2016)

Reducible error = mean function error︸ ︷︷ ︸
misspecification bias

+ estimation error
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Misspecification bias: quadratic model

(Source: Berk, 2016)

Reducible error = mean function error︸ ︷︷ ︸
misspecification bias

+ estimation error
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Econometrics and Machine Learning

Parametric econometric: we assume that the data come from
a generating process that takes the following form

y = Xβ + ε

→ probability theory is a foundation of econometrics

Machine learning: we do not make any assumption on how
the data have been generated

y ≈ m(X )

→ probability theory is not required

Nonparametric econometrics makes the link between the two

Machine Learning: an extension of nonparametric econometric
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General Principle : optimization problem

Find the solution m̂ to the optimization problem:

Minimize
m

n∑
i=1

L(yi ,m(Xi )) subject to ‖m‖`q ≤ t (1)

which can be rewritten in Lagrangian form, for some λ ≥ 0:

Minimize
m

n∑
i=1

L(yi ,m(Xi ))︸ ︷︷ ︸
loss function

+ λ ‖m‖`q︸ ︷︷ ︸
penalization

(2)

The goal is to minimize a loss function under constraint

It is usually done by numerical optimization
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General Principle : resolution by numerical optimization

Gradient Descent
Use linear approximations at each steps, from Taylor expansion

(Source: Watt et al., 2016)

Algorithm: Gradient descent
Input: differentiable function g , fixed step length α, initial point x0

Repeat until stopping condition is met: wk = wk−1 − α g ′(wk−1)
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General Principle : resolution by numerical optimization

Newton’s Method
Use quadratic approximations at each steps, from Taylor expansion3

(Source: Watt et al., 2016)

Converges in fewer steps than gradient descent in convex fct

Does not require step length to be determine

3The second order Taylor series approximation centered at w k is equal to
h(w) = g(w k) + g ′(w k)(w − w k) + 1

2
g ′′(w k)(w − w k)2
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General Principle : resolution by numerical optimization

Newton’s Method

Use quadratic approximations at each steps, from Taylor expansion

(Source: Watt et al., 2016)

It is used to find stationary points of a function: g ′(w) = 0.

It can lead to a maximum in concave function.
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Regression: a simple Machine Learning method

Machine Learning (ML): solve the optimization problem

Minimize
m

n∑
i=1

L(yi ,m(Xi ))︸ ︷︷ ︸
loss function

+ λ ‖m‖`q︸ ︷︷ ︸
penalization

Let us consider:

L = `2 (Euclidian distance): L(yi ,m(Xi )) = (yi −m(Xi ))2

m is a linear function of parameters: yi ≈ Xiβ with β ∈ Rp

no penalization: λ = 0

Thus, we have:

β̂ = argmin

{
n∑

i=1

(yi − Xiβ)2

}
,

It is the minimization of the Sum of Squared Residuals (SSR) in a
linear regression model, that is, β̂ is the OLS estimator.4

4A Gradient Descent method can be used to solve this optimization problem.
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Linear regression from a Machine Learning perspective

Let us consider the simple linear regression model:

y = β0 + β1x + ε (3)

From a Machine Learning perspective:

The linear regression provides the best straight line
approximation of the relationship between y and x5

OLS estimators are obtained by minimizing prediction errors.
No probability theory is required!

Econometrics put statistical assumptions on (3) in order to derive
properties of the OLS estimators and to make inference.6

5In the sense that it minimizes prediction errors
6convergence, unbiased/biased estimators, BLUE, statistical tests, etc.
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Classification: a simple Machine Learning method

(Source: Watt et al., 2016)

we aim to learn a hyperplane Xβ = 0 (shown here in black)
to separate feature representations of the two classes.7

left panel: perfect linear separation

right panel: two overlapping classes → minimize the number
of missclassified points that end up in the wrong half-space.

7X = [ι, x1, x2] is a n × 3 matrix.
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Classification: the perceptron

A hyperplane placing the points on its correct side is as follows:

Xβ > 0 if yi = +1

Xβ < 0 if yi = −1

In other words, with y ∈ {−1,+1}:
if yi is correctly classified: yi (Xiβ) > 0

if yi is missclassified: yi (Xiβ) < 0

To minimize the aggregated distance of missclassified points to the
hyperplane, we can solve

Minimize
β

n∑
i=1

max (0,−yi (Xiβ)) ,

where max (0,−yi (Xiβ)) is the perceptron or max loss function.
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Classification: smooth version of the perceptron

(Source: Watt et al., 2016)

The perceptron loss function is non-differentiable (in green).8

The softmax loss function is a smooth approximation (black):9

g(s) = softmax(0, s) = log(1 + es)

8g(s) = max(0, s)
9g(s) = log(1 + es). Gradient descent and Newton’s methods can be used

Emmanuel Flachaire Econometrics & Machine Learning



Classification: softmax and perceptron

(Source: Watt et al., 2016)

Minimizing the softmax loss function gives β̂, that define:

the linear separator X β̂ = 0 shown in the left panel,

the surface y(x) = 2Λ(X β̂)− 1 shown in the right panel.

The softmax model is a smooth approximation of the perceptron
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Classification: logit regression and perceptron

Minimize the softmax loss function:10

Minimize
β

n∑
i=1

log
(

1 + e−yi (Xiβ)
)
,

is similar to maximize the log-likelihood in a logit model:

Maximize
β

n∑
i=1

y ′i log Λ(Xiβ) + (1− y ′i ) log (1− Λ(Xiβ))

with y ′i ∈ {0, 1} and Λ(x) = ex

1+ex = 1
1+e−x is the logistic function11

→ Logit model = softmax model

→ The logit model is a smooth approximation of the perceptron

10softmax(0,−yi (Xiβ)) = log(1 + e−yi (Xiβ))
11log Λ(Xiβ) = − log(1 + e−Xiβ) and log(1− Λ(Xiβ)) = − log(1 + eXiβ)
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Classification: a simple Machine Learning method

Machine Learning: solve the optimization problem

Minimize
m

n∑
i=1

L(yi ,m(Xi ))︸ ︷︷ ︸
loss function

+ λ ‖m‖`q︸ ︷︷ ︸
penalization

Let us consider:12

the softmax loss function: L = softmax(0,−yi (Xiβ))

no penalization: λ = 0.

Thus, we have:13

β̂ = argmin

{
n∑

i=1

log
(

1 + e−yi (Xiβ)
)}

,

which is similar to maximize the log-likelihood in a logit regression
model, that is, β̂ is the MLE estimator.

12yi ≈ m(Xi ) = 1±(Xiβ ≥ 0) = {+1 if Xiβ ≥ 0 ;−1 if Xiβ < 0}
13A Gradient Descent method can be used to solve this optimization problem.
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Logit regression from a Machine Learning perspective

Let us consider the logit regression model:14

E(y ′|X ) = P(y ′ = 1) = Λ(Xβ) (4)

From a Machine Learning perspective:

The logit model is a smooth approximation of the perceptron

MLE estimator is obtained by minimizing classification errors.
No probability theory is required!

Econometrics put statistical assumptions on (4) in order to derive
properties of the MLE estimator and to make inference.

14Since y ′ = {0, 1}, then E(y ′|X ) = 0× P(y ′ = 0) + 1× P(y ′ = 1)
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Linear/Logit models from a Machine learning perspective

Optimal parameters: Minimize prediction/classification errors

The convenience of convexity:

(Source: Watt et al., 2016)

A unique solution is easily obtained numerically/analytically.

Using probability theory, properties of the optimal parameters
are derived and inference can be drawn (Econometrics)
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Moving beyond linearity: Regression

(Source: Watt et al., 2016)

Non-linearity (left panel) and interaction effects (right panel).

Knowledge-driven feature design are used in Econometrics.15

Automatic feature design is used in Machine Learning

15fixed transformed covariates: quadratic, cubic, etc. and/or cross-products
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Moving beyond linearity: Classification

(Source: Watt et al., 2016)

Non-linearity (left panel) and interaction effects (right panel).

Knowledge-driven feature design are used in Econometrics.16

Automatic feature design is used in Machine Learning

16fixed transformed covariates: quadratic, cubic, etc. and/or cross-products
Emmanuel Flachaire Econometrics & Machine Learning



Nonparametric Econometrics

Machine Learning:

High non-linearity and strong interaction effects are taken into
account with automatic feature design.

In general, a non-convex function is minimized.

Nonparametric Econometrics:

A nonparametric regression take into account such effects.

It may work well in small-dimension, not in high dimension.17

Machine Learning is an extension of Nonparametric Econometrics.

17Because of the curse of dimensionality. Note that GAM models may
capture automatically non-linearities, but not interaction effects.

Emmanuel Flachaire Econometrics & Machine Learning



1. Introduction and General Principle

The two Cultures

Loss function and penalization

In-sample, out-sample and cross validation

Emmanuel Flachaire Econometrics & Machine Learning



General Principle

Machine Learning: solve the optimization problem

Minimize
m

n∑
i=1

L(yi ,m(Xi ))︸ ︷︷ ︸
loss function

+ λ ‖m‖`q︸ ︷︷ ︸
penalization

Choice of the loss function:

L → conditional mean, quantiles, expectiles

m→ linear, logit, splines, tree-based models, neural networks

Choice of the penalization:

`q → lasso, ridge

λ → over-fitting, under-fitting, cross validation
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Loss funct: Tradeoff between flexibility & interpretability

(Source: James et al., 2013)
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Over-fitting

A model with high flexibility may fit perfectly observations used for
estimation, but very poorly new observations

0.0 0.2 0.4 0.6 0.8 1.0
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−2
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y

estimation: λ=0

true model

→ penalization: put a price to pay for having a more flexible model
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Under-fitting

If we put a huge cost for a more complex model, λ =∞, we
obtain a linear regression model

0.0 0.2 0.4 0.6 0.8 1.0

−4
−2

0
2

4

x

y

estimation: λ=∞

true model

→ if the cost is too large: low variance, but high bias
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Penalization: Tradeoff between bias & variance

Penalization: put a price to pay for a having more flexible model

λ = 0: it interpolates data . . . . . . . . . . . low bias, high variance

λ =∞: linear model . . . . . . . . . . . . . . . . . high bias, low variance

→ the penalty parameter λ ≡ bias/variance tradeoff

Role of λ: avoid over-fitting and poor prediction with new data

Choice of λ: automatic selection procedures are based on model’s
performance evaluated out-sample, by cross-validation
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Model assessment

The best model has the lowest prediction error. With squared
error loss, the mean squared prediction error is equal to

MSE =
1

n

n∑
i=1

(yi − m̂λ(xi ))2 =
SSR

n

Due to overfitting, we cannot use SSR and R2 based on the
sample used for estimation (≡ in-sample, training sample)

We are interested in the accuracy of the predictions obtained
from previously unseen data (≡ out-sample, test sample)

The in-sample MSE (training error) can be a poor estimate of
the out-sample MSE (test error)

Emmanuel Flachaire Econometrics & Machine Learning



Model assessment

In order to select the best model with respect to test error, we
need to estimate this test error (out-sample MSE)

There are two common approaches:

We can indirectly estimate test error by making an adjustment
to the training error to account for the bias due to overfitting

→ penalization ex-post . . .R2
adj , AIC, BIC

We can directly estimate the test error, using either a
validation set approach or a cross-validation approach

→ penalization ex-ante

CV provides a direct estimate of test error, makes fewer
assumptions about the true model and can be used widely

In the past, performing CV was computationally prohibitive.
Nowadays, the computations are hardly ever an issue
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Out-sample: Validation set

(Source: James et al., 2013)

We split randomly the sample in two groups of observations: a
training set (q − 1 obs.) and a validation/test set (n − q obs)

1 estimation, n − q values → MSE =
1

n − q

n∑
i=q

(yi − ŷi )
2
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Cross-Validation: LOOCV or n-fold CV18

(Source: James et al., 2013)

n estimations, n values → MSE =
1

n

n∑
i=1

(yi − ŷi )
2

18LOOCV: leave-one-out cross-validation
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Cross-Validation: K -fold CV

(Source: James et al., 2013)

K estimations, n values → MSE =
1

n

K∑
k=1

∑
i∈Gk

(yi − ŷi )
2
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Prediction error in-sample vs. out-sample

← underfit λ−1 overfit →

(Source: Hastie et al., 2009)

Underfitting: the model performs poorly on training and test samples

Overfitting: performs well on training sample, but generalizes poorly on test sample
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Standardization and Normalization

Several ML methods are sensitive to the units of the covariates
as Ridge/Lasso regressions, SVM and Neural Networks

The results may differ substantially when multiplying a given
covariate by a constant (meters/kilometers, kilograms/grams)

It is best to standardize the data before using these methods:

x√
Var(x)

or
x − x̄√
Var(x)

so that they are all on the same scale

Normalization is another scaling technique where the values
end up ranging between 0 and 1:

x − xmin

xmax − xmin
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Classification and Regression Tree

Bagging and Random Forests

Boosting

Support Vector Machine

Neural Networks and Deep Learning
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Introduction

Linear regression

y = Xβ + ε n observations, p covariates

Least Squares

Collinearity or many irrelevant covariates → high variance

More covariates than observations, p > n → undefined

Ridge and Lasso

Collinearity, many irrelevant covariates → smaller variance

High-dimensional data analysis, p � n → feasible
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Shrinkage Methods

Minimize
α,β

n∑
i=1

(yi − α− Xiβ)2 + λ

p∑
j=1

|βj |q

It is equivalent to minimize SSR subject to
∑p

j=1 |βj |q ≤ c

No penalization correponds to OLS unbiased estimation

The penalization restricts the magnitude of the coefficients

It shrinks the coefficients toward 0 as λ↗ (or c ↘)

It introduces some bias in the coefficients

→ Add some bias if it leads to a substantial decrease in variance
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Shrinkage Methods

Minimize
α,β

n∑
i=1

(yi − α− Xiβ)2 + λ

p∑
j=1

|βj |q

It is equivalent to minimize SSR subject to
∑p

j=1 |βj |q ≤ c

Idea: biased coeff may result in model with smaller MSE

The penalty term λ is a bias-variance tradeoff

λ is selected by cross-validation (MSE out-sample)

Overall, use shrinkage methods when OLS exhibits large variance

(with many irrelevant or highly correlated covariates)
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Standardization

Minimize
α,β

n∑
i=1

(yi − α− Xiβ)2 + λ

p∑
j=1

|βj |q

It is equivalent to minimize SSR subject to
∑p

j=1 |βj |q ≤ c

The results are sensitive to the scale of the covariates

If a covariate is divided by 10, its coefficient is multiplied by
10, which has an impact on the constraint

It is best to standardize covariates before using shrinkage
methods, so that they are all on the same scale:

x√
Var(x)

or
x − x̄√
Var(x)
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Ridge Regression

Minimize
α,β

n∑
i=1

(yi − α− Xiβ)2 + λ

p∑
j=1

β2
j

Ridge = shrinkage method based on the `2 norm (q = 2)

The restriction is convex and makes the problem easy to solve:

β̂ = (X>X + λIn)−1X>y

where In is the n × n identity matrix

λ > 0: (X>X + λIn) non-singular even if X is not of full rank

Ridge method is defined in high-dimensional problems p � n
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Lasso Regression

Minimize
α,β

n∑
i=1

(yi − α− Xiβ)2 + λ

p∑
j=1

|βj |

Lasso = shrinkage method based on the `1 norm (q = 1)

The restriction is convex and makes the problem easy to solve
numerically, but there is no close expression as in ridge

The nature of the constraint will cause some coefficents to be
exactly zero, with λ sufficiently large (or c sufficiently low)

Lasso makes variable selection with many irrelevant variables

Lasso is appropriate with sparse model, in which only a
relative small number of covariates play an important role
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Lasso vs. Ridge

(Source: Hastie et al., 2015)

Unlike the Ridge constraint, the Lasso constraint has corners
If the solution occurs at a corner, it has one parameter equal to O

Emmanuel Flachaire Ridge and Lasso Regressions



Lasso vs. Ridge

(Source: Hastie et al., 2015)

The x-axis is the factor c, from |β1|q + |β2|q ≤ c, normalised to 1

Lasso: many coef. are exactly zero with low c → variable selection
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Lasso and Variable Selection

Lasso constraint:

p∑
j=1

|βj | ≤ c

The optimal c for prediction and variable selection are different:

For variable selection, the optimal parameter c shrinks
non-zero coefficients toward zero → bias

For prediction, the optimal parameter c is often larger than
for selection, to reduce the bias on non-zero coefficients

Lasso selects λ or c by CV, based on MSE → for prediction

Lasso often includes too many variables (c is often too large)

But the true model is very likely a subset of these variables
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The one standard error rule

Breiman et al. (1984) proposed a rule-of-thumb:19

Lasso selects λ by CV, based on MSE → for prediction

Consider values of λ within a 1-standard error interval

Pick the largest value of λ within this interval (smallest c)

The main idea of the 1 SE rule is to choose the most parcimonious
model whose accuracy is comparable with the best model

It is a rule-of-thumb, expected to provide a value of λ in between
the optimal one for prediction and the optimal one for selection

19Breiman, Friedman, Stone, Olshen (1984) Classification and Regression
Trees
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Simulation results with uncorrelated covariates

Linear regression model with many covariates, n = 1000

Monte Carlo simulation with 1000 replications

λ̂min is selected by CV, λ̂1se with the 1 SE rule

Potency: proportion of relevant variables selected

Gauge: proportion of irrelevant variables selected

→ Lasso with λ̂min selects 29.9% of irrelevant variables
→ Lasso with λ̂1se selects 3.2% of irrelevant variables, but MSE ↗
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Simulation results with correlated covariates

Linear regression model with many covariates, n = 1000

Monte Carlo simulation with 1000 replications

λ̂min is selected by CV, λ̂1se with the 1 SE rule

Potency: proportion of relevant variables selected

Gauge: proportion of irrrelevant variables selected

→ Lasso with λ̂min selects 64.3% of irrelevant variables
→ Lasso with λ̂1se selects 45.8% of irrelevant variables, MSE ↗
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Adaptive Lasso

The Adaptive Lasso is based on the following constraint:20

p∑
j=1

wj |βj | ≤ c where wj = 1/|β̂j |ν

where β̂j is the OLS estimate and ν > 0.

Put smaller weights to larger coefficients in the constraint

Large non-zero coefficients shrink more slowly to zero as c ↘
This leads to the oracle property, simultaneously achieving

Consistent variable selection

Optimal estimation prediction

ν is often set equal to 1, but it could be selected by CV

20Zou (2006), JASA, 101 1418-1429
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Elastic-net

The Elastic-net is based on the following constraint:21

p∑
j=1

(rβ2
j + (1− r)|βj |) ≤ c

where r = 1 corresponds to the Ridge and r = 0 to the Lasso.

Lasso may perform poorly with highly correlated covariates,
which is often encountered in high-dimensional data analysis

By combining a `2-penalty with the `1-penalty, we obtain a
method that deals better with such correlated groups, and
tends to select the correlated covariates (or not) together.

Like Lasso, Elastic-net often includes too many covariates

21Zou and Hastie (2005), JRSS Series B, 67 301-320. It corresponds to the
penalization λ1

∑p
j=1 β

2
j + λ2

∑p
j=1 |βj |, where λ1 and λ2 are selected by CV.
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Adaptive Elastic-net

The Adaptive Elastic-net is based on the following constraint:22

p∑
j=1

{
rβ2

j + (1− r)wj |βj |
}
≤ c

where wj = 1/(|β̂j |+ 1
n )ν and ν > 0.23

Adaptive Lasso has oracle property (consistent vble selection),
but inherits the instability of Lasso for high-dimensional data

Elastic-net deals better in high-dimensional data analysis,
but it lacks the oracle property

Adaptive Elastic-net combines the two approaches

22Zou and Zhang (2009) Annals of Statistics, 37, 1733-1751. It remains to
the penalization λ1

∑p
j=1 β

2
j + λ2

∑p
j=1 wj |βj |, where λ1, λ2 are selected by CV

231/n in wj is used to avoid division by 0
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Application: Predict baseball player’s Salary

What predictors are associated with baseball player’s Salary?

Salary – 1987 annual salary on opening day in thousands of dollars;
Years – Number of years in the major leagues;
Hits – Number of hits in 1986;
Atbat – Number of times at bat in 1986;
...

1 l i b r a r y ( ISLR )
2 H i t t e r s=na . omit ( H i t t e r s )
3 x=model . m a t r i x ( S a l a r y ˜ . , H i t t e r s ) [ ,−1]
4 y=H i t t e r s $ S a l a r y
5 # Ridge and Lasso
6 l i b r a r y ( g lmnet )
7 r i d g e . model=glmnet ( x , y , a l p h a =0)
8 l a s s o . model=glmnet ( x , y , a l p h a =1)
9 par ( mfrow=c ( 1 , 2 ) )

10 p l o t ( r i d g e . model , main=” Ridge ” )
11 p l o t ( l a s s o . model , main=” Lasso ” )

By default, the covariates are standardized, otherwise use the argument

standardize=FALSE in the function glmnet
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Application: Coefficient paths

Coefficient paths for Ridge and Lasso as c increases
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Application: Cross Validation

1 cv . r i d g e=cv . g lmnet ( x , y , a l p h a =0)
2 cv . l a s s o=cv . g lmnet ( x , y , a l p h a =1)
3 p l o t ( cv . r i d g e , main=” Ridge ” )
4 p l o t ( cv . l a s s o , main=” Lasso ” )
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Application: Adaptive Lasso and Adaptive Elastic-net

1 o l s=lm ( S a l a r y ˜ . , H i t t e r s )
2 w=1/ abs ( c o e f ( o l s ) )
3 cv . a d a l a s s o <− cv . g lmnet ( x , y , a l p h a =1, p e n a l t y . f a c t o r=w)
4 cv . a d a e l a s t <− cv . g lmnet ( x , y , a l p h a =.5 , p e n a l t y . f a c t o r=w)
5 p l o t ( cv . a d a l a s s o , main=” A d a p t i v e Lasso ” )
6 p l o t ( cv . a d a e l a s t , main=” A d a p t i v e E l a s t i c −n e t ” )
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Application: Compare the coefficients

1 c o e f 1=c o e f ( o l s )
2 c o e f 2=c o e f ( cv . r i d g e , s=” lambda . min” )
3 c o e f 3=c o e f ( cv . l a s s o , s=” lambda . min” )
4 c o e f 4=c o e f ( cv . l a s s o , s=” lambda . 1 s e ” )
5 c o e f 5=c o e f ( cv . a d a l a s s o , s=” lambda . min” )
6 c o e f 6=c o e f ( cv . a d a e l a s t , s=” lambda . min” )
7 o p t i o n s ( s c i p e n = 999) # d i s a b l e s c i e n t i f i c n o t a t i o n
8 c o e f f=c b i n d ( coe f1 , coe f2 , coe f3 , coe f4 , coe f5 , c o e f 6 )
9 co lnames ( c o e f f ) <− c ( ” o l s ” , ” r i d g e ” , ” l a s s o ” , ” l a s s o . 1 s e ” , ”

adaLasso ” , ” a d a E l a s t i c ” )
10 c o e f f

Emmanuel Flachaire Ridge and Lasso Regressions



Application: Compare the coefficients

Shrinkage methods: the coefficients are shrunk towards zero

Variable selection is sensitive to the method
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Summary

Ridge and Lasso ca be used in high-dimension (p � n)

They are based on a bias-variance tradeoff

Tradeoff selected minimizing MSE out-sample by CV

Sparse models: Lasso is a variable selection method

Ridge puts similar coefficients to strongly correlated variables,
while Lasso selects one randomly

Extension to adaptive Lasso and Elastic-net
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2. Methods and Algorithms

Ridge and Lasso Regression

Classification and Regression Tree

Bagging and Random Forests

Boosting

Support Vector Machine

Neural Networks and Deep Learning
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Classification Tree

y ∈ {0, 1} is a qualitative variable
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Classification Tree: Principle from a small sample

Find the best rule on a single variable to classify black/white balls

→ find a cutoff on x1 or x2 such that the maximum number of
observations is correctly classified 24

24See https://freakonometrics.hypotheses.org/52776
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Classification Tree: graphical representation

Minimizing misclassification, we find x2 < k , where k ∈ (0.56, 0.8)

This Figure represents the best split in a competition between all
possible splits of x1 and x2.

From this simple rule, two bullets are misclassified . . . we can try to
find a new rule in the white area sub-group . . .
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Classification Tree: A sum of simple rules

The additional rule x1 ≥ c , where c ∈ (.16, .2), produces the best
subsequent split:

Using these two rules, all bullets are correctly classified
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Classification Tree: Extension to large sample

Interpretation is quite easy and intuitive

We use recursive binary splitting to grow a tree

A tree can grow until every observations is correctly classified

With a large sample, a tree may have many nodes, that is,
many points where the predictor is splitted into two leaves

Note that this principle is easy to apply, even with several
regressors and several classes
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Classification Tree: Example with 100 observations

The resulting tree is quite complex and not so easy to interpret
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Classification: Tree pruning

An unpruned tree:

classifies correctly every observation from a training sample

may classify poorly observations from a test sample

(it is the standard problem of overfitting)

maybe difficult to interpret

A pruned tree:

is a smaller tree with fewer splits

might perform better on a test sample

might have an easier interpretation

→ define a criterion for making binary splits
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Classification: Tree pruning

A fully grown tree fits perfectly training data, poorly test data

Tree pruning is used to control the problem of overfitting

A smaller tree with fewer splits might lead to lower variance
and better interpretation at the cost of a little bias

Poor strategy: Add new split only if it is worthwhile to do so

However, a poor split could be followed by a very good split

Good strategy: Grow a very large tree and prune it back in
order to obtain a subtree, keep a split only if it is worthwhile

→ We need to define what ”only if it is worthwhile” means
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Classification tree: Gini impurity index

Classification: not only concerned by class prediction, also by
class proportion → Min impurity rather than misclassification

Gini impurity index at some node N :25

G (N ) =
K∑

k=1

pk(1− pk) = 1−
K∑

k=1

p2
k

with pk the fraction of items labeled with class k in the node

Node: 100-0 or 0-100→ minimal impurity/diversity: G = 0,
Node: 50-50 → maximal impurity/diversity: G = 1/4.26

A small value means that a node contains predominantly
observations from a single class (homogeneity)

25Another index is the Entropy “impurity” index E(N ) = −
∑K

k=1 pk log pk
26With 100-0: p1 = 1, p2 = 0 ; 0-100, p1 = 0, p2 = 1 ; 50-50: p1 = p2 = 1/2
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Classification: Tree pruning

If we split the node into two leaves, NL and NR , the Gini
impurity index becomes

G (NL,NR) = pLG (NL) + pRG (NR)

where pL, pR are the proportion of observations in NL, NR

When do we split? . . . when impurity is reduced substantially:

∆ = G (N )− G (NL,NR) > ε

we can also require a minimum of observations per node

How do we split? . . . find the cutoff on a single variable that
minimise impurity rather than misclassification (→ max ∆)
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Classification tree: Limitation

Small change in the original sample ⇒ Tree may differ significantly
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Application: Predict survival on the Titanic

Consider passenger data from the sinking of the Titanic

What predictors are associated with those who perished
compared to those who survived?

survived – 1 if true, 0 otherwise;
sex – the gender of the passenger;
age – age of the passenger in years;
pclass – the passenger’s class of passage;
sibsp – the number of siblings/spouses aboard;
parch – the number of parents/children aboard.

1 l i b r a r y (PASWR) # g e t t h e data
2 data ( t i t a n i c 3 )
3 l i b r a r y ( r p a r t ) # CART package
4 l i b r a r y ( r p a r t . p l o t ) # f a n c y p l o t s
5 X=c b i n d ( sex , age , p c l a s s , s i b s p , parch )
6 t r e e <− r p a r t ( s u r v i v e d ˜X, data=t i t a n i c 3 , method=” c l a s s ” )
7 prp ( t r e e , e x t r a =1, f a c l e n =5, box . c o l=c ( ” i n d i a n r e d 1 ” , ”

aquamar ine ” ) [ t r e e $ frame $ y v a l ] )
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Application: Titanic classification tree
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Application: Variable importance

The importance of each variable, related to the gain in Gini, is

1 t r e e $ v a r i a b l e . i m p o r t a n c e

1 s e x p c l a s s s i b s p age parch
2 172.74924 50.78568 27.33127 20.95528 20.46938

that we can plot using

1 b a r p l o t ( t r e e $ v a r i a b l e . importance , h o r i z=TRUE, c o l=” y e l l o w 3 ” )
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Regression Tree

y ∈ R is a quantitative variable
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Regression Tree: Principle with one covariate

Find the best split, which minimizes deviations to the mean
(variances) in each leaf:

→ find cutoff on x such that: Min
∑

xi∈NL

(yi − ȳL)2 +
∑

xi∈NR

(yi − ȳR)2
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Regression Tree: Principle with one covariate

Then use recursive binary splitting:
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Regression Tree: Principle with two covariates

With two covariates, y ≈ m(x1, x2), we have:

(Source: James et al., 2013)

Find boxes R1, . . . ,RJ that minimize SSR:1 Min
J∑

j=1

∑
xi∈Rj

(yi − ȳRj
)2

1We cannot consider every possible partition → use recursive binary splitting
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Application: Predict baseball player’s Salary

Let’s consider 3 covariates: y ≈ m(x1, x2, x3)

What predictors are associated with baseball player’s Salary?

Salary – 1987 annual salary on opening day in thousands of dollars;
Years – Number of years in the major leagues;
Hits – Number of hits in 1986;
Atbat – Number of times at bat in 1986;

1 l i b r a r y ( ISLR )
2 # remove o b s e r v a t i o n s t h a t a r e m i s s i n g S a l a r y v a l u e s
3 d f=H i t t e r s [ complete . c a s e s ( H i t t e r s $ S a l a r y ) , ]
4 # l o a d CART l i b r a r y
5 l i b r a r y ( r p a r t )
6 l i b r a r y ( r p a r t . p l o t )
7 # e s t i m a t e t h e t r e e
8 t r e e <− r p a r t ( l o g ( S a l a r y ) ˜ Years+H i t s+AtBat , data=df , cp=0)
9 # p l o t t h e t r e e

10 prp ( t r e e , e x t r a =1, f a c l e n =5)
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Regression Tree: Principle with several covariates

With more covariates, we can only use the decision tree figure:

based on the same principle: find terminal nodes that min SSR

Emmanuel Flachaire Classification and Regression Tree (CART)



Regression: Tree pruning

A fully grown tree fits perfectly training data, poorly test data

Tree pruning is used to control the problem of overfitting

A smaller tree with fewer splits might lead to lower variance
and better interpretation at the cost of a little bias

Poor strategy: Build the tree only so long as the decrease in
the SSR due to each split exceed some threshold

However, a poor split could be followed by a very good split

Good strategy: Grow a very large tree and prune it back in
order to obtain a subtree, keep a split only if it is worthwhile
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Regression: Tree Pruning

Penalization: we put a prize to pay for having a tree with
many terminal nodes J, or regions,

Min
J∑

j=1

∑
i∈Rj

(yi − ȳRj
)2 + λ J

For given λ, we can find the subtree minimizing this
criterion27

Cross-validation: we select λ using cross validation

A smaller tree with fewer splits might lead to lower variance
and better interpretation at the cost of a little bias

27λ is called the complexity parameter
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Tree pruning: Application

1 t r e e <− r p a r t ( l o g ( S a l a r y ) ˜ Years+H i t s+AtBat , data=d f ) # CV
2 prp ( t r e e , e x t r a =1, f a c l e n =5)

Unpruned tree Pruned tree
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Tree versus linear model

Tree vs. linear model: Which model is better?

It depends on the problem at hand:

Linear regression: m(X ) = β0 +
K∑
j=1

Xjβj

Regression tree: m(X ) =
J∑

j=1

cj 1(x ∈ Rj)

If the relationship between y and x1, ..., xK is linear: a linear
model should perform better

If the relationship between y and x1, ..., xK is highly non-linear
and complex: a tree model should perform better
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True decision boundary: linear
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True decision boundary: nonlinear
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True decision boundary: interactions
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Classification And Regression Tree (CART)

Advantages:

Trees tend to work well for problems where there are
important nonlinearities and interactions

The results are really intuitive and can be understood even by
people with no experience in the field

Disadvantage:

Trees are quite sensitive to the original sample (non-robust)

They may have poor predictive accuracy out-sample

Emmanuel Flachaire Classification and Regression Tree (CART)



2. Methods and Algorithms

Ridge and Lasso regression

Classification and Regression Tree

Bagging and Random Forests

Boosting

Support Vector Machine

Neural Networks and Deep Learning
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Bagging and Random Forest

How bagging and random forest work intuitively:

Based on your symptoms, suppose a doctor diagnoses an
illness that requires surgery

Instead asking one doctor, you may choose to ask several

If one diagnosis occurs more than any others, you may choose
this one as the final diagnosis

→ the final diagnosis is made based on a majority vote of doctors

Bagging and Random Forest: replace doctors by bootstrap samples

Emmanuel Flachaire Bagging and Random Forest



Bagging: algorithm

Algorithm 1: Bagging

Select number of trees B, and tree depth D;
for b = 1 to B do

generate a bootstrap sample from the original data;
estimate a tree model of depth D on this sample;

end

For instance, with the titanic dataset:

1 l i b r a r y ( r p a r t ) ; l i b r a r y ( r p a r t . p l o t )
2 l i b r a r y (PASWR) ; data ( t i t a n i c 3 )
3 n = NROW( t i t a n i c 3 $ s u r v i v e d )
4 par ( mfrow=c ( 3 , 3 ) )
5 f o r ( i i n 1 : 9 ) {
6 i d x = sample ( 1 : n , s i z e=n , r e p l a c e=TRUE)
7 c a r t = r p a r t ( as . f a c t o r ( s u r v i v e d ) ˜ s e x+age+p c l a s s+s i b s p+

parch , data=t i t a n i c 3 [ idx , ] , cp=0) # unpruned
8 prp ( c a r t , t y p e =1, e x t r a =1)}
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Bagging: Generate several trees by bootstrapping
sex = mal

pclass = 2nd,3rd

age >= 34

age >= 14

age < 29

age < 19

age >= 20

age < 20

sibsp >= 0.5

pclass = 3rd

age >= 33

age < 31

sibsp >= 2

age >= 10

age >= 32

age < 48

age >= 45

age < 34

age >= 37

parch >= 0.5

age >= 54

sibsp < 0.5

age >= 28

pclass = 3rd

sibsp >= 2.5

age < 14 age >= 28

parch < 0.5

age >= 24

0

791  518

0

669  176

0

558  113

0

129  5

0

429  108

0

398  87

0

337  56

0

35  0

0

302  56

0

286  40

0

16  16

0

9  3

1

7  13

0

61  31

0

19  3

0

42  28

0

33  16

0

10  0

0

23  16

0

14  2

1

9  14

1

9  12

0

31  21

0

23  3

1

8  18

0

5  4

1

3  14

0

111  63

0

94  40

0

63  18

0

18  0

0

45  18

0

8  0

0

37  18

0

35  11

1

2  7

0

31  22

0

16  3

1

15  19

0

11  5

1

4  14

1

17  23

0

12  12

0

6  2

1

6  10

1

5  11

1

122  342

0

102  102

0

21  5

0

19  0

1

2  5

1

81  97

0

38  12

1

43  85

1

37  63

0

7  3

1

30  60

1

6  22

1

20  240

yes no sex = mal

age >= 13

pclass = 2nd,3rd

parch < 0.5

age >= 32

age >= 45

age < 44

age >= 61

age >= 36

age < 34

sibsp >= 2

pclass = 3rd

parch >= 1.5

sibsp >= 1.5

age >= 28

age >= 23

age < 38

sibsp < 0.5

sibsp >= 0.5

parch < 0.5 age < 15

age >= 57

sibsp < 0.5

parch < 0.5

age >= 50

pclass = 2nd

age >= 22

age < 26

0
814  495

0
683  142

0
646  116

0
512  71

0
472  58

0
128  7

0
48  0

0
80  7

0
77  2

1
3  5

0
344  51

0
40  13

0
134  45

0
17  0

0
117  45

0
85  26

0
32  19

0
32  12

1
0  7

0
37  26

0
32  0

1
5  26

1
131  353

1
106  117

0
30  15

0
16  2

0
14  13

0
13  6

1
1  7

1
76  102

1
50  58

1
48  51

0
36  35

1
12  16

1
2  7

1
26  44

0
16  15

0
10  2

1
6  13

1
10  29

0
4  3

1
6  26

1
25  236

1
6  9

1
19  227

1
14  115

1
14  86

1
3  5

1
11  81

1
8  29

1
8  22

0
4  3

1
4  19

1
0  7

1
3  52

1
0  29

1
5  112

yes no

sex = mal

age >= 14

pclass = 2nd,3rd

pclass = 2nd

age < 19

age >= 40

parch < 0.5

age < 39

age >= 33

age < 32

age >= 28

age < 27

age >= 54

age < 52

age >= 37

parch >= 0.5

age < 49

age < 23

sibsp < 0.5

age >= 29

sibsp >= 2.5

pclass = 3rd

sibsp >= 2.5

parch >= 3.5

age >= 1.5

age < 3.5

age >= 7

age < 15

parch < 0.5

age >= 20

age < 22

age >= 27

0

786  523

0

673  182

0

651  146

0

532  72

0

153  9

0

379  63

0

36  1

0

343  62

0

46  3

0

297  59

0

288  51

0

284  48

0

21  0

0

263  48

0

257  41

0

42  6

0

215  35

0

210  29

1

5  6

1

6  7

0

4  3

0

9  8

0

119  74

0

33  2

0

86  72

0

86  63

0

40  20

0

9  1

0

31  19

0

27  12

1

4  7

0

46  43

0

6  2

1

40  41

0

36  29

0

30  18

1

6  11

1

4  12

1

0  9

1

22  36

0

16  3

1

6  33

1

113  341

1

98  100

0

15  3

1

83  97

0

6  1

1

77  96

1

75  89

0

6  1

1

69  88

1

69  80

0

7  1

1

62  79

1

52  54

0

46  46

0

9  0

1

37  46

0

17  13

1

20  33

1

6  8

1

10  25

1

0  8

1

2  7

1

15  241

yes no

sex = mal

age >= 13

pclass = 2nd,3rd

age < 18

age >= 32

age < 32

age >= 55

age < 49

age >= 37

age < 34

age >= 32

age < 31

sibsp >= 0.5

age >= 27

parch < 0.5

sibsp >= 2.5

pclass = 3rd

parch >= 1.5

age >= 37

age < 23

age >= 20

age >= 28

age < 23

sibsp >= 0.5

0

831  478

0

702  173

0

673  144

0

548  77

0

33  1

0

515  76

0

130  15

0

385  61

0

380  51

1

5  10

0

125  67

0

37  4

0

88  63

0

79  45

0

38  7

0

41  38

0

41  31

0

7  0

0

34  31

0

32  22

0

11  2

0

21  20

0

4  3

0

17  17

0

15  12

1

2  5

1

2  9

1

0  7

1

9  18

0

29  29

0

27  1

1

2  28

1

129  305

0

110  91

0

39  10

0

16  0

0

23  10

0

19  4

1

4  6

1

71  81

0

55  54

0

25  13

1

30  41

0

9  6

1

21  35

1

16  27

0

9  8

1

7  19

1

19  214

yes no
sex = mal

age >= 14

pclass = 2nd,3rd

age >= 32

age < 29

age >= 30

age >= 55

age < 48

age >= 46

age < 43

age >= 39

age < 32

age >= 36

sibsp >= 2.5

pclass = 3rd

age >= 5.5

parch >= 1.5

age >= 17

age < 22

parch < 0.5 age >= 27

age < 33

age >= 37

0

809  500

0

700  171

0

677  137

0

549  88

0

139  8

0

410  80

0

360  58

0

50  22

0

41  12

1

9  10

0

128  49

0

25  3

0

103  46

0

96  36

0

15  0

0

81  36

0

78  31

0

14  3

0

64  28

0

49  16

0

15  12

0

12  6

1

3  6

1

3  5

1

7  10

1

23  34

0

19  1

1

4  33

1

109  329

1

97  106

0

93  89

0

23  4

1

70  85

1

68  78

0

20  9

0

19  3

1

1  6

1

48  69

1

26  29

0

13  3

1

13  26

0

8  5

1

5  21

1

22  40

1

2  7

1

4  17

1

12  223

yes no
sex = mal

age >= 13

pclass = 2nd,3rd

age >= 32

age < 20

age < 32

parch < 0.5

parch >= 1.5

age >= 49

age < 48

parch < 0.5

age >= 28

age < 34

age >= 46

age >= 38

sibsp >= 2.5

pclass = 3rd

parch >= 0.5

age >= 37

sibsp >= 0.5

age >= 25

age < 22

age >= 20

pclass = 2nd

parch < 1.5

age >= 22

age < 27

age >= 25

0

827  482

0

688  163

0

661  132

0

523  82

0

129  5

0

394  77

0

63  1

0

331  76

0

315  63

0

301  53

0

14  10

0

8  0

1

6  10

0

16  13

0

138  50

0

40  6

0

98  44

0

97  38

0

88  28

0

79  20

0

22  0

0

57  20

0

13  0

0

44  20

0

41  16

1

3  4

0

9  8

1

9  10

1

1  6

1

27  31

0

22  0

1

5  31

1

139  319

0

113  86

0

58  20

0

16  0

0

42  20

0

39  9

1

3  11

1

55  66

0

18  8

1

37  58

1

32  46

0

8  0

1

24  46

1

5  12

1

26  233

1

20  102

1

20  74

1

18  46

1

10  11

0

5  3

1

5  8

1

8  35

1

2  28

1

0  28

1

6  131

yes no

sex = mal

age >= 9.5

pclass = 2nd,3rd

age >= 46

parch >= 0.5

age < 48

age >= 55

sibsp < 0.5

parch < 0.5

age < 26

age >= 36

age < 32

parch >= 0.5

sibsp >= 3

age >= 3.5

pclass = 3rd

sibsp >= 2.5

age >= 17

age >= 39

age < 22

age >= 20

sibsp < 0.5

parch < 0.5

age >= 24

age >= 57

sibsp >= 0.5

pclass = 2nd

age >= 16

age < 30

0
814  495

0
669  166

0
649  133

0
531  72

0
118  61

0
50  14

0
19  0

0
31  14

0
10  0

0
21  14

0
15  5

1
6  9

0
68  47

0
55  28

0
49  19

0
7  0

0
42  19

0
9  5

0
33  14

0
31  8

1
2  6

1
6  9

1
13  19

0
5  3

1
8  16

1
20  33

0
18  6

0
13  0

1
5  6

1
2  27

1
145  329

0
129  106

0
21  1

0
108  105

0
102  82

0
19  3

0
83  79

0
21  10

0
9  0

0
12  10

0
9  6

1
3  4

1
62  69

0
52  44

0
48  32

1
4  12

1
10  25

1
6  23

1
16  223

1
3  11

1
13  212

1
8  82

1
7  24

1
7  14

0
7  4

1
0  10

1
0  10

1
1  58

1
5  130

yes no

sex = mal

age >= 4.5

pclass = 2nd,3rd

age >= 32

age < 32

age >= 9.5

age < 19

parch < 0.5

sibsp >= 0.5

age < 29

age >= 28

age < 25

pclass = 3rd

age < 20

age >= 22

age >= 30

pclass = 2nd

age >= 54

age < 48

age >= 41

parch < 0.5

age < 33

age >= 50

pclass = 3rd

pclass = 3rd

sibsp >= 2.5

age >= 17

age < 22

age >= 20

age < 19

parch >= 3.5

age >= 28

sibsp < 0.5

age < 38 age < 33

age < 26

sibsp >= 0.5

0
831  478

0
696  156

0
689  140

0
573  82

0
146  9

0
427  73

0
419  65

0
408  59

0
74  2

0
334  57

0
318  49

0
46  0

0
272  49

0
252  41

0
20  0

0
232  41

0
203  32

0
183  24

0
11  0

0
172  24

0
34  3

0
30  7

0
20  8

0
29  9

0
20  8

0
16  3

1
4  5

0
16  8

0
12  1

1
4  7

0
11  6

0
8  8

0
116  58

0
27  5

0
89  53

0
80  41

0
13  2

0
67  39

0
60  31

0
51  21

1
9  10

1
7  8

1
9  12

0
6  5

1
3  7

1
7  16

0
7  4

1
0  12

1
135  322

0
120  107

0
22  3

1
98  104

0
90  84

0
28  7

0
15  0

0
13  7

0
10  3

1
3  4

1
62  77

0
6  1

1
56  76

1
26  28

0
13  8

0
10  3

1
3  5

1
13  20

0
6  2

1
7  18

1
30  48

1
28  41

0
4  3

1
24  38

1
2  7

1
8  20

1
15  215

yes no sex = mal

age >= 9.5

pclass = 2nd,3rd

age >= 55

age < 34

age >= 37

age < 48

parch >= 0.5

sibsp >= 2.5

pclass = 3rd

sibsp >= 2.5

age >= 28

age < 31

age >= 39

age < 22

age >= 20

age < 15

age >= 7

0
778  531

0
645  176

0
632  157

0
502  93

0
130  64

0
33  3

0
97  61

0
33  12

0
64  49

0
61  37

0
47  20

1
14  17

0
8  1

1
6  16

1
3  12

1
13  19

0
12  3

1
1  16

1
133  355

0
118  111

0
14  0

1
104  111

0
41  17

0
15  2

0
26  15

0
18  4

1
8  11

1
63  94

1
52  69

0
13  2

1
39  67

0
21  20

0
12  4

1
9  16

1
18  47

1
11  25

1
15  244

yes no
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Bagging: Why bootstrapping CART model?

Bagging = Bootstrap aggregating

Prediction:

Regression: average the resulting predictions

Classification: take a majority vote

Impact of bootstrapping:

Averaging a set of observations reduces variance28

It reduces variance and hence increase the prediction accuracy

Compared to CART, the results are much less sensitive to the
original sample, they show impressive improvement in accuracy

Loss of interpretability

28The variance of the mean of the observations X̄ is given by σ2/n
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Random Forest: algorithm

Algorithm 2: Random Forest

Select number of trees B, subsampling parameter m, tree
depth D;

for b = 1 to B do
generate a bootstrap sample from the original data;
estimate a tree model on this sample;
for each split do

Randomly select m of the original covariates (m < P);
Split the data with the best covariate (among the m);

end

end

→ Random Forest = Bagging + subsample covariates at each node

→ Bagging is a special case of Random Forest, with m = P
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Bagging and Random Forest

Random Forest = Bagging + subsampling covariates at each node
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Random forest: Why subsampling covariates?

Subsampling covariates may sound crazy, it has clever rationale:

Suppose there is one very strong covariate in the sample

Most or all trees will use this covariate in the top split

All of the trees will look quite similar to each other

Hence the predictions will be highly correlated

Averaging many highly correlated quantities does not lead to
a large reduction in variance

Random forests overcome this problem by forcing each split to
consider only a subset of the covariates

→ Random forests decorrelate the trees

In practice, default values: m = p/3 in regression and m =
√
p in classification
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Random forest: Overfitting

There is no much overfitting in random forests . . .

as B increases: average effect over trees → no overfitting

as D increases: overfitting is argued to be minor

”Segal (2004) demonstrates small gains in performance by controlling the
depths of the individual trees grown in random forests. Our experience
is that using full-grown trees seldom costs much, and results in one less
tuning parameter. Figure 15.8 shows the modest effect of depth control
in a simple regression example.” (Hastie et al., 2009, p.596)

The goal is to grow trees with as little bias as possible. The
high variance that would result from deep trees is tolerated
because of the averaging over a large number of trees

. . . However, a simple example shows that it can be problematic
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Random forest: Overfitting . . . a simple example

Let us consider a realistic (simulated) sample

1 s e t . s e e d ( 1 )
2 n=200
3 x=r u n i f ( n )
4 y=s i n (12 ∗ ( x +.2) ) / ( x +.2) + rnorm ( n ) /2

We can fit CART and random forest models:29

5 f i t . t r <− r p a r t ( y ˜ x ) # CART
6 f i t . ba1 <− randomForest ( y ˜ x ) # no depth c o n t r o l
7 f i t . ba2 <− randomForest ( y ˜x , maxnodes =20) # depth c o n t r o l

We can plot observations and predicted values:

8 u=seq ( min ( x ) , max ( x ) , l e n g t h . out =1000)
9 p l o t ( x , y , c o l=” g r a y ” , main=”n=200” )

10 l i n e s ( u , p r e d i c t ( f i t . ba1 , data . f rame ( x=u ) ) , c o l=” g r e e n ” )
11 l i n e s ( u , p r e d i c t ( f i t . ba2 , data . f rame ( x=u ) ) , c o l=” r e d ” )
12 l i n e s ( u , p r e d i c t ( f i t . t r , data . f rame ( x=u ) ) , c o l=” b l u e ” )

We run this code for n = 200 and n = 10000

29Note that since it is a simple regression, with 1 covariate, then RF=bagging
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Random forest: Overfitting . . . a simple example

→ improvement of random forest over a single regression tree

→ overfitting can be very large without controlling tree depth
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Random forest: Out-of-bag (OOB) observations

No need to perform cross-validation:

By bootstrapping, each tree uses around 2/3 of the obs. The
remaining 1/3 obs are referred to as the out-of-bag (OOB) obs

Use OOB observations for out-sample predictions

We obtain around B/3 out-sample predictions for the i th obs.

average these values (or majority vote) = OOB prediction for i

An OOB-MSE can be computed over all OOB predictions

The OOB approach for estimating the test error is particularly
convenient with large sample, for which CV would be onerous
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Random forest: Tuning parameters

We can use OOB-MSE to tune Random Forest parameters

Depth tree, D: from our previous example, with n = 10000

1 >randomForest ( y ˜ x ) $mse [ 5 0 0 ] # OOB−MSE, no depth c o n t r o l
2 [ 1 ] 0 .3252183

3 >maxnode=c ( 1 0 , 5 0 , 1 0 0 , 5 0 0 , 1 0 0 0 , 2 0 0 0 )
4 > f o r ( i i n 1 :NROW( maxnode ) ) { # OOB−MSE, depth c o n t r o l
5 > aa=randomForest ( y ˜x , maxnodes=maxnode [ i ] ) $mse [ 5 0 0 ] ;
6 > p r i n t ( c ( maxnode [ i ] , aa ) ) }
7 [ 1 ] 10 .0000000 0.3747725
8 [ 1 ] 50 .0000000 0.2553131
9 [ 1 ] 100.0000000 0.2508479

10 [ 1 ] 500.0000000 0.2570217
11 [ 1 ] 1000.000000 0.268357
12 [ 1 ] 2000.0000000 0.2921307

We can see that OOB-MSE is smaller with maxnode=100

Subsampling parameter, m: can be selected similarly
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Random forest: Variable importance

Random forest improves prediction accuracy at the expense of
interpretability . . . the resulting model is difficult to interpret

One can obtain an overall summary of the importance of each
covariates using SSR (regression) or Gini index (classification)

Index: record the total amount that the SSR/Gini is decreased
due to splits over a given covariate, averaged over all B trees

1 > r f <− randomForest ( as . f a c t o r ( s u r v i v e d ) ˜ s e x+age+p c l a s s+
s i b s p+parch , data=t i t a n i c 3 , na . a c t i o n=na . omit )

2 >i m p o r t a n c e ( r f )
3 MeanDecreaseGin i
4 s e x 133.75916
5 age 63.13448
6 p c l a s s 52 .45753
7 s i b s p 18.74009
8 parch 17.49320
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Random Forests compared to Single Trees (CART)

Source: Breiman (2001)
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Bagging and Random Forest

Advantages:

They tend to work well for problems where there are
important nonlinearities and interactions.

They are robust to the original sample and more efficient than
single trees

Disadvantage:

The results are not intuitive and difficult to interpret.
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Bagging and Random forest: Exercise

Consider the dataset used to predict baseball player’s salary:

1 l i b r a r y ( ISLR )
2 d f=H i t t e r s [ complete . c a s e s ( H i t t e r s $ S a l a r y ) , ]

Create a training set consisting of the first 200 observations, and a
test set consisting of the remaining observations

Perform bagging on the training set for a range of values of the tree
depth D, with B = 1000 trees. Produce a plot with D on the x-axis
and the corresponding test set MSE on the y -axis

Perform random forest on the training set with B = 1000 trees for
several values of the subsampling parameter m, and compute the
corresponding test set MSEs

Compare the test MSE of bagging and random forest to the test
MSE that results from a CART model

Which variables appear to be the most important predictors in the
random forest model?
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2. Resampling-based Methods and Algorithms

Classification and Regression Tree (CART)

Bagging and Random Forests

Boosting

Support Vector Machine

Neural Networks and Deep Learning
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Boosting: Principle

Like bagging, boosting involves combining a large number of
decision trees, but the trees are grown sequentially

Boosting does not involve bootstrap sampling; instead each
tree is fit on a modified version of the original data set:

Each tree is fit to the residuals from the previous tree model

Each iteration is then focused on improving previous errors 30

Each tree is shallow (low depth): ”weak” classifier/predictor 31

Boosting combines the outputs of many ”weak” learners
(classifiers, predictors) to produce a powerful ”committee”

30Each subsequent model pays more attention to the errors from previous
models . . . it is a process that learns from past errors

31Weak classifier: its error rate is only slightly better than random guessing
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Boosting for Regression

y ∈ R is a quantitative variable
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Boosting: algorithm

Algorithm 3: Boosting for regression trees

Select number of trees B, tree depth D, shrinkage parameter λ;
Set initial predicted values, m̂(x) = 0;
for b = 1 to B do

Compute the residuals, r = y − m̂(x);

Fit a regression tree m̂b(x) of depth D to the data (r , x);

Update the predicted values: m̂(x)← m̂(x) + λ m̂b(x);

end

→ By fitting trees to the residuals, we seek to improve m̂ in areas
where it does not perform well
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Boosting: Overfitting

Number of trees, B:

The role of each new (sequential) tree is to improve the fit

Unlike random forests, boosting can overfit if B is too large 32

Depth of trees, D:

In CART, fully-grown or deep trees are known to overfit

Boosting can then overfit if D is too large

Depth tree is usually very small, by default it is often D = 1

→ B and D can be selected by cross-validation

32By averaging over a large number of trees, bagging and random forests
reduces variability. Boosting does not average over the trees
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Boosting: Shrinkage

Idea behind shrinkage:

Slow down the boosting process to avoid overfitting . . . scale
the contribution of each tree by a factor 0 < λ < 1

A smaller λ typically requires more trees B. It allows more
and different shaped trees to attack the residuals33

→ Small values of D and λ: by fitting small trees to the residuals,
we slowly improve m̂ in areas where it does not perform well 34

→ The boosting approach learns slowly (λ = learning rate)

→ Statistical methods that learn slowly tend to perform well

33Typical values are λ = 0.01, or λ = 0.001
34By default, D = 1 and λ = 0.1 in the gbm function in R
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Boosting: a simple regression example

Let us consider a realistic (simulated) sample

1 s e t . s e e d ( 1 )
2 n=200
3 x=r u n i f ( n )
4 y=s i n (12 ∗ ( x +.2) ) / ( x +.2) + rnorm ( n ) /2

We can fit CART and boosting models:

5 l i b r a r y (gbm)
6 nb=500
7 # By d e f a u l t : i n t e r a c t i o n . depth=1 and s h r i n k a g e =0.1
8 f i t . bo <− gbm( y ˜x , d i s t r i b u t i o n=” g a u s s i a n ” , n . t r e e=nb )
9 f i t . t r <− r p a r t ( y ˜ x )

We can plot observations and predicted values:

8 u=seq ( min ( x ) , max ( x ) , l e n g t h . out =1000)
9 p l o t ( x , y , c o l=” g r a y ” , main=”n=200” , x l a b=NA, y l a b=NA)

10 l i n e s ( u , p r e d i c t ( f i t . t r , data . f rame ( x=u ) ) , c o l=” b l u e ” )
11 l i n e s ( u , p r e d i c t ( f i t . bo , data . f rame ( x=u ) , n . t r e e s=nb ) , c o l=”

p u r p l e ” )

We run this code for n = 200 and n = 10000
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Boosting: a simple regression example

→ Boosting provides nice improvement over single regression tree

Emmanuel Flachaire Boosting



Boosting: Exercise

Consider the previous simple regression example:

Re-run the code with D = 4, B = 1000 and λ = 1. Do you
observe overfitting?

Perform boosting with different values of D, B and λ and
look how sensitive the results are to these choices

Consider the random forest exercise, on baseball player’s salary:

Perform boosting on the training set for a range of values of
the shrinkage parameter λ, with B = 1000 trees and D = 1.

Produce a plot with different shrinkage values on the x-axis
and the corresponding test set MSE on the y-axis.

Compare the test MSE of boosting to the test MSE that
results from bagging, random forest and CART model
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Boosting for Classification

y ∈ {−1, 1} is a qualitative variable
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AdaBoost algorithm

Algorithm 4: AdaBoost

Select the number of trees B, and the tree depth D;
Set initial weights, wi = 1/n;
for b = 1 to B do

Fit a classification tree m̂b(x) to the data using weights wi ;
Update the weights: ↗ wi if misclassified, ↘ wi

otherwise †;

end

Output: ŷi = sign (
∑B

b=1 αbm̂b(x))

† If i is misclassified: wi ← wie
αb , where αb = log( 1−errb

errb
) and errb is the model’s

misclassification error, errb =
∑n

i=1 wi I (yi 6=m̂b(xi ))∑n
i=1 wi

. If i is correctly classified wi ← wi .

→ Observ. misclassified have more influence in the next classifier

→ In the output, the contributions from classifiers that fit the data
better are given more weight (a larger αb means a better fit)
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Schematic illustration of the boosting framework

(Source: Bishop 2006, Pattern recognition and machine Learning, Figure 14.1)
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Boosting vs. bagging

(Source: Internet, @@)

→ Bootstrap samples ≡ Original sample reweighted independently
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Illustration of boosting for classification tree

(Source: Bishop (2006), Pattern recognition and machine Learning, Figure 14.2)
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Generalizations into a unifying framework

Breiman referred to AdaBoost with trees as the ”best
off-the-shelf classifier in the world” (NIPS Workshop, 1996)

Friedman et al. (2000) show that Adaboost fits an additive
model in a base learner, optimizing a novel exponential loss
function, which is very similar to the binomial log-likelihood

They proposed generalizations into a unifying framework,
which includes several loss functions that can be used

They describe loss functions for regression and classification
that are more robust than squared error or exponential loss

→ Gradient boosting
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Stochastic gradient boosting

Algorithm 5: Stochastic gradient boosting

Select number of trees B, tree depth D, shrinkage parameter λ;
for b = 1 to B do

Compute the gradient vector, ri = −∂L(yi ,m(xi ))/∂m(xi );
Draw a subset of the original sample (r∗, x∗);

Fit a regression tree mb(x) of depth D to the data (r∗, x∗);

Update the predicted values: m(x)← m(x) + λmb(x);

end

→ Gradient boosting: Depending the choice of the loss function,
we consider a specific regression or classification model

→ Stochastic:

Shrinkage: slow down the boosting process to avoid overfitting

Subsampling: it reduces the computing time and, in many
cases, it produces a more accurate model (see random forest)
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Loss functions in regression, y ∈ R
Squared error loss function:

L =
1

2
(yi −m(xi ))2

for which the gradient vector is the residuals ri = yi −m(xi )

Absolute error loss function, or Laplacian:35

L = |yi −m(xi )|

→ median of the conditional distribution . . . robust regression

Huber loss function: a robust alternative to absolute error loss,

L =

{
1
2 (yi −m(xi ))2 |yi −m(xi )| ≤ δ
δ(|yi −m(xi )| − δ/2) |yi −m(xi )| > δ

35We can also derive a quantile loss function: L = (1− α)|yi −m(xi )| if
|yi −m(xi )| ≤ 0, and L = (1− α)|yi −m(xi )| otherwise (α: desired quantile)
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Loss functions in regression: A comparison

(Source: Hastie et al., 2009)

→ When robustness is a concern, squared error is not the best criteria

Emmanuel Flachaire Boosting



Loss functions in classification, y ∈ {−1, 1}

Misclassification loss function:36

L = 1(sign[m(x)] 6= y)

Adaboost loss function:

L = e−ym(x)

Bernouilli loss function, or Binomial deviance:

L = log(1 + e−2ym(x))

→ Minimizing Adaboost or Bernouilli loss functions leads to the
same solution at the population level . . . not in finite sample

→ Bernouilli loss function is more robust to outliers in finite sample

36The sign of m(xi ) implies that observations with yim(xi ) > 0 (< 0) are
classified correctly (misclassified)
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Loss functions in classification: A comparison

← misclassified correctly classified →

(Source: Hastie et al., 2009)

→ More weight for obs. more clearly misclassified (large negative ym(x))

→ When robustness is a concern, exponential loss is not the best criteria
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Tuning parameters

The number of trees B. Unlike bagging and random forests,
boosting can overfit if B is too large, although this overfitting
tends to occur slowly if at all.

The number of splits D in each tree, which controls the
complexity of the boosted ensemble. Often D = 1 works well,
in which case each tree is a stump, consisting of a single split.

The shrinkage parameter λ. This controls the rate at which
boosting learns. Typical values are 0.01 or 0.001, and the
right choice can depend on the problem.37

→ We use cross-validation to select B, D and λ

37Very small λ can require very large B in order to achieve good performance
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Boosting: Interpretation

Single tree are highly interpretable. Linear combinations of
trees must therefore be interpreted in a different way.

Variable importance: using the relative importance of a
variable for a single tree,38 we then average over the trees39

After the most relevant variables have been identified, the
next step is to attempt to understand the nature of the
dependence of the approximation m(X ) on their joint values

Partial dependence plot illustrate the marginal effect of the
selected variables on the response after integrating out the
other variables.

38The squared relative importance of Xl is the sum of squared improvements
over all internal nodes for which it was chosen as the splitting variable

39Due to the stabilizing effect of averaging, this measure turns out to be
more reliable than is its counterpart (10.42) for a single tree
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Application: spam email

The data for this example consists of information from 4601 email
messages, in a study to try to predict whether the email was spam.

The response variable is binary, with values email or spam, and
there are 57 predictors as described below:

48 quantitative predictors: the percentage of words in the email
that match a given word40

6 quantitative predictors: the percentage of characters in the email
that match a given character (; ! # ( [ $)

Uninterrupted sequences of capital letters: average length (CAPAVE),
length of the longest (CAPMAX), sum of the length (CAPTOT)

→ use gradient boosting to design an automatic spam detector that
could filter out spam before clogging the users’ mailboxes

40Examples include business, address, internet, free, and george. The
idea was that these could be customized for individual users (Hastie et al, 2009)
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Application: spam email

(Source: Hastie et al., 2009)
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Application: partial dependence

(Source: Hastie et al., 2009)

→ effect of Xj on m(X ) after accounting for the average effects of the other variables
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Application: joint frequencies

→ This plot displays strong interaction effects
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Introduction

A method developped in the computer science community in
the 1990s

It uses a basis expansion to capture non-linear class
boundaries

Well suited for classification of complex but small- or
medium-sized datasets

Often considered one of the best ”out of the box” classifiers
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Support Vector Classifier

The separable case
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Classification and hyperplane

Source: James et al. (2013)

A hyperplane separates the space in two halves:

β0 + X1β1 + X2β2 > 0 (blue) or < 0 (red)

An ∞ number of hyperplanes, with same classification score

What would make a difference is their capacity to generalize
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The Maximal Margin Classifier

Margins = two parallel separating hyperplanes, located at the
smallest distance from the observations of each classes

Margins: the dashed lines

Support vectors: the two blue
points and the purple point
that lie on the margins

Optimal hyperplane: solid line

Source: James et al. (2013)

Principle: Maximize the distance between the two margins

The maximal margin (or optimal) hyperplane is the separating
hyperplane that is farthest from the training observations
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How to find the maximal margin?

It is an optimization problem:

maximize
β,‖β‖=1

M subject to yi (Xiβ) ≥ M, ∀i = 1, . . . , n

Here, ‖β‖ = 1 ensures that the perpendicular distance from the i th

observation to the hyperplane is given by yi (Xiβ). Thus, the
restriction ensures that each observation is on the correct side of
the hyperplane and at least a distance M from the hyperplane.

It is equivalent to:41

minimize
β

‖β‖2 subject to yi (Xiβ) ≥ 1, ∀i = 1, . . . , n

41We get rid of ‖β‖ = 1 by replacing the restriction with yi (Xiβ) ≥ M‖β‖
and, by setting ‖β‖ = 1/M, see Hastie et al (2009, section 4.5.2)
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Sensitivity to individual observations

Adding one blue observation leads to a quite different hyperplane,
with a significant decrease of the distance between the two margins

→ It could be worthwhile to misclassify a few training observations
in order to obtain a better generalization (out-sample classification)
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Support Vector Classifier (SVC)

Why should we consider a classifier that is not a perfect separator?

In the interest of:

greater robustness to individual observations

better classification of the out-sample observations

Underlying principles:42

SVC: maximal margin classifier, tolerating margin violations

Logit: minimize misclassification error

42Figures: logit ≈ SVC (left), logit=solid line & SVC=dashed line (right)
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How to tolerate margin violations?

It is a slightly modified optimization problem:

maximize
β,‖β‖=1

M subject to yi (Xiβ) ≥ M(1− εi ),

and εi ≥ 0,
∑n

i=1 εi ≤ C

∀i = 1, . . . , n, where C is a nonnegative tuning parameter.

ε1, . . . , εn are slack variables that allow observations to be on
the wrong side of the margin (εi > 0) or hyperplane (εi > 1)

C is a budget for the amount that the margins can be violated

C = 0: no margin violation is tolerated
as C increases, we become more tolerant of margin violations

C is the maximal number of observations allowed to be on the
wrong side of the hyperplane

In practice, C is a tuning parameter chosen by cross-validation
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Support Vector Classifier vs. Logit model

SVC: the previous optimization problem can be rewritten as:43

minimize
β

n∑
i=1

max [0, 1− yi (Xiβ)]︸ ︷︷ ︸
hinge loss function

+λ

K∑
k=1

β2
k

It’s a minimization of the hinge loss function with penalization

Logit: minimizing missclassification, we have:

minimize
β

n∑
i=1

log
(

1 + e−yi (Xiβ)
)

︸ ︷︷ ︸
softmax function

,

It’s a minimization of the softmax function, no penalization

→ SVC ≈ penalized Logit model, using a hinge loss function

→ Role of penalization = tradeoff min missclassif. & max margin
43With λ = 1/(2C), see Hastie et al. (2009)
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SVC and Logit: loss function

yi (Xiβ)Source: James et al. (2013)

Overall, the two loss functions have quite similar behavior

Hinge loss = 0 for obs on the correct side of the margin: yi (Xiβ) > 1
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SVC and Logit: The separable case

Left: Logit ≈ SVC with C = 0

Right: Logit 6≈ SVC with C > 0 (chosen by cross-validation)

→ SVC = tradeoff between min missclassification & max margin
44

44max margin: pushing away the obs. as far as possible from the hyperplane
min missclassif: smallest aggregated distance from the hyperplane of wrong obs
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Support Vector Classifier

The non-separable case
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The non-separable case

In the non-separable case, some observations are on the wrong
side of the hyperplane

The Maximal Margin Classifier has no solution

Logit minimizes the aggregated distance from the hyperplane
of the missclassified observations, not the number of missclass.

SVC is a tradeoff between:

minimizing the aggregated distance from the hyperplane of the
missclassified observations

pushing away as far as possible from the hyperplane the
correctly classified observations
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SVC and Logit: The non-separable case

Left: Logit 6≈ SVC with C small

Right: Logit 6≈ SVC with C chosen by cross-validation

SVC: 1 mistake - Logit: 3 mistakes

Emmanuel Flachaire Support Vector Machine (SVM)



Support Vector Machine

Nonlinear separability
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Support Vector Machine (SVM)

Many datasets are not linearly separable

Adding polynomial features and interactions can be used

But a low polynomial degree cannot deal with very complex
datasets

The support vector machine (SVM) is an extension of the
support vector classifier that results from enlarging the feature
space in a specific way, using kernels.

SVM works well for complex but small- or medium-sized
datasets
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Moving into higher dimension

Find a SVM classifier to identify teenagers from the height:45

Using the projection ϕ : x 7→
(
x−150

10 ,
(
x−150

10

)2
)

, we obtain:

The data are linearly separable in the 2-dimensional space

45Source: Internet
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The kernel trick

The data are not linearly separable in the 2-dimensional space, S

The kernel trick: Source: https://freakonometrics.hypotheses.org/52775

The data are linearly separable in the 3-dimensional space, S ′
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SVM: The optimization problem

It is the SVC optimization problem, with transformed covariates:

maximize
β,‖β‖=1

M subject to yi (ϕ(Xi )β) ≥ M, ∀i

or minimize
β

n∑
i=1

max [0, 1− yi (ϕ(Xi )β)] + λ

K∑
k=1

β2
k

In the resolution, ϕ only appears in the form ϕ(Xi )
>ϕ(Xj). Thus,

we don’t need to express explicitely ϕ

we don’t need to express the higher dimension space S ′

We use a kernel function defined as K (x , x ′) = ϕ(x)>ϕ(x ′)
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Polynomial kernel

The kernel should be a symmetric positive (semi-) definite function.

The dth-degree polynomial kernel is: K (x , x ′) = (1 + 〈x , x ′〉)d

1st-degree polynomial kernel with two covariates X1 and X2:46

K (X ,X ′) = (1 + 〈X ,X ′〉) = (1 + X1X
′
1 + X2X

′
2)

With ϕ(X ) = {1,X1,X2}, we have K (X ,X ′) = ϕ(X )>ϕ(X ′).
It corresponds to the linear case, or SVC.

→ SVM with 1st-degree polynomial kernel is similar to SVC

46With two n-vectors, the inner product is: 〈x1, x2〉 = x>1 x2 =
∑n

i=1 xiyi
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Polynomial kernel

The dth-degree polynomial kernel is: K (x , x ′) = (1 + 〈x , x ′〉)d

2nd-degree polynomial kernel with two covariates X1 and X2:

K (X ,X ′) = (1 + 〈X ,X ′〉)2 = (1 + X1X
′
1 + X2X

′
2)2

= 1 + 2X1X
′
1 + 2X2X

′
2 + (X1X

′
1)2 + (X2X

′
2)2 + 2X1X

′
1X2X

′
2

Here, ϕ(X ) = {1,
√

2X1,
√

2X2,X
2
1 ,X

2
2 ,
√

2X1X2} defines a
6-dimensional space, with squared and interaction terms

We move from 3-dimensional space to 6-dimensional space

→ SVM with dth-degree polynomial kernel (d ≥ 2) is similar to
SVC with additional powers and interaction terms of the covariates
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Radial kernel

Radial basis function (RBF) kernel: K (x , x ′) = exp(−γ‖x − x ′‖2)

γ > 0 accounts for the smoothness of the decision boundary47

It is returns values between 0 and 1:

It returns large value for x close to x ′

It returns small value for x far from x ′

It is a similarity measure between two covariates

→ The radial kernel has a local behavior

47Bias-variance tradeoff: large value of γ leads to high variance (overfitting),
small value leads to low variance and smoother boundaries (underfitting)
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Illustration: Simulated data

1 s e t . s e e d ( 1 )
2 x=m a t r i x ( rnorm (200 ∗ 2) , n c o l =2)
3 x [ 1 : 1 0 0 , ] = x [ 1 : 1 0 0 , ] + 2
4 x [ 1 0 1 : 1 5 0 , ] = x [10 1 : 15 0 , ] −2
5 y=c ( r e p ( 1 , 1 5 0 ) , r e p ( 2 , 5 0 ) )
6 p l o t ( x [ , 2 ] , x [ , 1 ] , pch =16, c o l=y∗ 2)

Non-linear decision boundaries → SVC will perform poorly
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Illustration: Fit SVM with polynomial and radial kernels

We can fit a SVM with 2nd-degree polynomial kernel and fixed
cost of constraints violation:

7 l i b r a r y ( e1071 )
8 dat=data . f rame ( x=x , y=as . f a c t o r ( y ) )
9 s v m f i t=svm ( y ˜ . , data=dat , k e r n e l=” p o l y n o m i a l ” , c o s t =1, d e g r e e =2)

10 p l o t ( s v m f i t , dat , g r i d =200)

Or select the cost parameter by 10-fold CV among several values:

11 tune . out=tune ( svm , y ˜ . , data=dat , k e r n e l=” p o l y n o m i a l ” , d e g r e e =2,
r a n g e s= l i s t ( c o s t=c ( . 1 , 1 , 1 0 , 1 0 0 ) ) )

12 p l o t ( tune . out $ b e s t . model , dat , g r i d =200)
13 summary ( tune . out )

Similarly, we can fit a SVM with radial kernel:48

14 tune . out=tune ( svm , y ˜ . , data=dat , k e r n e l=” r a d i a l ” , r a n g e s= l i s t (
c o s t=c ( . 1 , 1 , 1 0 , 1 0 0 ) , gamma=c ( . 5 , 1 , 2 , 3 , 4 ) ) )

15 p l o t ( tune . out $ b e s t . model , dat , g r i d =200)

48We then have 2 tuning parameters, the cost of constraints violation and γ
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Illustration: Polynomial vs. radial kernels

Either kernel is capable of capturing the decision boundary

However, the results are different
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ROC curve

With more than 2 covariates, we can’t plot decision boundary

We can produce a ROC curve to analyze the results

SVM doesn’t give probabilities to belong to classes, as in logit

We compute scores of the form f̂ (X ) = ϕ(Xi )β̂ for each obs.
Scores = predicted values.

For any given cutoff t, we can classify observations into a
category, depending on wether

f̂ (X ) < t or f̂ (X ) ≥ t

The ROC curve is obtained by computing the false positive
and true positive rates for a range of values of t
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Illustration: ROC curves

We write a short function to plot a ROC curve:
16 l i b r a r y (ROCR)
17 r o c p l o t=f u n c t i o n ( pred , t r u t h , . . . ) {
18 predob=p r e d i c t i o n ( pred , t r u t h )
19 p e r f=p e r f o r m a n c e ( predob , ” t p r ” , ” f p r ” )
20 p l o t ( p e r f , . . . ) }

We can fit a SVM with radial kernel and plot a ROC curve:
21 s e t . s e e d ( 1 )
22 t r a i n=sample ( 2 0 0 , 1 0 0 )
23 t r a i n=s o r t ( t r a i n , d e c r e a s i n g=TRUE) # to a v o i d r e v e r s e ROC
24 s v m f i t=svm ( y ˜ . , data=dat [ t r a i n , ] , k e r n e l=” r a d i a l ” , c o s t =1,

gamma=0.5)
25 f i t =a t t r i b u t e s ( p r e d i c t ( s v m f i t , dat [− t r a i n , ] , d e c i s i o n . v a l u e s=

TRUE) ) $ d e c i s i o n . v a l u e s
26 r o c p l o t ( f i t , dat [− t r a i n , ” y ” ] , main=” Test Data ” , c o l=” r e d )

We can also fit a Logit model and plot a ROC curve:
27 l g t=glm ( y ˜ . , data=dat [ t r a i n , ] , f a m i l y=b i n o m i a l ( l i n k= ’ l o g i t ’ ) )
28 f i t =p r e d i c t ( l g t , dat [− t r a i n , ] , t y p e=” r e s p o n s e ” )
29 par ( new=TRUE)
30 r o c p l o t ( f i t , dat [− t r a i n , ” y ” ] , c o l=” g r e e n ” )
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Illustration: ROC curves

As expected in this example, SVM outperforms Logit model
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2. Methods and Algorithms
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Emmanuel Flachaire Neural Networks and Deep Learning



Neural networks with one covariate
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Looking for a more flexible model . . .

A linear model maybe quite restrictive:

y ≈ α + βx

We can obtain a more flexible model by adding:

successive powers . . . . . . . . . . . . . . . . . . . polynomial regression49

y ≈ α +
M∑

m=1

βmx
m

nonlinear functions of linear combinations . . neural networks50

y ≈ α +
M∑

m=1

βm f (αm + δmx)

where f is an activation function – a fixed nonlinear function
49y ≈ α + β1x + β2x

2 + β3x
3 + . . .

50y ≈ α + β1 f (α1 + δ1x) + β2 f (α2 + δ2x) + β3 f (α3 + δ3x) + . . .
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Common examples of activation functions

The logistic (or sigmoid) function: f (x) = 1
1+e−x

The hyperbolic tangent function: f (x) = tanh(x) = ex−e−x

ex+e−x

The Rectified Linear Unit (ReLU): f (x) = max(0, x) = (x)+

Source: Géron (2017)
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Neural network vs. polynomial: A simple example

Let us consider a realistic (simulated) sample

1 s e t . s e e d ( 1 ) ; n=200
2 x=s o r t ( r u n i f ( n ) )
3 y=s i n (12 ∗ ( x +.2) ) / ( x +.2) + rnorm ( n ) /2
4 d f=data . f rame ( y , x )

We can fit a polynomial regression with M = 3:

5 o l s=lm ( y ˜ x+I ( x ˆ2)+I ( x ˆ3) )
6 p l o t ( x , y , main=” P o l y n o m i a l : M=3” )
7 l i n e s ( x , p r e d i c t ( o l s ) , c o l=” b l u e ” )

We can fit a neural network model with M = 3:

8 l i b r a r y ( n e u r a l n e t )
9 nn=n e u r a l n e t ( y ˜x , data=df , h i d d e n =3, t h r e s h o l d =.05)

10 y f i t=compute ( nn , data . f rame ( x ) ) $ n e t . r e s u l t
11 p l o t ( x , y , main=” N e u r a l Networks : M=3” )
12 l i n e s ( x , y f i t , c o l=” r e d ” )
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Neural network vs. polynomial: A simple example
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Polynomial: M=3

x

y
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Neural Networks: M=3

x

y

→ Neural networks can capture nonlinearity
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A weighted sum of fixed/adjustable components
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Fixed vs. adjustable components

Why neural networks perform better than polynomial regression in
the previous example?

Polynomial regression is based on fixed components, or
bases:51

x , x2, x3, . . . , xM

Neural network is based on adjustable components, or bases:52

f (α1 + δ1x), f (α2 + δ2x), . . . , f (αM + δMx)

Adjustable components have tunable internal parameters
They can express several shapes, not just one (fixed) shape
Each component is more flexible than a fixed component

→ Adjustable components enable to capture complex models with
fewer components (smaller M)

51y ≈ α +
∑M

m=1 βmx
m

52y ≈ α +
∑M

m=1 βm f (αm + δmx)
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Neural networks with several covariates
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Neural network with several covariates

With a set of covariates X = (1, x1, x2, . . . , xk), we have

y ≈ α +
M∑

m=1

βm f (αm + X δm)

The nonlinarity of the activation function f is essential,
otherwise it is a simple linear model in X

Combining several nonlinear functions f is essential to capture
interaction effects, M > 1, otherwise it is just a logit model53

By adding nonlinear functions of linear combinations of X , we
obtain a more flexible model, which is able to capture nonlinearity
and interaction effects

53With M = 1 and the logistic activation function, it is a logit model
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Interaction effects

Adding two nonlinear functions can generate an interaction effect:

y ≈ α +
2∑

m=1

βm f (αm + x1δm + x2γm)

Let us consider α = α1 = α2 = 0, β1 = −β2 = 1
4 , α1 = α2 = 0,

δ1 = δ2 = γ1 = −γ2 = 1 and f (z) = z2, we have:

y ≈ 0 +
1

4
(0 + x1 + x2)2 − 1

4
(0 + x1 − x2)2

≈ 1

4
[(x1 + x2)2 − (x1 − x2)2]

≈ x1x2

So the sum of two nonlinear transformations of linear functions can
give us an interaction! Here, we would always get a 2nd-degree
polynomial in X . Other activations do not have such a limitation.
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XOR: Exclusive or (true if its arguments differ)

Diagram of y ≈ α +
∑2

m=1 βm f (αm + x1δm + x2γm)

Source: Géron (2017, p.260)

With the step activation function (=1 if positive, 0 otherwise)

y ≈ −0.5− I(x1 + x2 > 1.5) + I(x1 + x2 > 0.5)

With (0,0) or (1,1) we have -0.5, with (1,0) or (0,1) we have +0.5
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Neural network with a single hidden layer

Source: James et al. (2021)

Diagram of y ≈ α +
∑M

m=1 βm f (αm + X δm) with M = 5 neurons
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Ridge regularization & standardization

NN tends to overfit due to large number of coefficients

A solution is to regularize similar to ridge regression:54

Minimize the SSR subject to
∑p

j=1 θ
2
j ≤ c

The results are sensitive to the scale of the covariates

It is best to standardize covariates before using Neural
Networks, so that they are all on the same scale:

x − x̄√
Var(x)

54θ is the set of coefficients α, β, δ
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Backpropagation algorithm

In 1986, Rumelhart et al. found a way to train neural networks,
with the backpropagation algorithm.55 Today, we would call it a
Gradient Descent using reverse-mode autodiff.

For each training instance:

1 the algorithm first makes a prediction (forward path)

2 measures the error

3 goes through each layer in reverse to measure the error
contribution from each connection (reverse pass)

4 slightly tweaks the connection weights to reduce the error
(Gradient Descent step)

55Rumelhart et al.: Learning Internal Representations by Error Propagation
Emmanuel Flachaire Neural Networks and Deep Learning



Application 1: Mincer equation

1 l i b r a r y (AER) ; data ( ”CPS1985” )
2 CPS1985$ g e n d e r=as . numer ic ( CPS1985$ g e n d e r )
3 l i b r a r y ( n e u r a l n e t )
4 nn=n e u r a l n e t ( l o g ( wage ) ˜ e d u c a t i o n+e x p e r i e n c e+gender , data=

CPS1985 , h i d d e n =3, t h r e s h o l d =.05)
5 p l o t ( nn )

−1.54855

−0.6
93

29

4.
68

72
5

gender

−0.02142

−0.16691

1.3
16

96

experience

0.45621

−0.05494

−1.85739education

1.1
99

55

−2.4352

0.16576

log(wage)
−2.8359

0.95919

−23.14437

1

1.5042

1

Error: 49.601795   Steps: 1609
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Application in classification

Logit model Neural network with 10 units

Source: Hastie, Tibshirani and Friedman (2009), based on simulated data

In classification, the softmax function is applied to the outputs

Emmanuel Flachaire Neural Networks and Deep Learning



Multilayer neural networks
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Multilayer neural networks

Even greater flexibility is achieved via composition of activation
functions:

y ≈ α +
M∑

m=1

βm f

(
α

(1)
m +

P∑
p=1

f
(
α

(2)
p + X δ

(2)
p

)
︸ ︷︷ ︸

it replaces X

δ
(1)
m

)

The composition of activation functions puts one additional
hidden layer between inputs and outputs → multi-layers NN

A NN with three hidden layers can be obtained by simply
repeating the procedure used to create the two layer basis.

Multilayer neural networks: when a NN has 2 or more hidden layers
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Multilayer neural networks

Source: James et al. (2021)
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Multilayer neural networks

From single layer with many neurons to multilayer with less neurons

James et al. (2021):

In theory a single hidden layer with a large number of
units/neurons has the ability to approximate most functions

However, the learning task of discovering a good solution is
made much easier with multiple layers each of modest size

Modern neural networks typically have more than one hidden
layer, and often many units/neurons per layer

Deep Neural Networks = Multilayer Neural Networks
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Application 1: Mincer equation

1 nn=n e u r a l n e t ( l o g ( wage ) ˜ e d u c a t i o n+e x p e r i e n c e+gender , data=
CPS1985 , h i d d e n=c ( 3 , 3 ) , t h r e s h o l d =.05)

2 p l o t ( nn )
3 nn=n e u r a l n e t ( l o g ( wage ) ˜ e d u c a t i o n+e x p e r i e n c e+gender , data=

CPS1985 , h i d d e n=c ( 3 , 3 , 3 ) , t h r e s h o l d =.05)
4 p l o t ( nn )

1.88576
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Pattern recognition

Everything is just numbers:

Source: internet, link

A 18x18 pixel image can be seen as an array of 324 numbers that
represent how dark each pixel is (grayscale value in (0, 255))

A vector of these numbers can be used to feed a neural networks
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MNIST handwritten digit dataset

Source: James et al. (2021)

Input vector X : p = 28× 28 = 784 pixels

Output Y : class label Y = (Y0,Y1, . . . ,Y10)

60,000 training images and 10,000 test images
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Application 2: Handwritten digit recognition

1 # Source : s e c t i o n 1 0 . 9 . 2 i n James e t a l . (2021)
2 l i b r a r y ( k e r a s )
3 # l o a d t h e MNIST d i g i t data
4 mnis t <− d a t a s e t mni s t ( )
5 x t r a i n <− mnis t $ t r a i n $ x
6 g t r a i n <− mnis t $ t r a i n $ y
7 x t e s t <− mnis t $ t e s t $ x
8 g t e s t <− mnis t $ t e s t $ y
9 # r e s h a p e images i n t o m a t r i c e s

10 x t r a i n <− a r r a y r e s h a p e ( x t r a i n , c ( nrow ( x t r a i n ) , 784) )
11 x t e s t <− a r r a y r e s h a p e ( x t e s t , c ( nrow ( x t e s t ) , 784) )
12 y t r a i n <− to c a t e g o r i c a l ( g t r a i n , 10)
13 y t e s t <− to c a t e g o r i c a l ( g t e s t , 10)
14 # r e s c a l e to t h e u n i t i n t e r v a l
15 x t r a i n <− x t r a i n / 255
16 x t e s t <− x t e s t / 255
17 # d e f i n e t h e m u l t i l a y e r NN
18 modelnn <− k e r a s model s e q u e n t i a l ( )
19 modelnn %>%
20 l a y e r dense ( u n i t s = 256 , a c t i v a t i o n = ” r e l u ” ,
21 i n p u t shape = c ( 7 8 4 ) ) %>%
22 l a y e r dropout ( r a t e = 0 . 4 ) %>%
23 l a y e r dense ( u n i t s = 128 , a c t i v a t i o n = ” r e l u ” ) %>%
24 l a y e r dropout ( r a t e = 0 . 3 ) %>%
25 l a y e r dense ( u n i t s = 10 , a c t i v a t i o n = ” sof tmax ” )
26 summary ( modelnn )
27 # add d e t a i l s to t h e model
28 modelnn %>% c o m p i l e ( l o s s = ” c a t e g o r i c a l c r o s s e n t r o p y ” ,
29 o p t i m i z e r = o p t i m i z e r rmsprop ( ) , m e t r i c s = c ( ” a c c u r a c y ” )
30 )
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Application 2: Handwritten digit recognition

31 # f i t t h e NN w i t h t r a i n i n g data
32 system . t ime (
33 h i s t o r y <− modelnn %>%
34 f i t ( x t r a i n , y t r a i n , epochs = 30 , batch s i z e = 128 ,
35 v a l i d a t i o n s p l i t = 0 . 2 )
36 )
37 p l o t ( h i s t o r y , smooth = FALSE)
38 # o b t a i n t h e t e s t e r r o r
39 a c c u r a c y <− f u n c t i o n ( pred , t r u t h )
40 mean ( drop ( pred ) == drop ( t r u t h ) )
41 modelnn %>% p r e d i c t ( x t e s t ) %>% max . c o l %>% a c c u r a c y ( g t e s t +1)
42
43 # f i t a m u l t i n o m i a l l o g i t as a NN w i t h o u t h i d d e n l a y e r
44 m o d e l l r <− k e r a s model s e q u e n t i a l ( ) %>%
45 l a y e r dense ( i n p u t shape = 784 , u n i t s = 10 ,
46 a c t i v a t i o n = ” sof tmax ” )
47 summary ( m o d e l l r )
48 m o d e l l r %>% c o m p i l e ( l o s s = ” c a t e g o r i c a l c r o s s e n t r o p y ” , o p t i m i z e r = o p t i m i z e r

rmsprop ( ) , m e t r i c s = c ( ” a c c u r a c y ” ) )
49 m o d e l l r %>% f i t ( x t r a i n , y t r a i n , epochs = 30 , batch s i z e = 128 , v a l i d a t i o n

s p l i t = 0 . 2 )
50 m o d e l l r %>% p r e d i c t ( x t e s t ) %>% max . c o l %>% a c c u r a c y ( g t e s t +1)

You may need to install Keras first:

1 i n s t a l l . packages ( ” t e n s o r f l o w ” )
2 i n s t a l l . packages ( ” k e r a s ” )
3 l i b r a r y ( k e r a s )
4 t e n s o r f l o w : : i n s t a l l t e n s o r f l o w ( )
5 t e n s o r f l o w : : t f c o n f i g ( )
6 i n s t a l l k e r a s ( )
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Multilayer NN for handwritten digit recognition

Source: James et al. (2021)

NN with 2 hidden layers L1 (256 units) and L2 (128 units)

235,146 coef in the NN and 7,065 in the multinomial logit56

To avoid overfitting, two forms of regularization are used

56L1: 785×256=200,960 and L2: 257×128=32,896 and 10-outputs 129×10
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Dropout regularization

Source: James et al. (2021)

New efficient form of regularization, inspired by random forest

Randomly remove a fraction of the units in a layer

In practice, randomly set the dropped out units to zero
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Limitations

Multilayer NN can model complex non-linear relationships

With very complex problems, such as detecting hundreds of types
of objects in high-resolution images, we need to train deeper NN:

perhaps 10 layers, each with hundreds of neurons, connected
by hundreds of thousands of connections

training a fully-connected DNN is very slow

severe risk of overfitting with millions of parameters

gradients problems make lower layers very hard to train

Solutions:

Convolutional Neural Networks (CNN or ConvNets)

Recurrent Neural Networks (RNN)
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Convolutional Neural Networks
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Pattern recognition

The network fails to recognize ’8’ when the letter is not centered

→ translation, scale and (small) rotation invariances are needed

The solution is convolution
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Convolutional Neural Network (CNN or ConvNet)58

Step 1: Break the image into overlapping image tiles and, feed
each image tile into a small neural network with the same weights57

→ It remains to use a sliding window over the entire picture

→ using the same small NN reduces the number of weights

→ same neural networks weights ≡ filter or convolution kernel
57and the same activation function, ReLU=max(0,input), tanh or sigmoid
58Source: Adam Geitgey link , Ujjwal Karn link , Andrej Karpathy link
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CNN: The convolution step 1

CNN exploit spatially local correlation: each neuron is locally-
connected (to only a small region of the input volume)

Source: Géron (2017)

→ Different values of weights will produce different feature maps
→ The convolution step plays like a filter
→ Different filters can detect different features from an image59

59as for instances edges, curves, . . .
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CNN: The convolution step 1

Source: James et al. (2021)
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CNN: The pooling step 2

Step 2: Reduce the size of the array, using a pooling algorithm.

2x2 pooling layer, no padding
Source: Géron (2017)

The pooling step reduces the dimensionality of each feature map
but retains the most important information60

Pooling can be of different types: Max, Average, Sum etc.

60It is also called subsampling or downsampling step
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CNN: The pooling step 2

The function of pooling is to progressively reduce the spatial size
of the input representation. In particular, pooling:

makes the input representations smaller and more manageable

reduces the number of weights and links in the network,
therefore, controlling overfitting

makes the network invariant to small transformations,
distortions and translations in the input image61

helps us arrive at an almost scale invariant representation of
our image62

61a small distortion in input will not change the output of Pooling – since we
take the maximum/average value in a local neighborhood

62This is very powerful since we can detect objects in an image no matter
where they are located
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CNN: The classification step 3

Step 3: Make a final prediction with a fully-connected network

Source: James et al. (2021)

Feature extraction: use even more steps (hidden-layers) to extract
the useful features from the images.The more convolution steps
you have, the more complicated features your network will be able
to learn to recognize.

Classification: The purpose of the Fully Connected layer is to use
the high-level features for classifying the input image into classes
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CNN: Intuitive principle

A hierarchy of representations with increasing level of abstraction:

Source: Internet

• Extract local features that depend on small subregions of the image

• Information from these features are merged to detect higher-order features

→ construction of complex objects from elementary parts

Image recognition: pixel → edge → texton → motif → part → object

Text: character → word → word group → clause → sentence → story

Speech: sample → spectral band → sound → . . .→ phoneme → word
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CNN: An example on number recognition

To understand how ConvNet works, play with this animation link

Emmanuel Flachaire Neural Networks and Deep Learning
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CNN: Performance in practice

Source: Hastie et al. (2016)

Convolutional Neural Networks outperform other methods

The number of weights in Net-5 is much less than in Net-1

ConvNet has been ”a revolution in Artificial Intelligence”

See the inaugural lesson of Yann LeCun at the College de France, in
English en or in French fr , and the review paper in Nature pdf
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CNN: Detection in complex cases

See this animation link
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CNN: Detection in complex cases

Source: Ren et al. (2016), https://arxiv.org/pdf/1506.01497v3.pdf
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Recurrent Neural Networks
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Nature of the data

Many data sources are sequential in nature:

In text analysis, the sequence and relative position of words
capture the narrative, theme and tone → Document
classification, sentiment analysis and language translation

Time series of temperature, rainfall, wind speed, air quality
and so on → Weather forecast

Time series of market indices, stock and bon prices and
exchange rates → Financial forecasting

In Recurrent Neural Network, the input object X is a sequence
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Recurrent Neural Networks (RNN)

Neural network with a single hidden layer, for t = 1, . . . ,T :

yt ≈ α + Atβ

At = [f (α1 + Xtδ1), . . . , f (αM + XtδM)]

A linear combination of a nonlinear fct of linear combinations of Xt

Recurrent neural network:

Each time series provides many short mini-series of input
sequences X = {X1, . . . ,XL} of L periods, and a target Y

At = [f (α1 + Xtδ1 + At−1γ1), . . . , f (αM + XtδM + At−1γM)]

Identical weights for each sequence: α, δ, γ independent of t

A form of weight sharing similar to the use of filters in CNN
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Recurrent Neural Networks

Source: James et al. (2021)
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RNN: Number of lags, training and test data

Recurrent neural network with one hidden layer, for T = 1, . . . ,T :

yt ≈ α + Atβ

At = [f (α1 + Xtδ1 + At−1γ1), . . . , f (αM + XtδM + At−1γM)]

Past values of yt and other covariates can be used in Xt

Select a number of lags L with care, perhaps using CV

Extract many short series of (y ,X ) with a predefined length L

Each short serie can be used to predict one value yt

The training data consists of n separate series of length L

The test data consists of the remaining series of length L

Find the set of coefficients minimizing the SSR (subject to a
constraint) based on the training and test data
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RNN: Historical trading time series on the NYSE

Source: James et al. (2021)

→ forecast (log) trading volume over 1980-86 based on past historyEmmanuel Flachaire Neural Networks and Deep Learning



RNN: Forecast trading volume based on past history

Source: James et al. (2021)
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RNN: Autocorrelation function

Source: James et al. (2021)

T = 6051, L = 5, so 6046 short series (y ,X ) are available

fit the model with 12 neurons and using 4281 training series

forecast 1765 values after January 2, 1980
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RNN: Forecast of log trading volume on the NYSE

See section 10.9.6 in James et al. (2021) for details of the implementation in R
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RNN and AR models

Recurrent neural network with a single hidden layer:

yt ≈ α + Atβ

At = [f (α1 + Xtδ1 + At−1γ1), . . . , f (αM + XtδM + At−1γM)]

Lag of the dependent variable yt−1 can be used in Xt

With M = 1, f linear and Xt = yt−1, we have an AR(L):

yt ≈ β0 + yt−1β1 + · · ·+ yt−Lβt−L

RNN and AR models have much in common

By combining nonlinear functions (M > 1 and f nonlinear),
RNN add more flexibilty → nonlinear and interaction effects
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LSTM: Long and Short Term Memory model

My son is a manga fan, so our next holiday will be in . . .

RNN don’t predict Japan, since it doesn’t remember manga

RNN main limitation: short term memory

Solution: Combine 2 hidden layers, one with short memory
and the other one with longer memory

LSTM combine a long-term state c and a short-term state h
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LSTM vs. RNN
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LSTM

Géron (2017)

c : drop some memories ⊗ and add some new memories ⊕
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3. Using ML methods in Econometrics

Misspecification detection

Causal inference
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General Principle

Machine Learning: solve the optimization problem

Minimize
m

n∑
i=1

L(yi ,m(Xi ))︸ ︷︷ ︸
loss function

+ λ ‖m‖`q︸ ︷︷ ︸
penalization

Choice of the loss function:

L → conditional mean, quantiles, classification

m→ linear, splines, tree-based models, neural networks

Choice of the penalization:

`q → lasso, ridge

λ → over-fitting, under-fitting, cross validation
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Ridge and Lasso

Minimize
β

n∑
i=1

(yi − Xiβ)2 + λ

p∑
j=2

|βj |q

It is equivalent to minimize SSR subject to
∑p

j=2 |βj |q ≤ c

The constraint restricts the magnitude of the coefficients

It shrinks the coefficients towards zero as c ↘ (or λ↗)

Add some bias if it leads to a substantial decrease in variance

q = 2: Ridge, β̂ = (X>X + λIn)−1X>y is defined with p � n

q = 1: Lasso sets some coef exactly to 0, variable selection

→ High-dimensional problems (p � n)
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Random Forest, Boosting, Deep learning

Minimize
m

n∑
i=1

(yi −m(Xi ))2 + λ

∫
m′′(x)2dx

It is equivalent to minimize SSR subject to
∫
m′′(x)2dx ≤ c

A fully nonparametric model: y ≈ m(X1, . . . ,Xp)

The constraint restricts the flexibility of m

Choice of m: Random forest, boosting or deep learning

Similar to nonparametric econometrics (splines)

Appropriate with many covariates (no curse of dimensionality)

→ Complex functional form
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Why and how to use ML methods in Econometrics?

Pros:

High-dimensional problems

Complex functional forms

However,

Black-box models

Prediction is not causation
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3. Using ML methods in Econometrics

Misspecification detection

Causal inference
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A major criticism to econometrics

Léo Breiman (Statistical Science, 2001):

. . . an uncritical use of data models.
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Misspecification can lead to wrong conclusions

Let us assume that the true regression function is:

y = β0 + β1x + β3x
3 + ε (5)

A parametric test of the following hypotheses:

H0 : y = β0 + β1x + ε vs. H1 : y = β0 + β1x + β2x
2 + ε

may not reject the null, since β2 = 0 is true in (5)

To the opposite, a test statistic based on

H0 : y = β0 + β1x + ε vs. H1 : y = m(x) + ε

would likely reject the null

A nonparametric model is more appropriate under H1
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How machine learning tools may help econometrics?

Parametric model:
y = Xβ + ε

Fully-nonparametric model:

y = m(X ) + ε

Is the parametric regression model correctly specified?

If no, ML methods should outperform OLS estimation

If yes, ML methods should not outperform OLS estimation

ML can be used to detect misspecification
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Application 1: Boston housing prices

Boston housing dataset: 14 variables (2 dummies), 506
observations63

OLS in a linear regression model, p=13

medv = Xβ + ε

Lasso with squares, cubes and pairwise interactions, p=117

medv = Xβ1 + X 2β2 + X 3β3 + (X :X )β4 + ε

Random Forest and Boosting in a nonparametric model, p=13

medv = m(X ) + ε

We compute the MSE by 10-folds Cross-Validation

63X = [chas,nox,age,tax,indus,rad,dis,lstat,crim,black,rm,zn,ptratio]
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Application 1: Boston housing prices
1 l i b r a r y (MASS) ; l i b r a r y ( randomForest ) ; l i b r a r y (gbm) ; l i b r a r y ( g lmnet )
2 data ( Boston ) ; nobs=nrow ( Boston )
3 s e t . s e e d (12345) ; n f o l d =10
4 K f o l d=c u t ( seq ( 1 , nobs ) , b r e a k s=n f o l d , l a b e l s=FALSE)
5 mse . t e s t=m a t r i x ( 0 , n f o l d , 4 )
6 # g e n e r a t e Xˆ2 Xˆ3 and p a i r w i s e i n t e r a c t i o n s f o r t h e Lasso
7 Xcol=colnames ( Boston ) [−14]
8 Xsqr=p a s t e 0 ( ” I ( ” , Xcol , ” ˆ2) ” , c o l l a p s e=”+” ) # s q u a r e d c o v a r i a t e s
9 Xcub=p a s t e 0 ( ” I ( ” , Xcol , ” ˆ3) ” , c o l l a p s e=”+” ) # c u b i c c o v a r i a t e s

10 fmla=p a s t e 0 ( ”medv˜ ( . ) ˆ2+” , Xsqr , ”+” , Xcub )
11 X=model . m a t r i x ( as . f o r m u l a ( fmla ) , data=Boston ) [ ,−1]
12 y=Boston [ , 1 4 ]
13 mysample=sample ( 1 : nobs ) # random s a m p l i n g ( p e r m u t a t i o n )
14 f o r ( i i n 1 : n f o l d ){ # K−f o l d CV
15 c a t ( ”K−f o l d l o o p : ” , i , ”\ r ” )
16 t e s t=mysample [ which ( K f o l d==i ) ]
17 t r a i n=mysample [ which ( K f o l d !=i ) ]
18 # OLS , Lasso , Random F o r e s t , B o o s t i n g
19 f i t . lm <− lm ( medv˜ . , data=Boston , s u b s e t=t r a i n )
20 f i t . l a <− cv . g lmnet (X [ t r a i n , ] , y [ t r a i n ] , a l p h a =1)
21 f i t . r f <− randomForest ( medv˜ . , data=Boston , s u b s e t=t r a i n , mtry =6)
22 f i t . bo <− gbm( medv˜ . , data=Boston [ t r a i n , ] , d i s t r i b u t i o n=” g a u s s i a n ” ,

i n t e r a c t i o n . depth =6)
23 # out−sample MSE
24 mse . t e s t [ i ,1 ]= mean ( ( Boston $medv−p r e d i c t ( f i t . lm , Boston ) ) [− t r a i n ] ˆ 2 )
25 mse . t e s t [ i ,2 ]= mean ( ( y−p r e d i c t ( f i t . l a , X , s=” lambda . min” ) ) [− t r a i n ] ˆ 2 )
26 mse . t e s t [ i ,3 ]= mean ( ( Boston $medv−p r e d i c t ( f i t . r f , Boston ) ) [− t r a i n ] ˆ 2 )
27 mse . t e s t [ i ,4 ]= mean ( ( Boston $medv−p r e d i c t ( f i t . bo , Boston ) ) [− t r a i n ] ˆ 2 )
28 }
29 mse=colMeans ( mse . t e s t ) # t e s t e r r o r
30 round ( mse , d i g i t s =2)

31 [ 1 ] 2 3 . 9 3 1 4 . 8 8 1 0 . 1 6 1 0 . 3 4
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Application 1: Boston housing prices

Boston housing dataset:64

R̂10−CV ols lassox2x3int r.forest boosting

MSE 23.93 14.88 10.16 10.34

Random Forest and Boosting show impressive improvement
over OLS, in terms of predictive performance

ML models are known to capture complex functional forms

It suggests that the parametric model lacks important
nonlinear and/or interaction effects

Lasso provides substantial improvement over OLS, but is still
less performant than Random Forest and Boosting. It
suggests that some nonlinearities are still not well captured.

6414 variables (2 dummies), 78 pairwise interactions, 506 observations
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GamLa: An econometric model for interpretable ML

A partially linear model:

y = g1 (X1) + . . .+ gp (Xp) + Zγ + ε

with Z a matrix of pairwise interactions Z = (X1X2, . . . ,Xq−1Xq).
The marginal effect is:

∂y

∂Xj
= g ′j (Xj) + c

where c is a constant term which depends on the other covariates.

Combine non-linearity in Xj and linear pairwise interactions

The linearity assumption on interaction effects represents the
price to pay to keep the model interpretable.

→ GamLa = GAM + variable selection (Lasso, Autometrics)65

65Flachaire, Hacheme, Hué, Laurent (2022)
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GamLa: An econometric model for interpretable ML

A partially linear model:

y = g1 (X1) + . . .+ gp (Xp) + Zγ + ε

Estimation based on the Double Residuals (DR) method:

1 GAM of y on X1, . . . ,Xp: compute the residuals η̂y
2 GAM of Zj on X1, . . . ,Xp: compute the residuals η̂zj , ∀j
3 LASSO of η̂y on η̂z1 , . . . , η̂zl → obtain γ̂

An application of FWL to semiparametric regression models

Robinson (1988) shows that with DR γ̂ols is
√
n-consistent,

even if ĝ1(X ), . . . , ĝp(X ) are consistent at slower rates

Flachaire, Hacheme, Hué and Laurent (2022) show that using
the DR approach is crucial to select correctly the
interactions66

66So don’t use the gamlasso function in the R package plsmselect!
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Application 1: Boston housing prices

Boston housing dataset:

R̂10−CV ols lassox2x3int r.forest gamla

MSE 23.93 14.88 10.16 9.73

GamLa shows impressive improvement over OLS, in terms of
predictive performance

GamLa performs as well as Random Forest and Boosting67

It suggests that parametric models are outperformed by ML
models when they lack important nonlinear and/or interaction
effects only

67Model Confidence Set (MCS) test can be used to test if the MSE are
significantly different (Hansen, Lunde and Nason 2011) pdf Pairwise AUC
can be used in classification (Candelon, Dumitrescu and Hurlin 2012) pdf

Emmanuel Flachaire Misspecification detection
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Conclusion

Many results report that ML outperform parametric models in
terms of predictive performance

ML models outperform standard parametric model ... which
are not well-specified!

ML methods can help to detect and correct misspecification in
parametric regression

Parametric models can perform as well as ML models!
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3. Using ML methods in Econometrics

Misspecification detection

Causal inference
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Prediction is not causation

Kleinberg et al. (2015) Prediction policy problems

Many policy applications where causal inference is not central

Hips or knees replacement: costly, painful, recovery takes time

Policy decision: predicting the riskiest patients68

Athey (2017) Beyond prediction: Using big data for policy problems

Pure prediction methods are not helpful for causal problems

Which patients should be given priority to receive surgery?

Estimating heterogeneity in the effect of surgery is required

68ML are used to predict the probability that a candidate would die within a
year from other causes. Identify high risk patients who shouldn’t receive surgery
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High-dimensional parametric framework
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Inference on target regression coefficients

Our main concern is the estimation and inference on α in a
high-dimensional framework:

y = dα + Xβ + ε

d is a target regressor as treatment, policy or other variable

X may contain many variables, a few of them are important

With sparsity, a variable selection method is used in a 1st step

Since Lasso shrinks coefficients towards zero, coef are biased

Correct this bias using an additional (unrestricted) estimation

→ Post-selection estimation and inference
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The problem of post-selection inference

Single Selection: OLS of y on d and the selected variables X ∗

y = dα + X ∗β + ε

Unbiased α̂ . . . if the true model is selected only!

Problem: mistakes from the variable selection can introduce
omitted variable bias

one covariate Xj strongly correlated to d without a strong
effect on y may be omitted in the variable selection process

Ignoring variable selection uncertainty may be misleading

→ Naive post-selection estimation may be biased
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Post-selection inference: Double selection

Our main concern is estimation and inference on α in

y = dα + Xβ + ε

Double Selection:69

1 Lasso of y on X : select variables important to predict y
2 Lasso of d on X : select variables important to predict D

OLS of y on d and the union of the selected variables

y = dα + X ∗∗β + ε

Idea: give a 2nd chance to omitted variables in the first Lasso

α̂ is immunized against variable selection mistakes

→ valid post-selection inference in high-dimensions

69Belloni, Chernozhukov and Hansen (2014) pdf Uniformly valid confidence
set for α despite imperfect model selection, and full efficiency for estimating α
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Post-selection inference: Partialling out

Our main concern is estimation and inference on α in

y = dα + Xβ + ε

Partialling out:

1 Lasso of y on X : compute the residuals η̂y
2 Lasso of d on X : compute the residuals η̂d

OLS of η̂y on η̂d (double residuals approach)

η̂y = η̂dα + ε

Idea: an application of the Frisch-Waugh-Lovell theorem70

→ Partialling out and double selection are quite similar71

70But α̂ols is different in the two models due to lasso variable selections
71From the FLW theorem, the double selection estimator of α is equal to the

OLS estimator of the residuals of y on X ∗∗ on the residuals of d on X ∗∗.
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Threshold selection: Rigorous Lasso

The choice of the penalization parameter λ is crucial

Optimal λ for prediction and estimation are different

CV targets prediction and lacks theoretical foundations

Theoretical grounded and feasible selection for estimation:72

λ = 2c
√
nσ̂Φ−1(1− γ/(2p))

in the case of homoskedasticity

Another selection is proposed in the heteroskedasticity case

72See Belloni, Chernozhukov and Hansen (2014) pdf c = 1.1 for
post-Lasso and c = 0.5 for Lasso, γ = .1 by default
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Bias of naive post-selection estimation

Source: Belloni, Chernozhukov, Hansen (2014)
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Application 1: Do poor countries catch up rich countries?

We are interested in the convergence hypothesis α < 0 in

y = dα + Xβ + ε

where y is the growth rate of GDP, d is the initial level of GDP
and X contains many countries characteristics

The parameter of interest is α

We test the null hypothesis H0 : α = 0

If H0 is rejected and α < 0: evidence of catch-up effect

Covariate selection is crucial, since p = 63 and n = 90

We use double selection and partialling out with rigorous Lasso

Implementation is done with the R package hdm73

73see the vignette of the hdm package in R pdf
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Application 1: Do poor countries catch up rich countries?

1 l i b r a r y (hdm)
2 data ( ” GrowthData ” ) # th e 2nd column i s a v e c t o r o f one #
3 y=as . m a t r i x ( GrowthData ) [ , 1 , drop=F ]
4 d=as . m a t r i x ( GrowthData ) [ , 3 , drop=F ]
5 X=as . m a t r i x ( GrowthData ) [ ,− c ( 1 , 2 , 3 ) , drop=F ]
6 # f i t models
7 LS . f i t =lm ( y ˜d+X)
8 PO. f i t =r l a s s o E f f e c t (X, y , d , method=” p a r t i a l l i n g out ” )
9 DS . f i t =r l a s s o E f f e c t (X, y , d , method=” d o u b l e s e l e c t i o n ” )

10 # i n f e r e n c e on c o e f o f i n t e r e s t
11 LS=summary ( LS . f i t ) $ c o e f f i c i e n t s [ 2 , ]
12 PO=summary (PO. f i t ) $ c o e f f i c i e n t s [ 1 , ]
13 DS=summary (DS . f i t ) $ c o e f f i c i e n t s [ 1 , ]
14 r b i n d ( o l s=LS , d o u b l e . s e l e c t i o n=DS , p a r t i a l l i n g . out=PO)

15 E s t i m a t e Std . E r r o r t v a l u e Pr (>| t | )
16 o l s −0.009377989 0.02988773 −0.31377 0.75601
17 d o u b l e . s e l e c t i o n −0.050005855 0.01579138 −3.16665 0.00154
18 p a r t i a l l i n g . out −0.049811465 0.01393636 −3.57420 0.00035
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Application 1: Do poor countries catch up rich countries?

Inference on the parameter of interest α:

Estimate Std.Error t value Pr(>|t|)

OLS -0.00938 0.02989 -0.31377 0.75601
Double selection -0.05001 0.01579 -3.16665 0.00154
Partialling out -0.04981 0.01394 -3.57420 0.00035

H0 : α = 0 not rejected with OLS (large standard error)74

H0 : α = 0 rejected with double selection and partialling out

- more precise estimate (smaller standard error)
- greater magnitude of the coefficient

Poor countries tend to catch up rich countries!

Note that Single Selection (naive post-selection) put α = 0:

15 r l a s s o ( y ˜d+X, p o s t=TRUE) $ c o e f f i c i e n t s [ 2 ]

74It is not surprising given that p = 63 is comparable to n = 90.
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Heterogeneous treatment effects: high-dimensions

If d is a treatment, we can consider heterogeneous effects as

y = dα(X ) + g(X ) + ε

where α(X ) and g(X ) are approximated by linear combinations of
X or transformations of X , α(X ) = Z1β and g(X ) = Z2γ.75

The regression can be rewritten: y = dZ1β + Z2γ + ε

Several variables of interest β

Double Selection:

1 Lasso of y on Z2: select variables important to predict y
2 Lasso of each interaction dZ1 on Z2: select important variables

OLS of y on d and the union of the selected variables

→ assess heterogeneity with many determinants

75Z1 and Z2 may include powers, b-splines, or interactions of X
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Application 2: The effect of gender on wage

Several parameters of interest:

y = dα + dX β + Zγ + ε

y is the log of the wage, d is a dummy for female

dX are the interactions between d and each covariate in X

Z includes 2-ways interactions of the covariates Z = [X ,X :X ]

The target variable is female d , in combination with other
variables dX

Our main interest is to make inference on α and β

If β = 0: homogeneous wage gender gap given by α
If β = 0: heterogeneous wage gender gap explained by X

Data: US Census in 2012, p = 116 and n = 2921776

76for a recent application see Bach, Chernozhukov and Spindler (2021) pdf
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Application 2: The effect of gender on wage

1 l i b r a r y (hdm)
2 data ( cps2012 )
3 y <− cps2012 $ lnw
4 X <− model . m a t r i x ( ˜−1+f e m a l e+f e m a l e : ( widowed+d i v o r c e d+

s e p a r a t e d+n e v e r m a r r i e d+hsd08+hsd911+hsg+cg+ad+mw+so+we+
exp1+exp2+exp3 )+(widowed+d i v o r c e d+s e p a r a t e d+n e v e r m a r r i e d
+hsd08+hsd911+hsg+cg+ad+mw+so+we+exp1+exp2+exp3 ) ˆ2 , data
= cps2012 )

5 X<−X [ , which ( a p p l y (X, 2 , v a r ) !=0) ] #e x c l u d e c o n s t a n t v a r i a b l e s
6 i n d e x . g e n d e r <− g r e p ( ” f e m a l e ” , co lnames (X) )
7 e f f e c t s . f e m a l e<− r l a s s o E f f e c t s ( x=X, y=y , i n d e x=i n d e x . g e n d e r )
8 summary ( e f f e c t s . f e m a l e )

Generic approach to generate all covariates:

9 Xcol=colnames ( cps2012 ) [ 4 : 1 8 ]
10 d c o l=colnames ( cps2012 ) [ 3 ]
11 Xvar=p a s t e ( Xcol , c o l l a p s e = ”+” )
12 X i n t=p a s t e ( ” ( ” , p a s t e ( Xcol , c o l l a p s e=”+” ) , ” ) ˆ2” , sep=”” )
13 fmla=p a s t e ( ”˜−1+” , dco l , ”+” , dco l , ” : ( ” , Xvar , ” )+” , Xint , sep=”” )
14 X<−model . m a t r i x ( as . f o r m u l a ( fmla ) , data=cps2012 )
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Application 2: The effect of gender on wage

15 > summary ( e f f e c t s . f e m a l e )
16 [ 1 ] ” E s t i m a t e s and s i g n i f i c a n c e t e s t i n g o f t h e e f f e c t o f

t a r g e t v a r i a b l e s ”
17 E s t i m a t e . Std . E r r o r t v a l u e Pr (>| t | )
18 f e m a l e −0.154923 0.050162 −3.088 0.002012 ∗∗
19 f e m a l e : widowed 0.136095 0.090663 1 . 5 0 1 0.133325
20 f e m a l e : d i v o r c e d 0.136939 0.022182 6 . 1 7 4 6 . 6 8 e−10 ∗∗∗
21 f e m a l e : s e p a r a t e d 0.023303 0.053212 0 . 4 3 8 0.661441
22 f e m a l e : n e v e r m a r r i e d 0 .186853 0.019942 9 . 3 7 0 < 2e−16 ∗∗∗
23 f e m a l e : hsd08 0.027810 0.120914 0 . 2 3 0 0.818092
24 f e m a l e : hsd911 −0.119335 0.051880 −2.300 0.021435 ∗
25 f e m a l e : hsg −0.012890 0.019223 −0.671 0.502518
26 f e m a l e : cg 0 .010139 0.018327 0 . 5 5 3 0.580114
27 f e m a l e : ad −0.030464 0.021806 −1.397 0.162405
28 f e m a l e :mw −0.001063 0.019192 −0.055 0.955811
29 f e m a l e : so −0.008183 0.019357 −0.423 0.672468
30 f e m a l e : we −0.004226 0.021168 −0.200 0.841760
31 f e m a l e : exp1 0.004935 0.007804 0 . 6 3 2 0.527139
32 f e m a l e : exp2 −0.159519 0.045300 −3.521 0.000429 ∗∗∗
33 f e m a l e : exp3 0.038451 0.007861 4 . 8 9 1 1 . 0 0 e−06 ∗∗∗

→ smaller gender gap for nevermarried or divorced female
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Non-parametric framework

Emmanuel Flachaire Causal Machine learning



Homogeneous treatment effects: Partially linear model

Partially Linear Regression model PLR model

y = dα + g(X ) + ε

d = h(X ) + η

α is the target parameter, g and h are nuisance functions77

Naive ML approach:

1 ML of y − dα̂ on X → obtain ĝ(X )
2 OLS of y − ĝ(X ) on d → obtain α̂

Initialize with α̂ = 0 and iterate until convergence

However, α̂ is biased, because ĝ is not a good estimate of g78

77h maybe redondant, it is the propensity score in TE litterature
78Since E(y |X ) 6= g(X ), a ML fit of y on X is not a good estimate of g
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Homogeneous treatment effects: Partially linear model

Partially Linear Regression model PLR model

y = dα + g(X ) + ε

d = h(X ) + η

α is the target parameter, g and h are nuisance functions

Double Residuals (DR):

1 ML of y on X : compute residuals η̂y = y − ĝ(X )
2 ML of d on X : compute residuals η̂d = d − ĥ(X )
3 OLS of η̂y on η̂d → α̂

An application of FWL, or partialling out, with ML methods

Robinson (1988) shows that with DR α̂ is
√
n-consistent, even

if ĝ(X ) and ĥ(X ) are consistent at slower rates79

The role of DR is to immunize α̂ against ML estimates: α̂ is
based on residuals η̂y and η̂d , which are ⊥ to ĝ(X ) and ĥ(X )

79Robinson considers kernel regression. Chernozukhov et al. (2018) pdf

establish that any ML method can be used, so long as it is n1/4-consistent
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The role of double residuals (orthogonalization)

Distribution of α̂− α0

Source: Chernozhukov et al. (2018)

Non-orthogonal ≡ naive ML Orthogonal ≡ Double Residuals
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Homogeneous treatment effects: Partially linear model

Partially Linear Regression model PLR model

y = dα + g(X ) + ε

d = h(X ) + η

α is the parameter of interest, g and h are nuisance functions

Cross-fitting: split the sample into an auxiliary and a main

1 ML estimation of g(X ), h(X ) on auxiliary sample
2 Double Residuals estimation of α by OLS on main sample

Flip the roles of both samples and average the results α̂1+α̂2
2

Estimate nuisance fcts and target parameter on 6= samples

Chernozukhov et al. (2018) show that cross-fitting is crucial
to avoid overfitting

→ PLR: Double ML = Double Residuals + Cross-fitting
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Heterogeneous treatment effects: Fully nonparametric

Interactive Regression Model IRM model
y = m(d ,X ) + ε

d = h(X ) + η

d not additively separable → very general heterogeneity in TE

Parameter of interest: ATE = E[y1 − y0] 80

The estimator needs to check a Neyman-orthogonal condition
with respect to the nuisance functions (≡ DR in the PRL)

So the estimator and inference are robust to small mistakes in
the nuisance fonctions

The AIPW estimator turns out to check this ⊥ condition:

ATE = E
[
m(1,X )−m(0,X ) +

D(Y −m(1,X ))

h(X )
−

(1− D)(Y −m(0,X ))

(1− h(X ))

]

This estimator is doubly-robust: to small mistakes in m̂ and ĥ

80The observed outcome is with or without treatment: y = y1d + y0(1− d)
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Heterogeneous treatment effects: Fully nonparametric

Interactive Regression Model IRM model

y = m(d ,X ) + ε

d = h(X ) + η

d not additively separable → very general heterogeneity in TE

Double Machine Learning:81

1 Neyman orthogonal condition → AIPW estimator
2 Cross-fitting → ATE and m, h estimated from 6= samples

ATE estimation and inference with good properties

However, no detection and analysis of heterogeneity

→ IRM: Double ML = AIPW + Cross-fitting

81Chernozhukov et al. (2018) pdf and Chernozhukov et al. (2017) pdf
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Application 3: Insurance bonus on employment duration

RCT to investigate the incentive effect of unemployment
insurance (UI) bonus on unemployment duration:82

Individuals in the treatment groups were offered a cash bonus if they
found a job within some pre-specified period of time (qualification
period), provided that the job was retained for a specified duration

y is the log of duration of unemployment for the UI claimants

ATE estimation and inference in a PLR and IRM models

Pennsylvania Reemployment Bonus data set

Implementation is done with the R package DoubleML83

82Individuals in the treatment groups were offered a cash bonus if they found
a job within some pre-specified period of time (qualification period), provided
that the job was retained for a specified duration

83See vignette and Bach, Chernozhukov, Kurz, Spindler (2021) pdf
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Application 3: ATE in a PLR model

1 l i b r a r y ( DoubleML )
2 l i b r a r y ( mlr3 )
3 # I n i t i a l i z a t i o n o f t h e Data−Backend
4 data=f e t c h bonus ( r e t u r n t y p e=” data . t a b l e ” )
5 y=” i n u i d u r 1 ”
6 d=” tg ”
7 x=c ( ” f e m a l e ” , ” b l a c k ” , ” o t h r a c e ” , ” dep1 ” , ” dep2 ” , ”q2” , ”q3” , ”q4” ,

”q5” , ”q6” , ” a g e l t 3 5 ” , ” agegt54 ” , ” d u r a b l e ” , ” l u s d ” , ” husd ” )
8 dml data=DoubleMLData$new ( data , y c o l=y , d c o l s=d , x c o l s=x )
9 # I n i t i a l i z a t i o n o f t h e PLR Model

10 s e t . s e e d (31415) #r e q u i r e d to r e p l i c a t e sample s p l i t
11 l e a r n e r g=l r n ( ” r e g r . r a n g e r ” ,num . t r e e s =500 , min . node . s i z e =2,

max . depth =5) #Random F o r e s t from t h e r a n g e r package
12 l e a r n e r m=l r n ( ” r e g r . r a n g e r ” ,num . t r e e s =500 , min . node . s i z e =2,

max . depth =5)
13 dml p l r=DoubleMLPLR$new ( dml data ,
14 ml m = l e a r n e r m,
15 ml g = l e a r n e r g ,
16 s c o r e = ” p a r t i a l l i n g out ” ,
17 n f o l d s = 5 , n r e p = 1)
18 # Perform t h e ATE e s t i m a t i o n and p r i n t t h e r e s u l t s
19 dml p l r $ f i t ( )
20 dml p l r $summary ( )
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Application 3: ATE in a PLR model

20 > dml p l r $summary ( )
21 E s t i m a t e s and s i g n i f i c a n c e t e s t i n g o f t h e e f f e c t o f t a r g e t

v a r i a b l e s
22 E s t i m a t e . Std . E r r o r t v a l u e Pr (>| t | )
23 tg −0.07396 0.03540 −2.089 0 .0367 ∗
24 −−−
25 S i g n i f . codes : 0∗∗∗ 0 . 0 0 1 ∗∗ 0 . 0 1 ∗ 0 . 0 5 . 0 . 1 1

Hence, we can reject H0 : α = 0 at the 5% significance level

It is consistent with the findings of previous studies that have
analysed the Pennsylvania Bonus Experiment

The ATE on unemployment duration is negative and
significant
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Application 3: ATE in an IRM model

26 ## I n i t i a l i z a t i o n o f t h e IRM Model
27 # C l a s s i f i e r f o r p r o p e n s i t y s c o r e
28 l e a r n e r c l a s s i f m = l r n ( ” c l a s s i f . r a n g e r ” , num . t r e e s = 500 ,

min . node . s i z e = 2 , max . depth = 5)
29 dml i rm=DoubleMLIRM$new ( dml data ,
30 ml m = l e a r n e r c l a s s i f m,
31 ml g = l e a r n e r g ,
32 s c o r e = ”ATE” , #o r ”ATTE”
33 n f o l d s = 10 , n r e p = 1)
34 # Perform t h e e s t i m a t i o n and p r i n t t h e r e s u l t s
35 dml i rm $ f i t ( )
36 dml i rm $summary ( )

37 E s t i m a t e s and s i g n i f i c a n c e t e s t i n g o f t h e e f f e c t o f t a r g e t
v a r i a b l e s

38 E s t i m a t e . Std . E r r o r t v a l u e Pr (>| t | )
39 tg −0.07345 0.03549 −2.069 0 .0385 ∗
40 −−−
41 S i g n i f . codes : 0∗∗∗ 0 . 0 0 1 ∗∗ 0 . 0 1 ∗ 0 . 0 5 . 0 . 1 1

The estimated coefficient is very similar to the estimate of the ATE
in a PLR model and the conclusions remain unchanged.
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Estimation of heterogeneity: Causal Forest

Causal Random Forest:84

Random Forest is modified to estimate the CATE directly

Grow a tree and evaluate its performance based on TE
heterogeneity rather than predictive accuracy

The idea is to find leaves where the treatment effect is
constant but different from other leaves

Split criterion: maximize heterogeneity in TE between leaves

Honest tree: build tree and estimate CATE from 6= samples

→ valid estimation and confidence intervals for CATE85

84Wager and Athey (2018) pdf , Athey, Tibshirani and Wager (2019) pdf

85RF predictions are asymptotically unbiased and Gaussian, but cv rates
below

√
n and they do not account for the uncertainty due to sample splitting

Emmanuel Flachaire Causal Machine learning

http://arxiv.org/abs/1510.04342
https://arxiv.org/abs/1610.01271


Detection and analysis of heterogeneity: Generic ML

Generic Machine Learning:86

Do not attempt to get valid estimation and inference on the
CATE itself, but on features of the CATE

Obtain ML proxy predictor of CATE (auxiliary set) and target
features of CATE based on this proxy predictor (main set)

Main interests:

Test if there is evidence of heterogeneity (BLP)

ATE for the 20% most (least) affected individuals? (GATES)

Which covariates are associated to TE heterogeneity? (CLAN)

→ valid estimation and inference on features of CATE

86Chernozhukov, Demirer, Duflo and Fernàndez-Val (2020) pdf
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Generic ML: Proxies of CATE

The main idea is to compute imperfect predictions of CATE and to
use them as proxies to make inferences on features of CATE:

Split the sample into a main set and auxiliary set (50/50 split)

Fit y ≈ m(1,X ) with treated group from the auxiliary sample

Fit y ≈ m(0,X ) with control group from the auxiliary sample

Compute Ŝ(Xi ) = m̂(1,Xi )− m̂(0,Xi ) from the main sample

Ŝ(X ) is used to learn about treatment effect heterogeneity

To control the uncertainty due to data splitting, this process is
done many times → cross-fitting87

The Ŝ(Xi ) are imperfect predictions of CATEi → proxies 88

87We randomly split the sample M times. The parameter estimates,
confidence bounds, and p-values reported are the medians across M splits.

88CATEi = E[y1 − y0|Xi ] = m(1,Xi )−m(0,Xi )
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Causal Machine Learning: A brief roadmap

Source: Gaillac and L’Hour (2021)
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Underlying assumptions

Standard hypotheses: SUTVA, CIA and CSC

Common support condition (CSC): 0 < P(di = 1|Xi = x) < 1

ML estimation often provides better predictions
Adding covariates makes matching more difficult

Strittmatter and Wunsch (2021) The gender pay gap revisited with

big data: Do methodological choices matter?

Trimming in experiments vs. decomposition methods

→ Beware of CSC when moving away from RCT framework
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Conclusion

The impact of ML for public policy evaluation:

Dealing with many covariates (p � n)

Relying less on a priori specification

Take care of heterogeneity

However, do not forget underlying assumptions! (CSC)

Technical literature, where implementation becomes easier

- Double Lasso: R package hdm

- Double Machine Learning: R package DoubleML

- Generic Machine Learning: R package GenericML

- Generalized Random Forest: R package grf

An effervescent empirical and theoretical literature
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Selected references in Causal ML

Athey (2017) Beyond prediction: Using big data for policy problems, Science
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