# Econometrics & Machine Learning

**Emmanuel Flachaire** 

Aix-Marseille University,  ${\rm A}{\rm MSE}$ 

https://egallic.fr/ECB

December 21, 2021

Emmanuel Flachaire Econometrics & Machine Learning

Sac

#### Econometrics & Machine Learning

#### 1 Introduction and General Principles

- The two Cultures
- Loss function and penalization
- In-sample, out-sample and cross validation

#### 2 Methods and Algorithms

- Ridge and Lasso Regression
- Classification and Regression Tree
- Bagging and Random Forests
- Boosting
- Support Vector Machine
- Neural Networks and Deep Learning

#### **3** Using Machine Learning methods in Econometrics

- Misspecification detection
- Causal inference

イロト イヨト イヨト

## 1. Introduction and General Principle

#### • The two Cultures

- Loss function and penalization
- In-sample, out-sample and cross validation

200

## Statistical Modeling: The two Cultures<sup>1</sup>

There are two cultures in the use of statistical modeling to reach conclusions from data:

• Data Modeling Culture: one assumes that the data are generated by a given stochastic data model (econometrics)

• Algorithmic Modeling Culture: one uses algorithmic models and treats the data mechanism as unknown (machine learning)



<sup>1</sup>Léo Breiman, *Statistical Science*, 2001, Vol. 16, No. 3, 199-231 + + ≡ → = → α ~

#### Statistical Modeling: The two Cultures

Léo Breiman (Statistical Science, 2001):

Upon my return, I started reading the Annals of Statistics, the flagship journal of theoretical statistics, and was bemused. Every article started with

Assume that the data are generated by the following model: ...

wavelet theory. Even in applications, data models are universal. For instance, in the *Journal of the American Statistical Association (JASA)*, virtually every article contains a statement of the form:

Assume that the data are generated by the following model: ...

... an uncritical use of data models.

イロト イヨト イヨト イヨト

## Misspecification bias

- Let's consider a quite general model:<sup>2</sup>  $y = m(X) + \varepsilon$
- Assume that X is fixed. The expected (squared) prediction error, or EPE, is equal to

$$E(y - \hat{y})^{2} = E[m(X) + \varepsilon - \hat{m}(X)]^{2}$$
  
= 
$$\underbrace{E[m(X) - \hat{m}(X)]^{2}}_{Reducible} + \underbrace{\operatorname{Var}(\varepsilon)}_{Irreducible}$$

- The focus of Machine Learning is to estimate *m* with the aim of minimizing the reducible error
- Reducible error = MSE =  $[Bias(\hat{m}(X))]^2 + Var(\hat{m}(X))$
- Assuming that the data are generated by a specific model, or that the model is correctly specified, remains to assume that the (misspecification) bias is zero: Bias(m)=0

 $<sup>^{2}</sup>y$  is a vector and X a matrix of observations, m a function, s an error term  $\sim \sim \sim$ 

## Misspecification bias: linear model

Fig. 1.4 Estimation of a nonlinear response surface under the true linear model perspective (The broken line is an estimate from a given dataset, solid line is the expectation of such estimates, the vertical dotted lines represent conditional distributions of Y with the red bars as each distribution's mean.)

(Source: Berk, 2016)



• □ > • □ > • □ > • □ > • □ > •

misspecification bias

Emmanuel Elachaire Econometrics & Machine Learning

#### Misspecification bias: quadratic model

Fig. 1.5 Estimation a nonlinear response surface under the true nonlinear model perspective (The *broken line* is an estimate from a given dataset, *solid line* is the expectation of such estimates, the *vertical dotted lines* represent conditional distributions of Y with the *red bars* as each distribution's mean.)



(Source: Berk, 2016)

Reducible error =  $\underbrace{\text{mean function error}}_{\text{misspecification bias}} + \text{estimation error}$ 

#### Econometrics and Machine Learning

• Parametric econometric: we assume that the data come from a generating process that takes the following form

$$y = X\beta + \varepsilon$$

 $\rightarrow$  probability theory is a foundation of econometrics

• Machine learning: we do not make any assumption on how the data have been generated

$$y \approx m(X)$$

 $\rightarrow$  probability theory is not required

- Nonparametric econometrics makes the link between the two
- Machine Learning: an extension of nonparametric econometric

・ロト ・回ト ・ヨト ・

#### General Principle : optimization problem

Find the solution  $\widehat{m}$  to the optimization problem:

$$\underset{m}{\mathsf{Minimize}} \sum_{i=1}^{n} \mathcal{L}(y_i, m(X_i)) \quad \text{subject to} \quad \|m\|_{\ell_q} \leq t \qquad (1)$$

which can be rewritten in Lagrangian form, for some  $\lambda \geq 0$ :

$$\underset{m}{\text{Minimize}} \sum_{i=1}^{n} \underbrace{\mathcal{L}(y_i, m(X_i))}_{\text{loss function}} + \underbrace{\lambda \|m\|_{\ell_q}}_{\text{penalization}}$$
(2)

• The goal is to minimize a loss function under constraint

• It is usually done by numerical optimization

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

200

## General Principle : resolution by numerical optimization

Gradient Descent



(Source: Watt et al., 2016)

Algorithm: Gradient descent

*Input*: differentiable function g, fixed step length  $\alpha$ , initial point  $x^0$ Repeat until stopping condition is met:  $w^k = w^{k-1} - \alpha g'(w^{k-1})$ 

## General Principle : resolution by numerical optimization

Newton's Method

Use quadratic approximations at each steps, from Taylor expansion<sup>3</sup>



(Source: Watt et al., 2016)

- Converges in fewer steps than gradient descent in convex fct
- Does not require step length to be determine

<sup>3</sup>The second order Taylor series approximation centered at  $w^k$  is equal to  $h(w) = g(w^k) + g'(w^k)(w - w^k) + \frac{1}{2}g''(w^k)(w - w^k)^2 + g^k +$ 

## General Principle : resolution by numerical optimization

Newton's Method

Use quadratic approximations at each steps, from Taylor expansion



イロト イポト イヨト イヨト

DQA

### Regression: a simple Machine Learning method

Machine Learning (ML): solve the optimization problem



Let us consider:

- $\mathcal{L} = \ell_2$  (Euclidian distance):  $\mathcal{L}(y_i, m(X_i)) = (y_i m(X_i))^2$
- *m* is a linear function of parameters:  $y_i \approx X_i \beta$  with  $\beta \in R^p$
- no penalization:  $\lambda = 0$

Thus, we have:

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmin} \left\{ \sum_{i=1}^{n} (y_i - X_i \boldsymbol{\beta})^2 \right\},$$

It is the minimization of the Sum of Squared Residuals (SSR) in a linear regression model, that is,  $\widehat{\beta}$  is the OLS estimator.<sup>4</sup>

<sup>4</sup>A Gradient Descent method can be used to solve this optimization problem.  $\neg \circ \circ$  Let us consider the simple linear regression model:

$$y = \beta_0 + \beta_1 x + \varepsilon \tag{3}$$

From a Machine Learning perspective:

- The linear regression provides the best straight line approximation of the relationship between y and x<sup>5</sup>
- OLS estimators are obtained by minimizing prediction errors. No probability theory is required!

Econometrics put statistical assumptions on (3) in order to derive properties of the OLS estimators and to make inference.<sup>6</sup>

<sup>&</sup>lt;sup>5</sup>In the sense that it minimizes prediction errors  $^{6}$ convergence, unbiased/biased estimators, BLUE, statistical tests, etc.  $\equiv -990$ 

## Classification: a simple Machine Learning method



(Source: Watt et al., 2016)

- we aim to learn a hyperplane  $X\beta = 0$  (shown here in black) to separate feature representations of the two classes.<sup>7</sup>
- Ieft panel: perfect linear separation
- right panel: two overlapping classes → minimize the number of missclassified points that end up in the wrong half-space.

## Classification: the perceptron

A hyperplane placing the points on its correct side is as follows:

Xeta > 0 if  $y_i = +1$ Xeta < 0 if  $y_i = -1$ 

In other words, with  $y \in \{-1, +1\}$ :

- if  $y_i$  is correctly classified:  $y_i(X_i\beta) > 0$
- if  $y_i$  is missclassified:  $y_i(X_i\beta) < 0$

To minimize the aggregated distance of missclassified points to the hyperplane, we can solve

$$\underset{\beta}{\mathsf{Minimize}} \sum_{i=1}^{n} \max \left( 0, -y_i(X_i \beta) \right),$$

where  $\max(0, -y_i(X_i\beta))$  is the perceptron or max loss function.

#### Classification: smooth version of the perceptron



(Source: Watt et al., 2016)

- The perceptron loss function is non-differentiable (in green).<sup>8</sup>
- The softmax loss function is a smooth approximation (black):<sup>9</sup>

$$g(s) = \operatorname{softmax}(0, s) = \log(1 + e^s)$$

 ${}^8g(s) = \max(0, s)$  ${}^9g(s) = \log(1 + e^s)$ . Gradient descent and Newton's methods can be used  $\Im \otimes \Im$ 

### Classification: softmax and perceptron



(Source: Watt et al., 2016)

Minimizing the softmax loss function gives  $\widehat{oldsymbol{eta}}$  , that define:

- the linear separator  $X\widehat{oldsymbol{eta}}=0$  shown in the left panel,
- the surface  $y(x) = 2\Lambda(X\widehat{\beta}) 1$  shown in the right panel.

The softmax model is a smooth approximation of the perceptron

#### Classification: logit regression and perceptron

Minimize the softmax loss function:<sup>10</sup>

$$\underset{\beta}{\text{Minimize}} \sum_{i=1}^{n} \log \left( 1 + e^{-y_i(X_i\beta)} \right),$$

is similar to maximize the log-likelihood in a logit model:

$$\underset{\beta}{\mathsf{Maximize}} \sum_{i=1}^{n} y_i' \log \Lambda(X_i \beta) + (1 - y_i') \log \left(1 - \Lambda(X_i \beta)\right)$$

with  $y'_i \in \{0,1\}$  and  $\Lambda(x) = \frac{e^x}{1+e^x} = \frac{1}{1+e^{-x}}$  is the logistic function<sup>11</sup>

- $\rightarrow$  Logit model = softmax model
- $\rightarrow$  The logit model is a smooth approximation of the perceptron

<sup>10</sup>softmax
$$(0, -y_i(X_i\beta)) = \log(1 + e^{-y_i(X_i\beta)})$$
  
<sup>11</sup>log  $\Lambda(X_i\beta) = -\log(1 + e^{-X_i\beta})$  and  $\log(1 - \Lambda(X_i\beta)) = \log(1 + e^{X_i\beta}) \ge 0 \le 0$   
Emmanuel Flachaire Econometrics & Machine Learning

## Classification: a simple Machine Learning method

Machine Learning: solve the optimization problem



Let us consider:<sup>12</sup>

- the softmax loss function:  $\mathcal{L} = \operatorname{softmax}(0, -y_i(X_i\beta))$
- no penalization:  $\lambda = 0$ .

Thus, we have:13

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmin} \left\{ \sum_{i=1}^{n} \log \left( 1 + e^{-y_i(X_i \boldsymbol{\beta})} \right) \right\},$$

which is similar to maximize the log-likelihood in a logit regression model, that is,  $\widehat{\beta}$  is the MLE estimator.

 $^{12}y_i \approx m(X_i) = 1_{\pm}(X_i \beta \ge 0) = \{+1 \text{ if } X_i \beta \ge 0; -1 \text{ if } X_i \beta < 0\}$ 

Let us consider the logit regression model:<sup>14</sup>

$$\mathbb{E}(y'|X) = \mathbb{P}(y'=1) = \Lambda(X\beta)$$
(4)

From a Machine Learning perspective:

- The logit model is a smooth approximation of the perceptron
- MLE estimator is obtained by minimizing classification errors. No probability theory is required!

Econometrics put statistical assumptions on (4) in order to derive properties of the MLE estimator and to make inference.

$$^{14}\mathsf{Since}\;y'=\{0,1\}\text{, then }\mathbb{E}(y'|X)=0\times\mathbb{P}(y'=0)+1\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y'=1)\times\mathbb{E}(y$$

## Linear/Logit models from a Machine learning perspective

- Optimal parameters: Minimize prediction/classification errors
- The convenience of convexity:



(Source: Watt et al., 2016)

A unique solution is easily obtained numerically/analytically.

• Using probability theory, properties of the optimal parameters are derived and inference can be drawn (Econometrics)

(四) ( 고 문 ) ( 日 )

## Moving beyond linearity: Regression



(Source: Watt et al., 2016)

- Non-linearity (left panel) and interaction effects (right panel).
- Knowledge-driven feature design are used in Econometrics.<sup>15</sup>
- Automatic feature design is used in Machine Learning

 <sup>15</sup>fixed transformed covariates: quadratic, cubic, etc. □and/\_or.cross-productse
 つへつ

 Emmanuel Flachaire
 Econometrics & Machine Learning

#### Moving beyond linearity: Classification



(Source: Watt et al., 2016)

- Non-linearity (left panel) and interaction effects (right panel).
- Knowledge-driven feature design are used in Econometrics.<sup>16</sup>
- Automatic feature design is used in Machine Learning

<sup>&</sup>lt;sup>16</sup>fixed transformed covariates: quadratic, cubic, etc. □and/@r> cross-products ∽ ९ < Emmanuel Flachaire Econometrics & Machine Learning

Machine Learning:

- High non-linearity and strong interaction effects are taken into account with automatic feature design.
- In general, a non-convex function is minimized.

Nonparametric Econometrics:

- A nonparametric regression take into account such effects.
- It may work well in small-dimension, not in high dimension.<sup>17</sup>

Machine Learning is an extension of Nonparametric Econometrics.

<sup>17</sup>Because of the curse of dimensionality. Note that GAM models may capture *automatically* non-linearities, but not interaction effects.  $\langle \Xi \rangle = \langle \Xi \rangle = \langle \Im \rangle \langle \Im \rangle$ 

## 1. Introduction and General Principle

- The two Cultures
- Loss function and penalization
- In-sample, out-sample and cross validation

Sac

Machine Learning: solve the optimization problem

$$\underset{m}{\text{Minimize}} \sum_{i=1}^{n} \underbrace{\mathcal{L}(y_i, m(X_i))}_{\text{loss function}} + \underbrace{\lambda \|m\|_{\ell_q}}_{\text{penalization}}$$

• Choice of the loss function:

- $\mathcal{L} \rightarrow$  conditional mean, quantiles, expectiles
- m 
  ightarrow linear, logit, splines, tree-based models, neural networks
- Choice of the penalization:

•  $\ell_q 
ightarrow$  lasso, ridge

•  $\lambda~\rightarrow$  over-fitting, under-fitting, cross validation

A B > A B > A B > B
 B > B
 B > A B > B
 B > B
 B > A B > B
 B > B = B
 B > B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B =

Sac

### Loss funct: Tradeoff between flexibility & interpretability



Flexibility

**FIGURE 2.7.** A representation of the tradeoff between flexibility and interpretability, using different statistical learning methods. In general, as the flexibility of a method increases, its interpretability decreases.

(Source: James et al., 2013)

Emmanuel Flachaire

・ロト ・回ト ・ヨト ・

Э

## Over-fitting

A model with high flexibility may fit perfectly observations used for estimation, but very poorly new observations



 $\rightarrow$  penalization: put a price to pay for having a more flexible model

## Under-fitting

If we put a huge cost for a more complex model,  $\lambda=\infty,$  we obtain a linear regression model



 $\rightarrow$  if the cost is too large: low variance, but high bias

Emmanuel Flachaire Econometrics & Machine Learning

Penalization: put a price to pay for a having more flexible model

- $\lambda = 0$ : it interpolates data ..... low bias, high variance
- $\lambda = \infty$ : linear model .....high bias, low variance
- $\rightarrow$  the penalty parameter  $\lambda \equiv \text{bias}/\text{variance tradeoff}$

Role of  $\lambda$ : avoid over-fitting and poor prediction with new data

Choice of  $\lambda$ : automatic selection procedures are based on model's performance evaluated out-sample, by cross-validation

## 1. Introduction and General Principle

- The two Cultures
- Loss function and penalization
- In-sample, out-sample and cross validation

Sac

#### Model assessment

• The best model has the lowest prediction error. With squared error loss, the mean squared prediction error is equal to

$$\mathsf{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{m}_{\lambda}(x_i))^2 = \frac{\mathsf{SSR}}{n}$$

- Due to overfitting, we cannot use SSR and  $R^2$  based on the sample used for estimation ( $\equiv$  in-sample, training sample)
- We are interested in the accuracy of the predictions obtained from previously unseen data (≡ out-sample, test sample)
- The in-sample MSE (training error) can be a poor estimate of the out-sample MSE (test error)

イロト イヨト イヨト

#### Model assessment

- In order to select the best model with respect to test error, we need to estimate this test error (out-sample MSE)
- There are two common approaches:
  - We can indirectly estimate test error by making an adjustment to the training error to account for the bias due to overfitting
     → penalization ex-post ... R<sup>2</sup><sub>adj</sub>, AIC, BIC
  - We can directly estimate the test error, using either a validation set approach or a cross-validation approach
     → penalization ex-ante
- CV provides a direct estimate of test error, makes fewer assumptions about the true model and can be used widely
- In the past, performing CV was computationally prohibitive. Nowadays, the computations are hardly ever an issue

#### Out-sample: Validation set



FIGURE 5.1. A schematic display of the validation set approach. A set of n observations are randomly split into a training set (shown in blue, containing observations 7, 22, and 13, among others) and a validation set (shown in beige, and containing observation 91, among others). The statistical learning method is fit on the training set, and its performance is evaluated on the validation set. (Source: James et al., 2013)

 We split randomly the sample in two groups of observations: a training set (q - 1 obs.) and a validation/test set (n - q obs)

1 estimation, 
$$n-q$$
 values  $\rightarrow$  MSE  $= rac{1}{n-q}\sum_{i=q}^n(y_i-\hat{y}_i)^2$ 

イロト 不得 トイラト イラト・ラ
## Cross-Validation: LOOCV or *n*-fold CV<sup>18</sup>



**FIGURE 5.3.** A schematic display of LOOCV. A set of n data points is repeatedly split into a training set (shown in blue) containing all but one observation, and a validation set that contains only that observation (shown in beige). The test error is then estimated by averaging the n resulting MSE's. The first training set contains all but observation 1, the second training set contains all but observation 2, and so forth. (Source: James et al., 2013)

n estimations. n values

$$\mathsf{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

イロト イポト イヨト イヨト

Э

<sup>18</sup>LOOCV: leave-one-out cross-validation

Emmanuel Flachaire

**Econometrics & Machine Learning** 

## Cross-Validation: K-fold CV



**FIGURE 5.5.** A schematic display of 5-fold CV. A set of n observations is randomly split into five non-overlapping groups. Each of these fifths acts as a validation set (shown in beige), and the remainder as a training set (shown in blue). The test error is estimated by averaging the five resulting MSE estimates. (Source: James et al., 2013)

$$\mathcal{K} ext{ estimations, } n ext{ values } o ext{MSE} = rac{1}{n} \sum_{k=1}^{K} \sum_{i \in \mathbf{G}_k} (y_i - \hat{y}_i)^2$$

. .

Sar

#### Prediction error in-sample vs. out-sample



Underfitting: the model performs poorly on training and test samples Overfitting: performs well on training sample, but generalizes poorly on test sample

## Standardization and Normalization

- Several ML methods are sensitive to the units of the covariates as Ridge/Lasso regressions, SVM and Neural Networks
- The results may differ substantially when multiplying a given covariate by a constant (meters/kilometers, kilograms/grams)
- It is best to standardize the data before using these methods:

$$\frac{x}{\sqrt{\operatorname{Var}(x)}}$$
 or  $\frac{x-\bar{x}}{\sqrt{\operatorname{Var}(x)}}$ 

so that they are all on the same scale

• Normalization is another scaling technique where the values end up ranging between 0 and 1:

## 2. Methods and Algorithms

#### • Ridge and Lasso Regression

- Classification and Regression Tree
- Bagging and Random Forests
- Boosting
- Support Vector Machine
- Neural Networks and Deep Learning

Э

Linear regression

 $y = X\beta + \varepsilon$  *n* observations, *p* covariates

Least Squares

- $\, \bullet \,$  Collinearity or many irrelevant covariates  $\, \rightarrow \,$  high variance
- More covariates than observations, p>n~
  ightarrow undefined

Ridge and Lasso

- ullet Collinearity, many irrelevant covariates igstarrow smaller variance
- High-dimensional data analysis,  $p \gg n \rightarrow$  feasible

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

## Shrinkage Methods

$$\underset{\alpha,\beta}{\text{Minimize}} \quad \sum_{i=1}^{n} (y_i - \alpha - X_i \beta)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q$$

It is equivalent to minimize SSR subject to  $\sum_{j=1}^p |\beta_j|^q \leq c$ 

- No penalization correponds to OLS unbiased estimation
- The penalization restricts the magnitude of the coefficients
- It shrinks the coefficients toward 0 as  $\lambda \nearrow$  (or  $c \searrow$ )
- It introduces some bias in the coefficients
- $\rightarrow$  Add some bias if it leads to a substantial decrease in variance

## Shrinkage Methods

$$\underset{\alpha,\beta}{\mathsf{Minimize}} \quad \sum_{i=1}^{n} (y_i - \alpha - X_i \beta)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q$$

It is equivalent to minimize SSR subject to  $\sum_{j=1}^{p} |\beta_j|^q \leq c$ 

- Idea: biased coeff may result in model with smaller MSE
- The penalty term  $\lambda$  is a bias-variance tradeoff
- $\lambda$  is selected by cross-validation (MSE out-sample)

Overall, use shrinkage methods when OLS exhibits large variance (with many irrelevant or highly correlated covariates)

イロト イポト イヨト イヨト 二日

#### Standardization

$$\underset{\alpha,\beta}{\mathsf{Minimize}} \quad \sum_{i=1}^{n} (y_i - \alpha - X_i \beta)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q$$

It is equivalent to minimize SSR subject to  $\sum_{j=1}^p |eta_j|^q \leq c$ 

- The results are sensitive to the scale of the covariates
- If a covariate is divided by 10, its coefficient is multiplied by 10, which has an impact on the constraint
- It is best to standardize covariates before using shrinkage methods, so that they are all on the same scale:

$$\frac{x}{\sqrt{\operatorname{Var}(x)}}$$
 or  $\frac{x-\bar{x}}{\sqrt{\operatorname{Var}(x)}}$ 

イロト イボト イヨト

## **Ridge Regression**

$$\underset{\alpha,\beta}{\mathsf{Minimize}} \quad \sum_{i=1}^{n} (y_i - \alpha - X_i \beta)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Ridge = shrinkage method based on the  $\ell_2$  norm (q = 2)

• The restriction is convex and makes the problem easy to solve:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^\top \boldsymbol{X} + \boldsymbol{\lambda} \mathbb{I}_n)^{-1} \boldsymbol{X}^\top \boldsymbol{y}$$

where  $\mathbb{I}_n$  is the  $n \times n$  identity matrix

- $\lambda > 0$ :  $(X^{\top}X + \lambda \mathbb{I}_n)$  non-singular even if X is not of full rank
- Ridge method is defined in high-dimensional problems  $p \gg n$

イロト 不得 トイラト イラト・ラ

San

#### Lasso Regression

$$\underset{\alpha,\beta}{\mathsf{Minimize}} \quad \sum_{i=1}^{n} (y_i - \alpha - X_i \beta)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

Lasso = shrinkage method based on the  $\ell_1$  norm (q = 1)

- The restriction is convex and makes the problem easy to solve numerically, but there is no close expression as in ridge
- The nature of the constraint will cause some coefficients to be exactly zero, with  $\lambda$  sufficiently large (or *c* sufficiently low)
- Lasso makes variable selection with many irrelevant variables
- Lasso is appropriate with sparse model, in which only a relative small number of covariates play an important role

#### Lasso vs. Ridge



Figure 2.2 Estimation picture for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions  $|\beta_1|+|\beta_2| \leq t$  and  $\beta_1^2+\beta_2^2 \leq t^2$ , respectively, while the red ellipses are the contours of the residual-sum-of-squares function. The point  $\hat{\beta}$  depicts the usual (unconstrained) least-squares estimate<sub>(Source: Hastie et al., 2015)</sub>

Unlike the Ridge constraint, the Lasso constraint has corners If the solution occurs at a corner, it has one parameter equal to O

《日》《圖》《臣》《臣》

nan

#### Lasso vs. Ridge





The x-axis is the factor c, from  $|\beta_1|^q + |\beta_2|^q \leq c$ , normalised to 1

Lasso: many coef. are exactly zero with low  $c \rightarrow$  variable selection

#### Lasso and Variable Selection

Lasso constraint: 
$$\sum_{j=1}^p |eta_j| \leq c$$

The optimal c for prediction and variable selection are different:

- For variable selection, the optimal parameter c shrinks non-zero coefficients toward zero → bias
- For prediction, the optimal parameter *c* is often larger than for selection, to reduce the bias on non-zero coefficients
- Lasso selects  $\lambda$  or c by CV, based on MSE  $\rightarrow$  for prediction
- Lasso often includes too many variables (c is often too large)
- But the true model is very likely a subset of these variables

イロト イボト イヨト

Breiman et al. (1984) proposed a rule-of-thumb:<sup>19</sup>

- Lasso selects  $\lambda$  by CV, based on MSE  $\rightarrow$  for prediction
- Consider values of  $\lambda$  within a 1-standard error interval
- Pick the largest value of  $\lambda$  within this interval (smallest c)

The main idea of the 1 SE rule is to choose the most parcimonious model whose accuracy is comparable with the best model

It is a rule-of-thumb, expected to provide a value of  $\lambda$  in between the optimal one for prediction and the optimal one for selection

<sup>19</sup>Breiman, Friedman, Stone, Olshen (1984) Classification and Regression Trees <□ > < □ > < □ > < □ > < ≥ > < ≥ > < ≥ > < ≥

100 C

#### Simulation results with uncorrelated covariates

- Linear regression model with many covariates, n = 1000
- Monte Carlo simulation with 1000 replications
- $\hat{\lambda}^{\min}$  is selected by CV,  $\hat{\lambda}^{1se}$  with the 1 SE rule
- Potency: proportion of relevant variables selected
- Gauge: proportion of irrelevant variables selected

Table 7: Comparison of potency, gauge and MSE under linear effects and uncorrelated covariates

| Model | Rule of thumb         | Potency | Gauge | MSE   |
|-------|-----------------------|---------|-------|-------|
| LASSO | $\hat{\lambda}^{min}$ | 1       | 0.299 | 1.033 |
|       | $\hat{\lambda}^{1se}$ | 1       | 0.032 | 1.073 |

 $\rightarrow$  Lasso with  $\hat{\lambda}^{min}$  selects 29.9% of irrelevant variables  $\rightarrow$  Lasso with  $\hat{\lambda}^{1se}$  selects 3.2% of irrelevant variables, but MSE  $\nearrow$ 

## Simulation results with correlated covariates

- Linear regression model with many covariates, n = 1000
- Monte Carlo simulation with 1000 replications
- $\hat{\lambda}^{\min}$  is selected by CV,  $\hat{\lambda}^{1se}$  with the 1 SE rule
- Potency: proportion of relevant variables selected
- Gauge: proportion of irrrelevant variables selected

Table 6: Comparison of potency, gauge and MSE under linear effects and correlated covariates

| Model | Rule of thumb         | Potency | Gauge | MSE   |
|-------|-----------------------|---------|-------|-------|
| LASSO | $\hat{\lambda}^{min}$ | 1       | 0.643 | 1.060 |
|       | $\hat{\lambda}^{1se}$ | 0.992   | 0.458 | 1.104 |

 $\rightarrow$  Lasso with  $\hat{\lambda}^{min}$  selects 64.3% of irrelevant variables  $\rightarrow$  Lasso with  $\hat{\lambda}^{1se}$  selects 45.8% of irrelevant variables, MSE  $\nearrow$ 

イロト イポト イヨト イヨト 二日

The Adaptive Lasso is based on the following constraint:<sup>20</sup>

$$\sum_{j=1}^p w_j |eta_j| \leq c$$
 where  $w_j = 1/|\hat{eta}_j|^
u$ 

where  $\hat{\beta}_j$  is the OLS estimate and  $\nu > 0$ .

- Put smaller weights to larger coefficients in the constraint
- ullet Large non-zero coefficients shrink more slowly to zero as  $c\searrow$
- This leads to the oracle property, simultaneously achieving
  - Consistent variable selection
  - Optimal estimation prediction
- $\bullet~\nu$  is often set equal to 1, but it could be selected by CV

| Emmanuel Flachaire                            | Ridge and Lasso Regressions |       |
|-----------------------------------------------|-----------------------------|-------|
| <sup>20</sup> Zou (2006), JASA, 101 1418-1429 |                             | E nac |

The Elastic-net is based on the following constraint:<sup>21</sup>

$$\sum_{j=1}^p (r\beta_j^2 + (1-r)|\beta_j|) \le c$$

where r = 1 corresponds to the Ridge and r = 0 to the Lasso.

- Lasso may perform poorly with highly correlated covariates, which is often encountered in high-dimensional data analysis
- By combining a l<sub>2</sub>-penalty with the l<sub>1</sub>-penalty, we obtain a method that deals better with such correlated groups, and tends to select the correlated covariates (or not) together.
- Like Lasso, Elastic-net often includes too many covariates

<sup>21</sup>Zou and Hastie (2005), JRSS Series B, 67 301-320. It corresponds to the penalization  $\lambda_1 \sum_{j=1}^{p} \beta_j^2 + \lambda_2 \sum_{j=1}^{p} |\beta_j|$ , where  $\lambda_1$  and  $\lambda_2$  are selected by CV.  $\geq 222$ 

## Adaptive Elastic-net

The Adaptive Elastic-net is based on the following constraint:<sup>22</sup>

$$\sum_{j=1}^{p} \left\{ r\beta_j^2 + (1-r)w_j |\beta_j| \right\} \le c$$

where  $w_j = 1/(|\hat{\beta}_j| + \frac{1}{n})^{\nu}$  and  $\nu > 0.^{23}$ 

- Adaptive Lasso has oracle property (consistent vble selection), but inherits the instability of Lasso for high-dimensional data
- Elastic-net deals better in high-dimensional data analysis, but it lacks the oracle property
- Adaptive Elastic-net combines the two approaches

## Application: Predict baseball player's Salary

- What predictors are associated with baseball player's Salary?
  - Salary 1987 annual salary on opening day in thousands of dollars;
  - Years Number of years in the major leagues;
  - Hits Number of hits in 1986;
  - Atbat Number of times at bat in 1986;

```
• • •
```

```
1 library(ISLR)
2 Hitters=na.omit(Hitters)
3 x=model.matrix(Salary~.,Hitters)[,-1]
4 y=Hitters$Salary
5 # Ridge and Lasso
6 library(glmnet)
7 ridge.model=glmnet(x,y,alpha=0)
8 lasso.model=glmnet(x,y,alpha=1)
9 par(mfrow=c(1,2))
10 plot(ridge.model, main="Ridge")
11 plot(lasso.model, main="Lasso")
```

By default, the covariates are standardized, otherwise use the argument standardize=FALSE in the function glmnet

Sar

### Application: Coefficient paths



Coefficient paths for Ridge and Lasso as c increases

Emmanuel Flachaire

Ridge and Lasso Regressions

Image: Image:

< 2 > < 2 >

Ξ

### Application: Cross Validation



**Emmanuel Flachaire** 

**Ridge and Lasso Regressions** 

#### Application: Adaptive Lasso and Adaptive Elastic-net





## Application: Compare the coefficients

イロト 不得 トイラト イラト・ラ

San

## Application: Compare the coefficients

|             | ols          | ridge          | lasso        | lasso.1se    | adaLasso      | adaElastic    |
|-------------|--------------|----------------|--------------|--------------|---------------|---------------|
| (Intercept) | 163.1035878  | 81.126931475   | 123.7520754  | 144.37970485 | 126.57066439  | 132.25254600  |
| AtBat       | -1.9798729   | -0.681595884   | -1.5473426   |              | -1.48615273   | -1.56187585   |
| Hits        | 7.5007675    | 2.772311573    | 5.6608972    | 1.36380384   | 5.88349361    | 5.96271593    |
| HmRun       | 4.3308829    | -1.365680118   |              |              |               | -0.03269556   |
| Runs        | -2.3762100   | 1.014826485    |              |              | 0.89821264    | 0.91521857    |
| RBI         | -1.0449620   | 0.713022451    |              |              |               |               |
| Walks       | 6.2312863    | 3.378557588    | 4.7296908    | 1.49731098   | 2.79140518    | 3.24066883    |
| Years       | -3.4890543   | -9.066800376   | -9.5958374   |              | -12.36078333  | -13.89945521  |
| CAtBat      | -0.1713405   | -0.001199478   |              |              | 0.03339294    | 0.04086003    |
| CHits       | 0.1339910    | 0.136102881    |              |              |               |               |
| CHmRun      | -0.1728611   | 0.697995815    | 0.5108207    |              |               |               |
| CRuns       | 1.4543049    | 0.295889601    | 0.6594856    | 0.15275165   |               |               |
| CRBI        | 0.8077088    | 0.257071062    | 0.3927505    | 0.32833941   | 0.57889147    | 0.59178814    |
| CWalks      | -0.8115709   | -0.278966594   | -0.5291586   |              |               | -0.06028053   |
| LeagueN     | 62.5994230   | 53.212720264   | 32.0650811   |              |               | 13.41281263   |
| DivisionW   | -116.8492456 | -122.834451470 | -119.2990171 |              | -127.54437276 | -127.92668761 |
| PutOuts     | 0.2818925    | 0.263887567    | 0.2724045    | 0.06625755   | 0.26875502    | 0.26560908    |
| Assists     | 0.3710692    | 0.169879574    | 0.1732025    |              |               |               |
| Errors      | -3.3607605   | -3.685645334   | -2.0585083   |              |               |               |
| NewLeagueN  | -24.7623251  | -18.105095858  |              |              | 17.44998998   | 6.53776837    |

- Shrinkage methods: the coefficients are shrunk towards zero
- Variable selection is sensitive to the method

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへぐ

- Ridge and Lasso ca be used in high-dimension  $(p \gg n)$
- They are based on a bias-variance tradeoff
- Tradeoff selected minimizing MSE out-sample by CV
- Sparse models: Lasso is a variable selection method
- Ridge puts similar coefficients to strongly correlated variables, while Lasso selects one randomly
- Extension to adaptive Lasso and Elastic-net

イロト 不得 トイラト イラト・ラ

San

## 2. Methods and Algorithms

- Ridge and Lasso Regression
- Classification and Regression Tree
- Bagging and Random Forests
- Boosting
- Support Vector Machine
- Neural Networks and Deep Learning

Ξ

## **Classification Tree**

#### $y \in \{0,1\}$ is a qualitative variable

Emmanuel Flachaire Classification and Regression Tree (CART)

<ロト <回ト < 臣ト < 臣ト 三 のへで

## Classification Tree: Principle from a small sample

Find the best rule on a single variable to classify black/white balls



 $\rightarrow$  find a cutoff on  $x_1$  or  $x_2$  such that the maximum number of observations is correctly classified  $^{24}$ 

Er

| nmanuel Flachaire | Classification and Regression Tree (CART) |
|-------------------|-------------------------------------------|
|                   | <b>J</b> ( )                              |

## Classification Tree: graphical representation

Minimizing misclassification, we find  $x^2 < k$ , where  $k \in (0.56, 0.8)$ 



This Figure represents the best split in a competition between all possible splits of x1 and x2.

From this simple rule, two bullets are misclassified ... we can try to find a new rule in the white area sub-group ...

#### Classification Tree: A sum of simple rules

The additional rule  $x1 \ge c$ , where  $c \in (.16, .2)$ , produces the best subsequent split:



Using these two rules, all bullets are correctly classified

∃ ⊳

## Classification Tree: Extension to large sample

- Interpretation is quite easy and intuitive
- We use recursive binary splitting to grow a tree
- A tree can grow until every observations is correctly classified
- With a large sample, a tree may have many nodes, that is, many points where the predictor is splitted into two leaves
- Note that this principle is easy to apply, even with several regressors and several classes

イロト イボト イヨト

= nan

#### Classification Tree: Example with 100 observations



The resulting tree is quite complex and not so easy to interpret

Emmanuel Flachaire Classification

Classification and Regression Tree (CART)

토 > 토

#### An unpruned tree:

- classifies correctly every observation from a training sample
- may classify poorly observations from a test sample
  - (it is the standard problem of overfitting)
- maybe difficult to interpret
- A pruned tree:
  - is a smaller tree with fewer splits
  - might perform better on a test sample
  - might have an easier interpretation
- $\rightarrow$  define a criterion for making binary splits

イロト イボト イヨト

Ξ

San

# Classification: Tree pruning

- A fully grown tree fits perfectly training data, poorly test data
- Tree pruning is used to control the problem of overfitting
- A smaller tree with fewer splits might lead to lower variance and better interpretation at the cost of a little bias
- Poor strategy: Add new split only if it is worthwhile to do so
- However, a poor split could be followed by a very good split
- Good strategy: Grow a very large tree and prune it back in order to obtain a subtree, keep a split only if it is worthwhile
  - $\rightarrow$  We need to define what "only if it is worthwhile" means

A B > A B > A B > B
 B > B
 B > A B > B
 B > B
 B > A B > B
 B > B = B
 B > B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B =

Sac
# Classification tree: Gini impurity index

- $\bullet$  Classification: not only concerned by class prediction, also by class proportion  $\to$  Min impurity rather than misclassification
- $\bullet~{\rm Gini}$  impurity index at some node  ${\cal N}:^{25}$

$$G(\mathcal{N}) = \sum_{k=1}^{K} p_k (1 - p_k) = 1 - \sum_{k=1}^{K} p_k^2$$

with  $p_k$  the fraction of items labeled with class k in the node

- Node: 100-0 or 0-100 $\rightarrow$  minimal impurity/diversity: G = 0, Node: 50-50  $\rightarrow$  maximal impurity/diversity: G = 1/4.<sup>26</sup>
- A small value means that a node contains predominantly observations from a single class (homogeneity)

<sup>25</sup>Another index is the Entropy "impurity" index  $E(\mathcal{N}) = -\sum_{k=1}^{K} p_k \log p_k$ <sup>26</sup>With 100-0:  $p_1 = 1, p_2 = 0$ ; 0-100,  $p_1 = 0, p_2 = 1 \triangleleft$  50-50:  $p_1 = p_2 = 1/2$  soo

# Classification: Tree pruning

• If we split the node into two leaves,  $N_L$  and  $N_R$ , the Gini impurity index becomes

$$G(\mathcal{N}_L, \mathcal{N}_R) = p_L G(\mathcal{N}_L) + p_R G(\mathcal{N}_R)$$

where  $p_L$ ,  $p_R$  are the proportion of observations in  $\mathcal{N}_L$ ,  $\mathcal{N}_R$ 

• When do we split? ... when impurity is reduced substantially:

$$\Delta = G(\mathcal{N}) - G(\mathcal{N}_L, \mathcal{N}_R) > \epsilon$$

we can also require a minimum of observations per node

• How do we split? ... find the cutoff on a single variable that minimise impurity rather than misclassification ( $\rightarrow \max \Delta$ )

## Classification tree: Limitation



Small change in the original sample  $\Rightarrow$  Tree may differ significantly

Emmanuel Flachaire

Classification and Regression Tree (CART)

# Application: Predict survival on the Titanic

- Consider passenger data from the sinking of the Titanic
- What predictors are associated with those who perished compared to those who survived?

```
survived - 1 if true, 0 otherwise;
sex - the gender of the passenger;
age - age of the passenger in years;
pclass - the passenger's class of passage;
sibsp - the number of siblings/spouses aboard;
parch - the number of parents/children aboard.
```

イロト イボト イヨト

# Application: Titanic classification tree



イロト イヨト イヨト

Ξ

# Application: Variable importance

The importance of each variable, related to the gain in Gini, is

```
tree$variable.importance
```

| 1 | sex       | pclass   | sibsp    | age      | parch    |
|---|-----------|----------|----------|----------|----------|
| 2 | 172.74924 | 50.78568 | 27.33127 | 20.95528 | 20.46938 |

that we can plot using

1 barplot(tree\$variable.importance, horiz=TRUE, col="yellow3")



## **Regression Tree**

### $y \in \mathbb{R}$ is a quantitative variable

Emmanuel Flachaire Classification and Regression Tree (CART)

## Regression Tree: Principle with one covariate

Find the best split, which minimizes deviations to the mean (variances) in each leaf:



ightarrow find cutoff on x such that:  $\operatorname{Min}\sum_{x_i\in\mathcal{N}_L}(y_i-\bar{y}_L)^2+\sum_{x_i\in\mathcal{N}_R}(y_i-\bar{y}_R)^2$ 

Emmanuel Flachaire

Classification and Regression Tree (CART)

▶ 4 Ξ ▶

3 × 3

## Regression Tree: Principle with one covariate

Then use recursive binary splitting:



**Emmanuel Flachaire** 

Classification and Regression Tree (CART)

nan

## Regression Tree: Principle with two covariates

With two covariates,  $y \approx m(x_1, x_2)$ , we have:



(Source: James et al., 2013)

Find boxes  $R_1, \ldots, R_J$  that minimize SSR:<sup>1</sup> Min  $\sum_{j=1}^J \sum_{x_i \in R_j} (y_i - \bar{y}_{R_j})^2$ 

 $^1\text{We}$  cannot consider every possible partition  $\rightarrow$  use recursive binary splitting  $\ensuremath{\,\circ} \ensuremath{\circ} \ensuremath{\otimes} \ensuremath{\circ} \ensuremath{\otimes} \ensuremath{\circ} \ensure$ 

## Application: Predict baseball player's Salary

- Let's consider 3 covariates:  $y \approx m(x_1, x_2, x_3)$
- What predictors are associated with baseball player's Salary?
  - Salary 1987 annual salary on opening day in thousands of dollars;
  - Years Number of years in the major leagues;
  - Hits Number of hits in 1986;
  - Atbat Number of times at bat in 1986;

```
1 library(ISLR)
2 # remove observations that are missing Salary values
3 df=Hitters[complete.cases(Hitters$Salary),]
4 # load CART library
5 library(rpart)
6 library(rpart.plot)
7 # estimate the tree
8 tree <- rpart(log(Salary)~Years+Hits+AtBat,data=df, cp=0)
9 # plot the tree
10 prp(tree, extra=1, faclen=5)</pre>
```

イロト イポト イラト イラト 二日

## Regression Tree: Principle with several covariates

With more covariates, we can only use the decision tree figure:



based on the same principle: find terminal nodes that min SSR  $(a \rightarrow b) = (a \rightarrow b)$ 

Emmanuel Flachaire Classification and Regression Tree (CART)

Ξ

## Regression: Tree pruning

- A fully grown tree fits perfectly training data, poorly test data
- Tree pruning is used to control the problem of overfitting
- A smaller tree with fewer splits might lead to lower variance and better interpretation at the cost of a little bias
- Poor strategy: Build the tree only so long as the decrease in the SSR due to each split exceed some threshold
- However, a poor split could be followed by a very good split
- Good strategy: Grow a very large tree and prune it back in order to obtain a subtree, keep a split only if it is worthwhile

イロト 不得 トイラト イラト・ラ

San

# Regression: Tree Pruning

• Penalization: we put a prize to pay for having a tree with many terminal nodes *J*, or regions,

$$\mathsf{Min} \ \sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \bar{y}_{R_j})^2 + \lambda J$$

For given  $\lambda,$  we can find the subtree minimizing this  ${\rm criterion}^{27}$ 

- Cross-validation: we select  $\lambda$  using cross validation
- A smaller tree with fewer splits might lead to lower variance and better interpretation at the cost of a little bias

 <sup>27</sup> λ is called the complexity parameter
 < □ > < □ > < □ > < ≥ > < ≥ > < ≥ < ○ < ○</td>

 Emmanuel Flachaire
 Classification and Regression Tree (CART)

## Tree pruning: Application

1 tree <- rpart(log(Salary)~Years+Hits+AtBat, data=df) # CV
2 prp(tree, extra=1, faclen=5)</pre>

Unpruned tree Pruned tree 700 Years < 5 100 Years < 5 no yes Years < 13 Hits < 11d Years < 4 Hits < 118 5.8 n=14 Years >= 15 Hits >= 42 AtBat < 585 5.6 n=28 Hits < 114 Years < 7 (5.2 n=7) 5.8 n=16 6.6 n=13 (7) (n=13) Hits >= 178 Years < 3 AtBat >= 525 5.3 n=19 4.7 5.7 n=26 AtBat < 369 n=43 7 n=12 AtBat >= 335 AtBat < 491 (5.7 n=16) 6.5 n=15 Hits < 82 6 n=51 AtBat >= 268 (5.9 n=9 6.3 n=7

Emmanuel Flachaire Classification and Regression Tree (CART)

6.7 n=83

6.6

n=13

Tree vs. linear model: Which model is better?

• It depends on the problem at hand:

• Linear regression: 
$$m(X) = \beta_0 + \sum_{j=1}^{K} X_j \beta_j$$

• Regression tree: 
$$m(X) = \sum_{j=1}^{J} c_j \mathbb{1}(x \in R_j)$$

- If the relationship between y and x<sub>1</sub>,..., x<sub>K</sub> is linear: a linear model should perform better
- If the relationship between y and  $x_1, ..., x_K$  is highly non-linear and complex: a tree model should perform better

## True decision boundary: linear



Blue area  $\equiv$  fitted values in blue from linear (left) and tree (right) models

Emmanuel Flachaire

Classification and Regression Tree (CART)

< ロ ト < 回 ト < 三 ト < 三 ト</p>

## True decision boundary: nonlinear



Blue area  $\equiv$  fitted values in blue from linear (left) and tree (right) models

Emmanuel Flachaire

Classification and Regression Tree (CART)

< ロ ト < 回 ト < 三 ト < 三 ト</p>

### True decision boundary: interactions



Blue area  $\equiv$  fitted values in blue from linear (left) and tree (right) models

Emmanuel Flachaire

Classification and Regression Tree (CART)

< ロ ト < 回 ト < 三 ト < 三 ト</p>

# Classification And Regression Tree (CART)

### Advantages:

- Trees tend to work well for problems where there are important nonlinearities and interactions
- The results are really intuitive and can be understood even by people with no experience in the field

#### Disadvantage:

- Trees are quite sensitive to the original sample (non-robust)
- They may have poor predictive accuracy out-sample

# 2. Methods and Algorithms

- Ridge and Lasso regression
- Classification and Regression Tree
- Bagging and Random Forests
- Boosting
- Support Vector Machine
- Neural Networks and Deep Learning

イロト イヨト イヨト

How bagging and random forest work intuitively:

- Based on your symptoms, suppose a doctor diagnoses an illness that requires surgery
- Instead asking one doctor, you may choose to ask several
- If one diagnosis occurs more than any others, you may choose this one as the final diagnosis
- $\rightarrow$  the final diagnosis is made based on a majority vote of doctors

Bagging and Random Forest: replace doctors by bootstrap samples

(日) (图) (문) (문) [

San

### Algorithm 1: Bagging

```
Select number of trees B, and tree depth D;
for b = 1 to B do
generate a bootstrap sample from the original data;
estimate a tree model of depth D on this sample;
```

end

For instance, with the titanic dataset:

```
1 library(rpart) ; library(rpart.plot)
2 library(PASWR) ; data(titanic3)
3 n = NROW(titanic3$survived)
4 par(mfrow=c(3,3))
5 for(i in 1:9){
6 idx = sample(1:n, size=n, replace=TRUE)
7 cart = rpart(as.factor(survived)~sex+age+pclass+sibsp+
parch, data=titanic3[idx,], cp=0) # unpruned
8 prp(cart,type=1,extra=1)}
```

イロト イヨト イヨト イヨト

## Bagging: Generate several trees by bootstrapping



Emmanuel Flachaire

Bagging and Random Forest

# Bagging: Why bootstrapping CART model?

Bagging = Bootstrap aggregating

Prediction:

- Regression: average the resulting predictions
- Classification: take a majority vote

Impact of bootstrapping:

- Averaging a set of observations reduces variance<sup>28</sup>
- It reduces variance and hence increase the prediction accuracy
- Compared to CART, the results are much less sensitive to the original sample, they show impressive improvement in accuracy
- Loss of interpretability

<sup>28</sup>The variance of the mean of the observations  $\bar{X}$  is given by  $\sigma^2 \neq n$  is  $\gamma = \gamma = \gamma$ 

| Algorithm 2: Random Forest                                 |  |  |  |  |  |
|------------------------------------------------------------|--|--|--|--|--|
| Soloct number of trees B subsampling parameter m tree      |  |  |  |  |  |
| Select number of trees D, subsampling parameter m, tree    |  |  |  |  |  |
| depth <i>D</i> ;                                           |  |  |  |  |  |
| for $b = 1$ to B do                                        |  |  |  |  |  |
| generate a bootstrap sample from the original data;        |  |  |  |  |  |
| estimate a tree model on this sample;                      |  |  |  |  |  |
| for each split do                                          |  |  |  |  |  |
| Randomly select $m$ of the original covariates $(m < P)$ ; |  |  |  |  |  |
| Split the data with the best covariate (among the $m$ );   |  |  |  |  |  |
| end                                                        |  |  |  |  |  |
| end                                                        |  |  |  |  |  |

- $\rightarrow$  Random Forest = Bagging + subsample covariates at each node
- $\rightarrow$  Bagging is a special case of Random Forest, with m = P

Da C

# Bagging and Random Forest



Random Forest = Bagging + subsampling covariates at each node

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Random forest: Why subsampling covariates?

Subsampling covariates may sound crazy, it has clever rationale:

- Suppose there is one very strong covariate in the sample
  - Most or all trees will use this covariate in the top split
  - All of the trees will look quite similar to each other
  - Hence the predictions will be highly correlated
- Averaging many highly correlated quantities does not lead to a large reduction in variance
- Random forests overcome this problem by forcing each split to consider only a subset of the covariates
- $\rightarrow$  Random forests decorrelate the trees

In practice, default values: m = p/3 in regression and  $m = \sqrt{p}$  in classification

There is no much overfitting in random forests ....

- as B increases: average effect over trees  $\rightarrow$  no overfitting
- as D increases: overfitting is argued to be minor

"Segal (2004) demonstrates small gains in performance by controlling the depths of the individual trees grown in random forests. Our experience is that using full-grown trees seldom costs much, and results in one less tuning parameter. Figure 15.8 shows the modest effect of depth control in a simple regression example." (Hastie et al., 2009, p.596)

The goal is to grow trees with as little bias as possible. The high variance that would result from deep trees is tolerated because of the averaging over a large number of trees

... However, a simple example shows that it can be problematic

# Random forest: Overfitting ... a simple example

Let us consider a realistic (simulated) sample

```
1 set . seed (1)
```

```
2 n=200
```

```
3 x = runif(n)
```

```
4 y=sin(12*(x+.2))/(x+.2) + rnorm(n)/2
```

We can fit CART and random forest models:<sup>29</sup>

```
5 fit.tr <- rpart(y<sup>x</sup>) # CART
6 fit.ba1 <- randomForest(y<sup>x</sup>) # no depth control
7 fit.ba2 <- randomForest(y<sup>x</sup>, maxnodes=20) # depth control
```

We can plot observations and predicted values:

```
8 u=seq(min(x),max(x),length.out=1000)
9 plot(x,y,col="gray",main="n=200")
10 lines(u,predict(fit.ba1,data.frame(x=u)), col="green")
11 lines(u,predict(fit.ba2,data.frame(x=u)), col="red")
12 lines(u,predict(fit.tr,data.frame(x=u)), col="blue")
```

We run this code for n = 200 and n = 10000

<sup>29</sup>Note that since it is a simple regression, with 1 covariate then RF=bagging  $\mathfrak{Oace}$ 

## Random forest: Overfitting ... a simple example



 $\rightarrow$  improvement of random forest over a single regression tree  $\rightarrow$  overfitting can be very large without controlling tree depth

イロト イロト イヨト

No need to perform cross-validation:

- By bootstrapping, each tree uses around 2/3 of the obs. The remaining 1/3 obs are referred to as the out-of-bag (OOB) obs
- Use OOB observations for out-sample predictions
- We obtain around B/3 out-sample predictions for the  $i^{th}$  obs.
- average these values (or majority vote) = OOB prediction for i
- An OOB-MSE can be computed over all OOB predictions

The OOB approach for estimating the test error is particularly convenient with large sample, for which CV would be onerous

イロト イポト イヨト イヨト 二日

# Random forest: Tuning parameters

We can use OOB-MSE to tune Random Forest parameters

• Depth tree, D: from our previous example, with n = 10000

```
1 >randomForest(y<sup>x</sup>x)$mse[500] # OOB-MSE, no depth control
2 [1] 0.3252183
```

| 3  | >maxnode=c(10,50,100,500,1000,2000)                    |  |  |  |  |  |
|----|--------------------------------------------------------|--|--|--|--|--|
| 4  | >for (i in 1:NROW(maxnode)) { # OOB-MSE, depth control |  |  |  |  |  |
| 5  | > aa=randomForest(y~x, maxnodes=maxnode[i])\$mse[500]; |  |  |  |  |  |
| 6  | <pre>6 &gt; print(c(maxnode[i],aa))}</pre>             |  |  |  |  |  |
| 7  | [1] 10.000000 0.3747725                                |  |  |  |  |  |
| 8  | [1] 50.000000 0.2553131                                |  |  |  |  |  |
| 9  | [1] 100.000000 0.2508479                               |  |  |  |  |  |
| 10 | [1] 500.000000 0.2570217                               |  |  |  |  |  |
| 11 | [1] 1000.000000 0.268357                               |  |  |  |  |  |
| 12 | [1] 2000.0000000 0.2921307                             |  |  |  |  |  |
|    |                                                        |  |  |  |  |  |

We can see that OOB-MSE is smaller with maxnode=100

• Subsampling parameter, *m*: can be selected similarly

# Random forest: Variable importance

- Random forest improves prediction accuracy at the expense of interpretability ... the resulting model is difficult to interpret
- One can obtain an overall summary of the importance of each covariates using SSR (regression) or Gini index (classification)
- Index: record the total amount that the SSR/Gini is decreased due to splits over a given covariate, averaged over all *B* trees

```
1 >rf <- randomForest(as.factor(survived)~sex+age+pclass+
sibsp+parch, data=titanic3, na.action=na.omit)
2 >importance(rf)
3 MeanDecreaseGini
4 sex 133.75916
5 age 63.13448
6 pclass 52.45753
7 sibsp 18.74009
8 parch 17.49320
```

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sar

# Random Forests compared to Single Trees (CART)

TABLE 2Test set misclassification error (%)

| Data set              | Forest     | Single tree |
|-----------------------|------------|-------------|
| Breast cancer         | 2.9        | 5.9         |
| Ionosphere            | 5.5        | 11.2        |
| Diabetes              | 24.2       | 25.3        |
| Glass                 | 22.0       | 30.4        |
| Soybean               | 5.7        | 8.6         |
| Letters               | <b>3.4</b> | 12.4        |
| Satellite             | 8.6        | 14.8        |
| Shuttle $\times 10^3$ | 7.0        | 62.0        |
| DNA                   | 3.9        | 6.2         |
| Digit                 | 6.2        | 17.1        |

Source: Breiman (2001)

Emmanuel Flachaire Bagging and Random Forest

### Advantages:

- They tend to work well for problems where there are important nonlinearities and interactions.
- They are robust to the original sample and more efficient than single trees

### Disadvantage:

• The results are not intuitive and difficult to interpret.
# Bagging and Random forest: Exercise

Consider the dataset used to predict baseball player's salary:

```
1 library(ISLR)
2 df=Hitters[complete.cases(Hitters$Salary),]
```

- Create a training set consisting of the first 200 observations, and a test set consisting of the remaining observations
- Perform bagging on the training set for a range of values of the tree depth D, with B = 1000 trees. Produce a plot with D on the x-axis and the corresponding test set MSE on the y-axis
- Perform random forest on the training set with B = 1000 trees for several values of the subsampling parameter m, and compute the corresponding test set MSEs
- Compare the test MSE of bagging and random forest to the test MSE that results from a CART model
- Which variables appear to be the most important predictors in the random forest model?

イロト イヨト イヨト イヨト

# 2. Resampling-based Methods and Algorithms

- Classification and Regression Tree (CART)
- Bagging and Random Forests
- Boosting
- Support Vector Machine
- Neural Networks and Deep Learning

Sar

# Boosting: Principle

- Like bagging, boosting involves combining a large number of decision trees, but the trees are grown sequentially
- Boosting does not involve bootstrap sampling; instead each tree is fit on a modified version of the original data set:
  - Each tree is fit to the residuals from the previous tree model
  - Each iteration is then focused on improving previous errors<sup>30</sup>
  - Each tree is shallow (low depth): "weak" classifier/predictor <sup>31</sup>
- Boosting combines the outputs of many "weak" learners (classifiers, predictors) to produce a powerful "committee"

 $^{30}\mathsf{Each}$  subsequent model pays more attention to the errors from previous models . . . it is a process that learns from past errors

 $^{31}$ Weak classifier: its error rate is only slightly better than mandom guessing

### Boosting for Regression

 $y \in \mathbb{R}$  is a quantitative variable

#### Algorithm 3: Boosting for regression trees

Select number of trees *B*, tree depth *D*, shrinkage parameter  $\lambda$ ; Set initial predicted values,  $\hat{m}(x) = 0$ ; **for** b = 1 to *B* **do** Compute the residuals,  $r = y - \hat{m}(x)$ ; Fit a regression tree  $\hat{m}^b(x)$  of depth *D* to the data (r, x); Update the predicted values:  $\hat{m}(x) \leftarrow \hat{m}(x) + \lambda \hat{m}^b(x)$ ; **end** 

 $\rightarrow$  By fitting trees to the residuals, we seek to improve  $\hat{m}$  in areas where it does not perform well

< □ > < 三 > < 三 >

Number of trees, B:

The role of each new (sequential) tree is to improve the fit
Unlike random forests, boosting can overfit if *B* is too large <sup>32</sup>

Depth of trees, D:

- In CART, fully-grown or deep trees are known to overfit
- Boosting can then overfit if *D* is too large
- Depth tree is usually very small, by default it is often D = 1
- $\rightarrow$  B and D can be selected by cross-validation

Idea behind shrinkage:

- Slow down the boosting process to avoid overfitting  $\ldots$  scale the contribution of each tree by a factor 0  $<\lambda<1$
- A smaller  $\lambda$  typically requires more trees *B*. It allows more and different shaped trees to attack the residuals<sup>33</sup>

 $\rightarrow$  Small values of D and  $\lambda:$  by fitting small trees to the residuals, we slowly improve  $\hat{m}$  in areas where it does not perform well  $^{34}$ 

- $\rightarrow$  The boosting approach learns slowly ( $\lambda =$  learning rate)
- $\rightarrow$  Statistical methods that learn slowly tend to perform well

<sup>33</sup>Typical values are  $\lambda = 0.01$ , or  $\lambda = 0.001$ 

 $^{34}$ By default, D=1 and  $\lambda=0.1$  in the gbm function in R are also be a set of  $\lambda=-0$  and

### Boosting: a simple regression example

Let us consider a realistic (simulated) sample

```
1 set . seed (1)
```

```
2 n=200
```

```
x = runif(n)
```

```
4 y=sin(12*(x+.2))/(x+.2) + rnorm(n)/2
```

We can fit CART and boosting models:

```
5 library (gbm)
6 nb=500
7 # By default: interaction.depth=1 and shrinkage=0.1
8 fit.bo <- gbm(y<sup>x</sup>x, distribution="gaussian",n.tree=nb)
9 fit.tr <- rpart(y<sup>x</sup>x)
```

We can plot observations and predicted values:

```
8 u=seq(min(x),max(x),length.out=1000)
9 plot(x,y,col="gray",main="n=200",xlab=NA,ylab=NA)
10 lines(u,predict(fit.tr,data.frame(x=u)),col="blue")
11 lines(u,predict(fit.bo,data.frame(x=u),n.trees=nb), col="
    purple")
```

```
We run this code for n = 200 and n = 10000
```

### Boosting: a simple regression example



 $\rightarrow$  Boosting provides nice improvement over single regression tree

Image: A matrix

### Boosting: Exercise

Consider the previous simple regression example:

- Re-run the code with D = 4, B = 1000 and  $\lambda = 1$ . Do you observe overfitting?
- Perform boosting with different values of *D*, *B* and  $\lambda$  and look how sensitive the results are to these choices

Consider the random forest exercise, on baseball player's salary:

- Perform boosting on the training set for a range of values of the shrinkage parameter  $\lambda$ , with B = 1000 trees and D = 1.
- Produce a plot with different shrinkage values on the x-axis and the corresponding test set MSE on the y-axis.
- Compare the test MSE of boosting to the test MSE that results from bagging, random forest and CART model

# Boosting for Classification $y \in \{-1, 1\}$ is a qualitative variable

▲ロト ▲御 ト ▲臣 ト ▲臣 ト 一臣 - のへで

# AdaBoost algorithm

#### Algorithm 4: AdaBoost

Select the number of trees *B*, and the tree depth *D*; Set initial weights,  $w_i = 1/n$ ; for b = 1 to *B* do Fit a classification tree  $\hat{m}_b(x)$  to the data using weights  $w_i$ ; Update the weights:  $\nearrow w_i$  if misclassified,  $\searrow w_i$ otherwise<sup>†</sup>;

#### end

Output: 
$$\hat{y}_i = \operatorname{sign}\left(\sum_{b=1}^{B} \alpha_b \hat{m}_b(x)\right)$$

<sup>†</sup> If *i* is misclassified:  $w_i \leftarrow w_i e^{\alpha_b}$ , where  $\alpha_b = \log(\frac{1 - err_b}{err_b})$  and  $err_b$  is the model's misclassification error,  $err_b = \frac{\sum_{i=1}^{n} w_i l(y_i \neq \hat{m}_b(x_i))}{\sum_{i=1}^{n} w_i}$ . If *i* is correctly classified  $w_i \leftarrow w_i$ .

 $\rightarrow$  Observ. misclassified have more influence in the next classifier

 $\rightarrow$  In the output, the contributions from classifiers that fit the data better are given more weight (a larger  $\alpha_b$  means a better fit)

Schematic illustration of the boosting framework. Each base classifier  $y_m(\mathbf{x})$  is trained on a weighted form of the training set (blue arrows) in which the weights  $w_n^{(m)}$  depend on the performance of the previous base classifier  $y_{m-1}(\mathbf{x})$  (green arrows). Once all base classifiers have been trained, they are combined to give the final classifier  $Y_M(\mathbf{x})$  (red arrows).



(Source: Bishop 2006, Pattern recognition and machine Learning, Figure 14.1)

### Boosting vs. bagging



(Source: Internet, @@)

 $\rightarrow$  Bootstrap samples  $\equiv$  Original sample reweighted independently

### Illustration of boosting for classification tree



**Figure 14.2** Illustration of boosting in which the base learners consist of simple thresholds applied to one or other of the axes. Each figure shows the number m of base learners trained so far, along with the decision boundary of the most recent base learner (dashed black line) and the combined decision boundary of the ensemble (solid green line). Each data point is depicted by a circle whose radius indicates the weight assigned to that data point when training the most recently added base learner. Thus, for instance, we see that points that are misclassified by the m = 1 base learner are given greater weight when training the m = 2 base learner.

(Source: Bishop (2006), Pattern recognition and machine Learning, Figure 14.2)

Boosting

# Generalizations into a unifying framework

- Breiman referred to AdaBoost with trees as the "best off-the-shelf classifier in the world" (NIPS Workshop, 1996)
- Friedman et al. (2000) show that Adaboost fits an additive model in a base learner, optimizing a novel exponential loss function, which is very similar to the binomial log-likelihood
- They proposed generalizations into a unifying framework, which includes several loss functions that can be used
- They describe loss functions for regression and classification that are more robust than squared error or exponential loss

#### $\rightarrow$ Gradient boosting

## Stochastic gradient boosting

#### Algorithm 5: Stochastic gradient boosting

Select number of trees B, tree depth D, shrinkage parameter  $\lambda$ ; for b = 1 to B do

Compute the gradient vector,  $r_i = -\partial L(y_i, m(x_i)) / \partial m(x_i)$ ; Draw a subset of the original sample  $(r^*, x^*)$ ; Fit a regression tree  $m^b(x)$  of depth D to the data  $(r^*, x^*)$ ; Update the predicted values:  $m(x) \leftarrow m(x) + \lambda m^b(x)$ ; end

 $\rightarrow$  Gradient boosting: Depending the choice of the loss function, we consider a specific regression or classification model

#### $\rightarrow$ Stochastic:

- Shrinkage: slow down the boosting process to avoid overfitting
- Subsampling: it reduces the computing time and, in many cases, it produces a more accurate model (see random forest)

### Loss functions in regression, $y \in \mathbb{R}$

• Squared error loss function:

$$L=\frac{1}{2}\left(y_i-m(x_i)\right)^2$$

for which the gradient vector is the residuals  $r_i = y_i - m(x_i)$ 

• Absolute error loss function, or Laplacian:<sup>35</sup>

$$L=|y_i-m(x_i)|$$

 $\rightarrow$  median of the conditional distribution  $\ldots$  robust regression

• Huber loss function: a robust alternative to absolute error loss,

$$L = \begin{cases} \frac{1}{2}(y_i - m(x_i))^2 & |y_i - m(x_i)| \le \delta \\ \delta(|y_i - m(x_i)| - \delta/2) & |y_i - m(x_i)| > \delta \end{cases}$$

<sup>35</sup>We can also derive a quantile loss function:  $L = (1 - \alpha)|y_i - m(x_i)|$  if  $|y_i - m(x_i)| \le 0$ , and  $L = (1 - \alpha)|y_i - m(x_i)|$  otherwise  $(\alpha : \text{desired quantile}) \ge -2 < C$ Emmanuel Flachaire Boosting

### Loss functions in regression: A comparison



**FIGURE 10.5.** A comparison of three loss functions for regression, plotted as a function of the margin y-f. The Huber loss function combines the good properties of squared-error loss near zero and absolute error loss when |y - f| is large. (Source: Hastie et al., 2009)

 $\rightarrow$  When robustness is a concern, squared error is not the best criteria

イロト イポト イヨト イヨト

# Loss functions in classification, $y \in \{-1, 1\}$

Misclassification loss function:<sup>36</sup>

$$L = \mathbb{1}(\operatorname{sign}[m(x)] \neq y)$$

Adaboost loss function:

$$L = e^{-ym(x)}$$

• Bernouilli loss function, or Binomial deviance:

$$L = \log(1 + e^{-2ym(x)})$$

 $\rightarrow$  Minimizing Adaboost or Bernouilli loss functions leads to the same solution at the population level  $\ldots$  not in finite sample

 $\rightarrow$  Bernouilli loss function is more robust to outliers in finite sample

### Loss functions in classification: A comparison



**FIGURE 10.4.** Loss functions for two-class classification. The response is  $y = \pm 1$ ; the prediction is f, with class prediction sign(f). The losses are misclassification:  $I(\text{sign}(f) \neq y)$ ; exponential:  $\exp(-yf)$ ; binomial deviance:  $\log(1 + \exp(-2yf))$ ; squared error:  $(y - f)^2$ ; and support vector:  $(1 - yf)_+$  (see Section 12.3). Each function has been scaled so that it passes through the point (0, 1). (Source: Hastie et al., 2009)

- $\rightarrow$  More weight for obs. more clearly misclassified (large negative ym(x))
- $\rightarrow$  When robustness is a concern, exponential loss is not the best criteria  $_{2200}$

- The number of trees *B*. Unlike bagging and random forests, boosting can overfit if B is too large, although this overfitting tends to occur slowly if at all.
- The number of splits *D* in each tree, which controls the complexity of the boosted ensemble. Often *D* = 1 works well, in which case each tree is a stump, consisting of a single split.
- The shrinkage parameter  $\lambda$ . This controls the rate at which boosting learns. Typical values are 0.01 or 0.001, and the right choice can depend on the problem.<sup>37</sup>

 $\rightarrow$  We use cross-validation to select B, D and  $\lambda$ 

<sup>37</sup>Very small  $\lambda$  can require very large B in order to achieve=good=performance  $\mathscr{O} \land C$ 

### Boosting: Interpretation

- Single tree are highly interpretable. Linear combinations of trees must therefore be interpreted in a different way.
- Variable importance: using the relative importance of a variable for a single tree,<sup>38</sup> we then average over the trees<sup>39</sup>
- After the most relevant variables have been identified, the next step is to attempt to understand the nature of the dependence of the approximation m(X) on their joint values
- Partial dependence plot illustrate the marginal effect of the selected variables on the response after integrating out the other variables.

<sup>&</sup>lt;sup>38</sup>The squared relative importance of  $X_l$  is the sum of squared improvements over all internal nodes for which it was chosen as the splitting variable <sup>39</sup>Due to the stabilizing effect of averaging, this measure turns out to be more reliable than is its counterpart (10.42) for a singlestree  $\mathbb{P} \times \mathbb{R} \to \mathbb{R}$ 

The data for this example consists of information from 4601 email messages, in a study to try to predict whether the email was spam.

The response variable is binary, with values email or spam, and there are 57 predictors as described below:

- 48 quantitative predictors: the percentage of words in the email that match a given word<sup>40</sup>
- 6 quantitative predictors: the percentage of characters in the email that match a given character (; ! # ( [ \$)
- Uninterrupted sequences of capital letters: average length (CAPAVE), length of the longest (CAPMAX), sum of the length (CAPTOT)

 $\rightarrow$  use gradient boosting to design an automatic spam detector that could filter out spam before clogging the users' mailboxes

<sup>&</sup>lt;sup>40</sup>Examples include **business**, address, internet, free, and george. The idea was that these could be customized for individual users (Hastie et al. 2009)  $\neg \land \land$ 

### Application: spam email



FIGURE 10.6. Predictor variable importance spectrum for the spam data. The variable names are written on the vertical axis.

(Source: Hastie et al., 2009)

Emmanuel Flachaire

Boosting

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

### Application: partial dependence



**FIGURE 10.7.** Partial dependence of log-odds of spam on four important predictors. The red ticks at the base of the plots are deciles of the input variable. (Source: Hastie et al., 2009)

 $\rightarrow$  effect of  $X_j$  on m(X) after accounting for the average effects of the other variables

### Application: joint frequencies



**FIGURE 10.8.** Partial dependence of the log-odds of spam vs. email as a function of joint frequencies of hp and the character !.

 $\rightarrow$  This plot displays strong interaction effects

Image: A matrix

토 > 토

| Emmanuel Flachaire | Boosting |
|--------------------|----------|

### 2. Methods and Algorithms

- Ridge and Lasso Regression
- Classification and Regression Tree
- Bagging and Random Forests
- Boosting
- Support Vector Machine
- Neural Networks and Deep Learning

イロト イヨト イヨト

Ξ

- A method developped in the computer science community in the 1990s
- It uses a basis expansion to capture non-linear class boundaries
- Well suited for classification of complex but small- or medium-sized datasets
- Often considered one of the best "out of the box" classifiers

イロト イヨト イヨト

Э

Support Vector Classifier The separable case

Ξ

# Classification and hyperplane



• A hyperplane separates the space in two halves:

 $eta_0 + X_1eta_1 + X_2eta_2 > 0$  (blue) or < 0 (red)

- $\,$   $\,$  An  $\,\infty\,$  number of hyperplanes, with same classification score
- What would make a difference is their capacity to generalize

nan

# The Maximal Margin Classifier

Margins = two parallel separating hyperplanes, located at the smallest distance from the observations of each classes



- Margins: the dashed lines
- *Support vectors*: the two blue points and the purple point that lie on the margins
- Optimal hyperplane: solid line

Principle: Maximize the distance between the two margins

The maximal margin (or optimal) hyperplane is the separating hyperplane that is farthest from the training observations

It is an optimization problem:

Here,  $\|\beta\| = 1$  ensures that the perpendicular distance from the *i*<sup>th</sup> observation to the hyperplane is given by  $y_i(X_i\beta)$ . Thus, the restriction ensures that each observation is on the correct side of the hyperplane and at least a distance *M* from the hyperplane.

It is equivalent to:41

minimize 
$$\|\beta\|^2$$
 subject to  $y_i(X_i\beta) \ge 1, \ \forall i = 1, \dots, n$ 

### Sensitivity to individual observations

Adding one blue observation leads to a quite different hyperplane, with a significant decrease of the distance between the two margins



 $\rightarrow$  It could be worthwhile to misclassify a few training observations in order to obtain a better generalization (out-sample classification)

# Support Vector Classifier (SVC)

Why should we consider a classifier that is not a perfect separator? In the interest of:

- greater robustness to individual observations
- better classification of the out-sample observations



Underlying principles:42

- SVC: maximal margin classifier, tolerating margin violations
- Logit: minimize misclassification error

<sup>42</sup>Figures: logit  $\approx$  SVC (left), logit=solid line & SVC=dashed line (right) = oale

### How to tolerate margin violations?

It is a slightly modified optimization problem:

 $\begin{array}{ll} \underset{\beta, \|\beta\|=1}{\text{maximize } M} \quad \text{subject to} & y_i(X_i\beta) \geq M(1-\epsilon_i), \\ \\ \text{and} & \epsilon_i \geq 0, \quad \sum_{i=1}^n \epsilon_i \leq C \end{array}$ 

 $\forall i = 1, \dots, n$ , where C is a nonnegative tuning parameter.

- $\epsilon_1, \ldots, \epsilon_n$  are *slack variables* that allow observations to be on the wrong side of the margin ( $\epsilon_i > 0$ ) or hyperplane ( $\epsilon_i > 1$ )
- C is a *budget* for the amount that the margins can be violated
  - C = 0: no margin violation is tolerated
  - $\, \circ \,$  as  $\, C$  increases, we become more tolerant of margin violations
- *C* is the maximal number of observations allowed to be on the wrong side of the hyperplane
- In practice, C is a tuning parameter chosen by cross-validation

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ □ ▶
## Support Vector Classifier vs. Logit model

• SVC: the previous optimization problem can be rewritten as:<sup>43</sup>

$$\underset{\beta}{\text{minimize}} \sum_{i=1}^{n} \underbrace{\max\left[0, 1 - y_i(X_i\beta)\right]}_{\text{hinge loss function}} + \lambda \sum_{k=1}^{K} \beta_k^2$$

It's a minimization of the hinge loss function with penalization

• Logit: minimizing missclassification, we have:

$$\underset{\beta}{\text{minimize}} \sum_{i=1}^{n} \underbrace{\log\left(1 + e^{-y_i(X_i\beta)}\right)}_{\text{softmax function}},$$

It's a minimization of the softmax function, no penalization

 $\rightarrow$  SVC  $\approx$  penalized Logit model, using a hinge loss function

→ Role of penalization = tradeoff min missclassif. & max margin <sup>43</sup>With  $\lambda = 1/(2C)$ , see Hastie et al. (2009)

na a

## SVC and Logit: loss function



Overall, the two loss functions have quite similar behavior Hinge loss = 0 for obs on the correct side of the margin:  $y_i(X_i\beta) > 1$ 

nan

## SVC and Logit: The separable case



• Right: Logit  $\neq$  SVC with C > 0 (chosen by cross-validation)

 $\rightarrow$  SVC = tradeoff between min missclassification & max margin  $_{44}$ 

 $<sup>^{44}</sup>$ max margin: pushing away the obs. as far as possible from the hyperplane min missclassif: smallest aggregated distance from the hyperplane of wrong obs 322

Support Vector Classifier The non-separable case

Ξ

590

- In the non-separable case, some observations are on the wrong side of the hyperplane
- The Maximal Margin Classifier has no solution
- Logit minimizes the aggregated distance from the hyperplane of the missclassified observations, not the number of missclass.
- SVC is a tradeoff between:
  - minimizing the aggregated distance from the hyperplane of the missclassified observations
  - pushing away as far as possible from the hyperplane the correctly classified observations

< ロ > < 団 > < 글 > < 글 > < - > < - > < - > < - > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > > < - > < - > < - > < - > < - > > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - > 
 - >

### SVC and Logit: The non-separable case



Support Vector Machine Nonlinear separability

Ξ

590

# Support Vector Machine (SVM)

- Many datasets are not linearly separable
- Adding polynomial features and interactions can be used
- But a low polynomial degree cannot deal with very complex datasets
- The support vector machine (SVM) is an extension of the support vector classifier that results from enlarging the feature space in a specific way, using kernels.
- SVM works well for complex but small- or medium-sized datasets

イロト イヨト イヨト

## Moving into higher dimension

Find a SVM classifier to identify teenagers from the height:<sup>45</sup>





The data are linearly separable in the 2-dimensional space

| <sup>45</sup> Source: I | nternet |
|-------------------------|---------|
|-------------------------|---------|

Support Vector Machine (SVM)

・ロト ・日 ト ・日 ト ・ 日 ト

### The kernel trick

The data are not linearly separable in the 2-dimensional space, S



The kernel trick:

Source: https://freakonometrics.hypotheses.org/52775



The data are linearly separable in the 3-dimensional space,  $S'_{\pm}$ ,  $\Xi_{\pm}$  and  $S_{\pm}$ 

It is the SVC optimization problem, with transformed covariates:

$$\begin{array}{ll} \underset{\beta, \|\beta\|=1}{\text{maximize } M} \quad \text{subject to} \quad y_i(\varphi(X_i)\beta) \ge M, \, \forall i \\ \text{or} \quad \underset{\beta}{\text{minimize }} \sum_{i=1}^n \max\left[0, 1 - y_i(\varphi(X_i)\beta)\right] + \lambda \sum_{k=1}^K \beta_k^2 \end{array}$$

In the resolution,  $\varphi$  only appears in the form  $\varphi(X_i)^\top \varphi(X_j)$ . Thus,

- $\bullet\,$  we don't need to express explicitely  $\varphi$
- ${\, \bullet \,}$  we don't need to express the higher dimension space S'

We use a kernel function defined as  $K(x, x') = \varphi(x)^{\top} \varphi(x')$ 

200

The kernel should be a symmetric positive (semi-) definite function.

The dth-degree polynomial kernel is:  $K(x,x') = (1 + \langle x,x' \rangle)^d$ 

• 1st-degree polynomial kernel with two covariates  $X_1$  and  $X_2$ :<sup>46</sup>

$$K(X, X') = (1 + \langle X, X' \rangle) = (1 + X_1 X'_1 + X_2 X'_2)$$

- With φ(X) = {1, X<sub>1</sub>, X<sub>2</sub>}, we have K(X, X') = φ(X)<sup>T</sup>φ(X').
   It corresponds to the linear case, or SVC.
- $\rightarrow$  SVM with 1st-degree polynomial kernel is similar to SVC

<sup>46</sup>With two *n*-vectors, the inner product is:  $\langle x_1, x_2 \rangle = x_1^\top x_2 = \sum_{i=1}^n x_i y_i$  is one

### Polynomial kernel

The dth-degree polynomial kernel is:  $K(x,x') = (1 + \langle x,x' \rangle)^d$ 

• 2nd-degree polynomial kernel with two covariates  $X_1$  and  $X_2$ :

$$\begin{split} \mathcal{K}(X,X') &= (1 + \langle X,X'\rangle)^2 = (1 + X_1X_1' + X_2X_2')^2 \\ &= 1 + 2X_1X_1' + 2X_2X_2' + (X_1X_1')^2 + (X_2X_2')^2 + 2X_1X_1'X_2X_2' \end{split}$$

- Here,  $\varphi(X) = \{1, \sqrt{2}X_1, \sqrt{2}X_2, X_1^2, X_2^2, \sqrt{2}X_1X_2\}$  defines a 6-dimensional space, with squared and interaction terms
- We move from 3-dimensional space to 6-dimensional space

 $\rightarrow$  SVM with *d*th-degree polynomial kernel ( $d \ge 2$ ) is similar to SVC with additional powers and interaction terms of the covariates

イロト イポト イヨト イヨト 二日

Radial basis function (RBF) kernel:  $K(x, x') = \exp(-\gamma ||x - x'||^2)$ 

- $\gamma>0$  accounts for the smoothness of the decision boundary  $^{47}$
- It is returns values between 0 and 1:
  - It returns large value for x close to x'
  - It returns small value for x far from x'
- It is a similarity measure between two covariates
- $\rightarrow$  The radial kernel has a local behavior

<sup>47</sup>Bias-variance tradeoff: large value of  $\gamma$  leads to high variance (overfitting), small value leads to low variance and smoother boundaries (underfitting)  $\Rightarrow = -990$ 

## Illustration: Simulated data

```
1 set.seed(1)
2 x=matrix(rnorm(200*2),ncol=2)
3 x[1:100,]=x[1:100,]+2
4 x[101:150,]=x[101:150,]-2
5 y=c(rep(1,150),rep(2,50))
6 plot(x[,2],x[,1],pch=16,col=y*2)
```



Non-linear decision boundaries  $\rightarrow$  SVC will perform poorly

< ∃ >

500

# Illustration: Fit SVM with polynomial and radial kernels

We can fit a SVM with 2nd-degree polynomial kernel and fixed cost of constraints violation:

```
7 library(e1071)
8 dat=data.frame(x=x,y=as.factor(y))
9 svmfit=svm(y~.,data=dat,kernel="polynomial",cost=1,degree=2)
10 plot(svmfit,dat, grid=200)
```

Or select the cost parameter by 10-fold CV among several values:

```
11 tune.out=tune(svm,y<sup>~</sup>.,data=dat,kernel="polynomial",degree=2,
ranges=list(cost=c(.1,1,10,100)))
12 plat(tune_out$best_model_dat____grid=200)
```

```
12 plot(tune.out$best.model,dat, grid=200)
```

```
13 summary(tune.out)
```

Similarly, we can fit a SVM with radial kernel:<sup>48</sup>

<sup>48</sup>We then have 2 tuning parameters, the cost of constraints violation and lpha  $\sim$  0.00

#### Illustration: Polynomial vs. radial kernels



- Either kernel is capable of capturing the decision boundary
- However, the results are different

## ROC curve

- With more than 2 covariates, we can't plot decision boundary
- We can produce a ROC curve to analyze the results
- SVM doesn't give probabilities to belong to classes, as in logit
- For any given cutoff *t*, we can classify observations into a category, depending on wether

$$\hat{f}(X) < t$$
 or  $\hat{f}(X) \geq t$ 

• The ROC curve is obtained by computing the false positive and true positive rates for a range of values of t

イロト イヨト イヨト

# Illustration: ROC curves

We write a short function to plot a ROC curve:

```
16 library (ROCR)
17 rocplot=function (pred,truth, ...) {
18 predob=prediction (pred,truth)
19 perf=performance (predob, "tpr", "fpr")
20 plot (perf,...) }
```

We can fit a SVM with radial kernel and plot a ROC curve:

```
21 set.seed(1)
22 train=sample(200,100)
23 train=sort(train,decreasing=TRUE) # to avoid reverse ROC
24 svmfit=svm(y~.,data=dat[train,],kernel="radial",cost=1,
    gamma=0.5)
25 fit=attributes(predict(svmfit,dat[-train,],decision.values=
    TRUE))$decision.values
```

```
26 rocplot(fit,dat[-train,"y"], main="Test Data", col="red)
```

We can also fit a Logit model and plot a ROC curve:

```
27 lgt=glm(y ~.,data=dat[train,],family=binomial(link='logit'))
28 fit=predict(lgt,dat[-train,],type="response")
29 par(new=TRUE)
30 rocplot(fit,dat[-train,"y"], col="green")
31 col="distance" of the term of the term of the term of t
```

## Illustration: ROC curves



As expected in this example, SVM outperforms Logit model

Emmanuel Flachaire Support Vector Machine (SVM)

 Ξ

590

### 2. Methods and Algorithms

- Ridge and Lasso Regression
- Classification and Regression Tree
- Bagging and Random Forests
- Boosting
- Support Vector Machine
- Neural Networks and Deep Learning

イロト イヨト イヨト

Ξ

### Neural networks with one covariate

Emmanuel Flachaire Neural Networks and Deep Learning

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ● ● ●

#### Looking for a more flexible model ...

A linear model maybe quite restrictive:

$$y \approx \alpha + \beta x$$

We can obtain a more flexible model by adding:

• successive powers ..... polynomial regression<sup>49</sup>

$$y \approx \alpha + \sum_{m=1}^{M} \beta_m x^m$$

nonlinear functions of linear combinations ... neural networks<sup>50</sup>

$$y \approx \alpha + \sum_{m=1}^{M} \beta_m f(\alpha_m + \delta_m x)$$

where f is an activation function – a fixed **nonlinear** function <sup>49</sup> $y \approx \alpha + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \dots$ <sup>50</sup> $y \approx \alpha + \beta_1 f(\alpha_1 + \delta_1 x) + \beta_2 f(\alpha_2 + \delta_2 x) + \beta_3 f(\alpha_3 + \delta_3 x) + \dots = 0$ Emmanuel Flachaire Neural Networks and Deep Learning

#### Common examples of activation functions

- The logistic (or sigmoid) function:  $f(x) = \frac{1}{1+e^{-x}}$
- The hyperbolic tangent function:  $f(x) = tanh(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$
- The Rectified Linear Unit (ReLU):  $f(x) = \max(0, x) = (x)_+$



Emmanuel Flachaire Neural Networks and Deep Learning

### Neural network vs. polynomial: A simple example

Let us consider a realistic (simulated) sample

```
1 set.seed(1) ; n=200
2 x=sort(runif(n))
3 y=sin(12*(x+.2))/(x+.2) + rnorm(n)/2
4 df=data.frame(y,x)
```

We can fit a polynomial regression with M = 3:

```
5 ols=lm(y<sup>x</sup>+l(x<sup>2</sup>)+l(x<sup>3</sup>))
6 plot(x,y, main="Polynomial: M=3")
```

```
7 lines(x, predict(ols), col="blue")
```

We can fit a neural network model with M = 3:

```
8 library(neuralnet)
9 nn=neuralnet(y~x, data=df, hidden=3, threshold=.05)
10 yfit=compute(nn,data.frame(x))$net.result
11 plot(x,y, main="Neural Networks: M=3")
12 lines(x,yfit, col="red")
```

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

990

#### Neural network vs. polynomial: A simple example



#### A weighted sum of fixed/adjustable components



### Fixed vs. adjustable components

Why neural networks perform better than polynomial regression in the previous example?

Polynomial regression is based on fixed components, or bases:<sup>51</sup>

$$x, x^2, x^3, \ldots, x^M$$

• Neural network is based on adjustable components, or bases:<sup>52</sup>

$$f(\alpha_1 + \delta_1 x), f(\alpha_2 + \delta_2 x), \dots, f(\alpha_M + \delta_M x)$$

- Adjustable components have tunable internal parameters
- They can express several shapes, not just one (fixed) shape
- Each component is more flexible than a fixed component

 $\rightarrow$  Adjustable components enable to capture complex models with fewer components (smaller *M*)

Emmanuel Flachaire

Neural Networks and Deep Learning

・ロト ・回ト ・ヨト ・

#### Neural networks with several covariates

Emmanuel Flachaire Neural Networks and Deep Learning

<ロト <回ト < 臣ト < 臣ト 三 のへで

#### Neural network with several covariates

With a set of covariates  $X = (1, x_1, x_2, \dots, x_k)$ , we have

$$y \approx \alpha + \sum_{m=1}^{M} \beta_m f(\alpha_m + X \delta_m)$$

- The nonlinarity of the activation function *f* is essential, otherwise it is a simple linear model in *X*
- Combining several nonlinear functions f is essential to capture interaction effects, M > 1, otherwise it is just a logit model<sup>53</sup>

By adding nonlinear functions of linear combinations of X, we obtain a more flexible model, which is able to capture nonlinearity and interaction effects

<sup>53</sup>With M=1 and the logistic activation function, it is a logit model  $E \mapsto E = O \land O$ 

#### Interaction effects

Adding two nonlinear functions can generate an interaction effect:

$$y \approx \alpha + \sum_{m=1}^{2} \beta_m f(\alpha_m + x_1 \delta_m + x_2 \gamma_m)$$

Let us consider  $\alpha = \alpha_1 = \alpha_2 = 0$ ,  $\beta_1 = -\beta_2 = \frac{1}{4}$ ,  $\alpha_1 = \alpha_2 = 0$ ,  $\delta_1 = \delta_2 = \gamma_1 = -\gamma_2 = 1$  and  $f(z) = z^2$ , we have:

$$y pprox 0 + rac{1}{4}(0 + x_1 + x_2)^2 - rac{1}{4}(0 + x_1 - x_2)^2 \ pprox rac{1}{4}[(x_1 + x_2)^2 - (x_1 - x_2)^2] \ pprox x_1 x_2$$

So the sum of two nonlinear transformations of linear functions can give us an interaction! Here, we would always get a 2nd-degree polynomial in X. Other activations do not have such a limitation.

# XOR: Exclusive or (true if its arguments differ)



#### Neural network with a single hidden layer



**FIGURE 10.1.** Neural network with a single hidden layer. The hidden layer computes activations  $A_k = h_k(X)$  that are nonlinear transformations of linear combinations of the inputs  $X_1, X_2, \ldots, X_p$ . Hence these  $A_k$  are not directly observed. The functions  $h_k(\cdot)$  are not fixed in advance, but are learned during the training of the network. The output layer is a linear model that uses these activations  $A_k$  as inputs, resulting in a function f(X).

Source: James et al. (2021)

Diagram of 
$$y \approx \alpha + \sum_{m=1}^{M} \beta_m f(\alpha_m + X\delta_m)$$
 with  $M = 5$  neurons

Emmanuel Flachaire Neural Networks and Deep Learning

## Ridge regularization & standardization

- NN tends to overfit due to large number of coefficients
- A solution is to regularize similar to ridge regression:<sup>54</sup>

Minimize the SSR subject to 
$$\sum_{i=1}^{p} \theta_{i}^{2} \leq c$$

- The results are sensitive to the scale of the covariates
- It is best to standardize covariates before using Neural Networks, so that they are all on the same scale:

$$rac{x-ar{x}}{\sqrt{\mathsf{Var}(x)}}$$

 ${}^{\rm 54}\theta$  is the set of coefficients  $\alpha,\beta,\delta$ 

**Emmanuel Flachaire** 

Neural Networks and Deep Learning

In 1986, Rumelhart et al. found a way to train neural networks, with the backpropagation algorithm.<sup>55</sup> Today, we would call it a Gradient Descent using reverse-mode autodiff.

For each training instance:

- 1) the algorithm first makes a prediction (forward path)
- 2 measures the error
- 3 goes through each layer in reverse to measure the error contribution from each connection (reverse pass)
- slightly tweaks the connection weights to reduce the error (Gradient Descent step)

55Rumelhart et al.: Learning Internal Representations by Enror Propagation - 🔊 🧠

# Application 1: Mincer equation

- 1 library (AER) ; data ("CPS1985")
- 2 CPS1985\$gender=as.numeric(CPS1985\$gender)
- 3 library (neuralnet)
- 4 nn=neuralnet(log(wage)~education+experience+gender, data= CPS1985, hidden=3, threshold=.05)
- 5 plot(nn)





Emmanuel Flachaire Neural Networks and Deep Learning

イロト イヨト イヨト 一日

Sar
# Application in classification



Source: Hastie, Tibshirani and Friedman (2009), based on simulated data

In classification, the softmax function is applied to the outputs

Emmanuel Flachaire

Neural Networks and Deep Learning

#### Multilayer neural networks

Emmanuel Flachaire Neural Networks and Deep Learning

## Multilayer neural networks

Even greater flexibility is achieved via composition of activation functions:

$$y \approx \alpha + \sum_{m=1}^{M} \beta_m f\left(\alpha_m^{(1)} + \sum_{\substack{p=1\\ p = 1}}^{P} f\left(\alpha_p^{(2)} + X\delta_p^{(2)}\right) \delta_m^{(1)}\right)$$
  
it replaces X

- The composition of activation functions puts one additional hidden layer between inputs and outputs → multi-layers NN
- A NN with three hidden layers can be obtained by simply repeating the procedure used to create the two layer basis.

Multilayer neural networks: when a NN has 2 or more hidden layers

#### Multilayer neural networks



**FIGURE 10.4.** Neural network diagram with two hidden layers and multiple outputs, suitable for the MNIST handwritten-digit problem. The input layer has p = 784 units, the two hidden layers  $K_1 = 256$  and  $K_2 = 128$  units respectively, and the output layer 10 units. Along with intercepts (referred to as biases in the deep-learning community) this network has 235,146 parameters (referred to as weights). Source: James et al. (2021)

nan

From single layer with many neurons to multilayer with less neurons

James et al. (2021):

- In theory a single hidden layer with a large number of units/neurons has the ability to approximate most functions
- However, the learning task of discovering a good solution is made much easier with multiple layers each of modest size
- Modern neural networks typically have more than one hidden layer, and often many units/neurons per layer

Deep Neural Networks = Multilayer Neural Networks

イロト イボト イヨト

# Application 1: Mincer equation



Error: 47.665751 Steps: 23831



Error: 50.041345 Steps: 5234

イロト イヨト イヨト イヨト

3

Sar

Neural Networks and Deep Learning

## Pattern recognition



#### Everything is just numbers:

Source: internet, link

A  $18\times18$  pixel image can be seen as an array of 324 numbers that represent how dark each pixel is (grayscale value in (0, 255))

A vector of these numbers can be used to feed a neural networks

イロト イヨト イヨト

## MNIST handwritten digit dataset



**FIGURE 10.3.** Examples of handwritten digits from the MNIST corpus. Each grayscale image has  $28 \times 28$  pixels, each of which is an eight-bit number (0–255) which represents how dark that pixel is. The first 3, 5, and 8 are enlarged to show their 784 individual pixel values.

Source: James et al. (2021)

San

- Input vector X:  $p = 28 \times 28 = 784$  pixels
- Output Y: class label  $Y = (Y_0, Y_1, \dots, Y_{10})$
- 60,000 training images and 10,000 test images

### Application 2: Handwritten digit recognition

```
1 \# Source: section 10.9.2 in James et al. (2021)
2 library (keras)
3 # load the MNIST digit data
4 mnist <- dataset_mnist()</pre>
5 x_train <- mnist$train$x
6 g_train <- mnist$train$y
7 x_test <- mnist$test$x
8 g_test <- mnist$test$v</pre>
9 # reshape images into matrices
10 x_train <- array_reshape(x_train, c(nrow(x_train), 784))
11 x_test <- array_reshape(x_test, c(nrow(x_test), 784))</pre>
12 y_train \leftarrow to_categorical(g_train, 10)
13 y_test <- to_categorical(g_test, 10)
14 # rescale to the unit interval
15 x_train <- x_train / 255
16 x_test <- x_test / 255
17 # define the multilaver NN
18 modelnn <- keras_model_sequential()</pre>
19
  modelnn %>%
20
     laver_dense(units = 256. activation = "relu".
21
                    input_shape = c(784)) %>%
22
    layer_dropout(rate = 0.4) %>%
23
    laver_dense(units = 128, activation = "relu") %>%
24
     laver_dropout(rate = 0.3) \%
25
     layer_dense(units = 10, activation = "softmax")
26
  summary (modelnn)
27
  # add details to the model
   modelnn %>% compile(loss = "categorical_crossentropy",
28
29
                        optimizer = optimizer_rmsprop(), metrics = c("accuracy")
30
```

## Application 2: Handwritten digit recognition

```
31 # fit the NN with training data
32 system.time(
     history <- modelnn %>%
33
34
       fit (x_train, y_train, epochs = 30, batch_size = 128,
35
             validation split = 0.2
36
37
   plot(history, smooth = FALSE)
38
  # obtain the test error
39
   accuracy <- function (pred, truth)
40
     mean(drop(pred) = drop(truth))
   modelnn %% predict (x_test) %% max.col %% accuracy (g_test+1)
41
42
  # fit a multinomial logit as a NN without hidden layer
43
   modellr <- keras_model_sequential() %>%
44
45
     layer_dense(input_shape = 784, units = 10,
46
                 activation = "softmax")
47
  summary (modellr)
   modellr %% compile(loss = "categorical_crossentropy", optimizer = optimizer_
48
        rmsprop(), metrics = c("accuracy")
   modellr \gg fit (x_train , y_train , epochs = 30, batch_size = 128, validation_
49
        split = 0.2)
50 modellr %% predict (x_test) %% max.col %% accuracy (g_test+1)
```

You may need to install Keras first:

```
1 install.packages("tensorflow")
2 install.packages("keras")
3 library(keras)
4 tensorflow::install_tensorflow()
5 tensorflow::tf_config()
6 install_keras()
```

# Multilayer NN for handwritten digit recognition

| Method                                  | Test Error |
|-----------------------------------------|------------|
| Neural Network + Ridge Regularization   | 2.3%       |
| Neural Network + Dropout Regularization | 1.8%       |
| Multinomial Logistic Regression         | 7.2%       |
| Linear Discriminant Analysis            | 12.7%      |

**TABLE 10.1.** Test error rate on the MNIST data, for neural networks with two forms of regularization, as well as multinomial logistic regression and linear discriminant analysis. In this example, the extra complexity of the neural network leads to a marked improvement in test error.

```
Source: James et al. (2021)
```

- NN with 2 hidden layers  $L_1$  (256 units) and  $L_2$  (128 units)
- 235,146 coef in the NN and 7,065 in the multinomial logit<sup>56</sup>
- To avoid overfitting, two forms of regularization are used

 $^{56}L_1$ : 785×256=200,960 and  $L_2$ : 257×128=32,896 and 10 outputs 129×10 or  $\sim$ 

#### Dropout regularization



**FIGURE 10.19.** Dropout Learning. Left: a fully connected network. Right: network with dropout in the input and hidden layer. The nodes in grey are selected at random, and ignored in an instance of training.

Source: James et al. (2021)

- New efficient form of regularization, inspired by random forest
- Randomly remove a fraction of the units in a layer
- In practice, randomly set the dropped out units to zero

#### Limitations

Multilayer NN can model complex non-linear relationships

With very complex problems, such as detecting hundreds of types of objects in high-resolution images, we need to train deeper NN:

- perhaps 10 layers, each with hundreds of neurons, connected by hundreds of thousands of connections
- training a fully-connected DNN is very slow
- severe risk of overfitting with millions of parameters
- gradients problems make lower layers very hard to train

Solutions:

- Convolutional Neural Networks (CNN or ConvNets)
- Recurrent Neural Networks (RNN)

イロト イボト イヨト

3

San

### **Convolutional Neural Networks**

Emmanuel Flachaire Neural Networks and Deep Learning

<ロト <回ト < 臣ト < 臣ト 三 のへで

## Pattern recognition



FIGURE 11.9. Examples of training cases from ZIP code data. Each image is a 16 × 16 8-bit grayscale representation of a handwritten digit.

The network fails to recognize '8' when the letter is not centered  $\rightarrow$  translation, scale and (small) rotation invariances are needed The solution is convolution

• □ > • □ > • □ > • □ > • □ > •

# Convolutional Neural Network (CNN or ConvNet)<sup>58</sup>

**Step 1**: Break the image into overlapping image tiles and, feed each image tile into a small neural network with the same weights<sup>57</sup>



 $\rightarrow$  It remains to use a sliding window over the entire picture

- $\rightarrow$  using the same small NN reduces the number of weights
- $\rightarrow$  same neural networks weights  $\equiv$  filter or convolution kernel

# CNN: The convolution step 1

CNN exploit spatially local correlation: each neuron is locallyconnected (to only a small region of the input volume)





- $\rightarrow$  Different values of weights will produce different feature maps
- $\rightarrow$  The convolution step plays like a filter
- $\rightarrow$  Different filters can detect different features from an image<sup>59</sup>

<sup>59</sup>as for instances edges, curves, . . .

Emmanuel Flachaire

Neural Networks and Deep Learning

DQ P

# CNN: The convolution step 1



**FIGURE 10.6.** Schematic showing how a convolutional neural network classifies an image of a tiger. The network takes in the image and identifies local features. It then combines the local features in order to create compound features, which in this example include eyes and ears. These compound features are used to output the label "tiger".

Source: James et al. (2021)

イロト イヨト イヨト

# CNN: The pooling step 2

**Step 2**: Reduce the size of the array, using a pooling algorithm.





2x2 pooling layer, no padding

Source: Géron (2017)

The pooling step reduces the dimensionality of each feature map but retains the most important information  $^{60}$ 

Pooling can be of different types: Max, Average, Sum etc.

<sup>60</sup>It is also called subsampling or downsampling step □ ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < ()

# CNN: The pooling step 2

The function of pooling is to progressively reduce the spatial size of the input representation. In particular, pooling:

- makes the input representations smaller and more manageable
- reduces the number of weights and links in the network, therefore, controlling overfitting
- makes the network invariant to small transformations, distortions and translations in the input image<sup>61</sup>
- helps us arrive at an almost scale invariant representation of our image<sup>62</sup>

San

 $<sup>^{61}{\</sup>rm a}$  small distortion in input will not change the output of Pooling – since we take the maximum/average value in a local neighborhood

<sup>&</sup>lt;sup>62</sup>This is very powerful since we can detect objects in an image no matter where they are located  $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \rangle \equiv \langle \Xi \rangle \rangle \equiv \langle \Xi \rangle$ 

## CNN: The classification step 3

Step 3: Make a final prediction with a fully-connected network



FIGURE 10.8. Architecture of a deep CNN for the CIFAR100 classification task.Convolution layers are interspersed with  $2 \times 2$  max-pool layers, which reduce thesize by a factor of 2 in both dimensions.Source: James et al. (2021)

Feature extraction: use even more steps (hidden-layers) to extract the useful features from the images. The more convolution steps you have, the more complicated features your network will be able to learn to recognize.

Classification: The purpose of the Fully Connected layer is to use the high-level features for classifying the input image into classes

DQR

# CNN: Intuitive principle

#### A hierarchy of representations with increasing level of abstraction:





- Extract local features that depend on small subregions of the image
- Information from these features are merged to detect higher-order features

 $\rightarrow$  construction of complex objects from elementary parts

Image recognition: pixel  $\rightarrow$  edge  $\rightarrow$  texton  $\rightarrow$  motif  $\rightarrow$  part  $\rightarrow$  object Text: character  $\rightarrow$  word  $\rightarrow$  word group  $\rightarrow$  clause  $\rightarrow$  sentence  $\rightarrow$  story Speech: sample  $\rightarrow$  spectral band  $\rightarrow$  sound  $\rightarrow \dots \rightarrow$  phoneme  $\rightarrow$  word

(日)

Sar

## CNN: An example on number recognition



To understand how ConvNet works, play with this animation Vink

Emmanuel Flachaire

Neural Networks and Deep Learning

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ξ

Sar

# CNN: Performance in practice

**TABLE 11.1.** Test set performance of five different neural networks on a handwritten digit classification example (Le Cun, 1989).

|        | Network Architecture  | Links | Weights | % Correct |
|--------|-----------------------|-------|---------|-----------|
| Net-1: | Single layer network  | 2570  | 2570    | 80.0%     |
| Net-2: | Two layer network     | 3214  | 3214    | 87.0%     |
| Net-3: | Locally connected     | 1226  | 1226    | 88.5%     |
| Net-4: | Constrained network 1 | 2266  | 1132    | 94.0%     |
| Net-5: | Constrained network 2 | 5194  | 1060    | 98.4%     |

Source: Hastie et al. (2016)

- Convolutional Neural Networks outperform other methods
- The number of weights in Net-5 is much less than in Net-1
- ConvNet has been "a revolution in Artificial Intelligence"

See the inaugural lesson of Yann LeCun at the College de France, in English en or in French en , and the review paper in Nature ende

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# CNN: Detection in complex cases



See this animation **Vink** 





イロト イヨト イヨト イヨト

Ξ

200

**Emmanuel Flachaire** 

Neural Networks and Deep Learning

## CNN: Detection in complex cases



Source: Ren et al. (2016), https://arxiv.org/pdf/1506.01497v3.pdf Emmanuel Flachaire Neural Networks and Deep Learning

#### **Recurrent Neural Networks**

Emmanuel Flachaire Neural Networks and Deep Learning

<ロト <回ト < 臣ト < 臣ト 三 のへで

Many data sources are sequential in nature:

- In text analysis, the sequence and relative position of words capture the narrative, theme and tone → Document classification, sentiment analysis and language translation
- $\bullet\,$  Time series of temperature, rainfall, wind speed, air quality and so on  $\to\,$  Weather forecast
- Time series of market indices, stock and bon prices and exchange rates → Financial forecasting

In Recurrent Neural Network, the input object X is a sequence

イロト イボト イヨト

## Recurrent Neural Networks (RNN)

Neural network with a single hidden layer, for t = 1, ..., T:

 $y_t \approx \alpha + A_t \beta$ 

$$A_t = [f(\alpha_1 + X_t \delta_1), \dots, f(\alpha_M + X_t \delta_M)]$$

A linear combination of a nonlinear fct of linear combinations of  $X_t$ Recurrent neural network:

• Each time series provides many short mini-series of input sequences  $X = \{X_1, \dots, X_L\}$  of L periods, and a target Y

$$A_t = [f(\alpha_1 + X_t \delta_1 + A_{t-1}\gamma_1), \dots, f(\alpha_M + X_t \delta_M + A_{t-1}\gamma_M)]$$

- Identical weights for each sequence:  $\alpha, \delta, \gamma$  independent of t
- A form of weight sharing similar to the use of filters in CNN

イロト イポト イヨト イヨト 二日

#### Recurrent Neural Networks



**FIGURE 10.12.** Schematic of a simple recurrent neural network. The input is a sequence of vectors  $\{X_\ell\}_{1}^{L}$ , and here the target is a single response. The network processes the input sequence X sequentially; each  $X_\ell$  feeds into the hidden layer, which also has as input the activation vector  $A_{\ell-1}$  from the previous element in the sequence, and produces the current activation vector  $A_\ell$ . The same collections of weights  $\mathbf{W}$ ,  $\mathbf{U}$  and  $\mathbf{B}$  are used as each element of the sequence is processed. The output layer produces a sequence of predictions  $O_\ell$  from the current activation  $A_\ell$ , but typically only the last of these,  $O_L$ , is of relevance. To the left of the equal sign is a concise representation of the network, which is unrolled into a more explicit version on the right.

Source: James et al. (2021)

#### RNN: Number of lags, training and test data

Recurrent neural network with one hidden layer, for T = 1, ..., T:

$$y_t \approx \alpha + A_t \beta$$

 $A_t = [f(\alpha_1 + X_t\delta_1 + A_{t-1}\gamma_1), \dots, f(\alpha_M + X_t\delta_M + A_{t-1}\gamma_M)]$ 

- Past values of  $y_t$  and other covariates can be used in  $X_t$
- Select a number of lags L with care, perhaps using CV
- Extract many short series of (y, X) with a predefined length L
- Each short serie can be used to predict one value y<sub>t</sub>
- The training data consists of *n* separate series of length *L*
- The test data consists of the remaining series of length L
- Find the set of coefficients minimizing the SSR (subject to a constraint) based on the training and test data

## RNN: Historical trading time series on the NYSE



FIGURE 10.14. Historical trading statistics from the New York Stock Exchange. Daily values of the normalized log trading volume, DJIA return, and log volatility are shown for a 24-year period from 1962–1986. We wish to predict trading volume on any day, given the history on all earlier days. To the left of the red bar (January 2, 1980) is training data, and to the right test data.

Emmanuel Flachaire Neural Networks and Deep Learning

Source: James et al. (2021)

#### RNN: Forecast trading volume based on past history



How do we represent this problem in terms of the structure displayed in Figure 10.12? The idea is to extract many short mini-series of input sequences  $X = \{X_1, X_2, \ldots, X_L\}$  with a predefined length L (called the *lag* in this context), and a corresponding target Y. They have the form

$$X_{1} = \begin{pmatrix} v_{t-L} \\ r_{t-L} \\ z_{t-L} \end{pmatrix}, \ X_{2} = \begin{pmatrix} v_{t-L+1} \\ r_{t-L+1} \\ z_{t-L+1} \end{pmatrix}, \cdots, X_{L} = \begin{pmatrix} v_{t-1} \\ r_{t-1} \\ z_{t-1} \end{pmatrix}, \text{ and } Y = v_{t}.$$
(10.20)

So here the target Y is the value of log\_volume  $v_t$  at a single timepoint t, and the input sequence X is the series of 3-vectors  $\{X_\ell\}_1^L$  each consisting of the three measurements log\_volume, DJ\_return and log\_volatility from day t - L, t - L + 1, up to t - 1. Each value of t makes a separate (X, Y)Source: James et al. (2021)

## RNN: Autocorrelation function



**FIGURE 10.15.** The autocorrelation function for log\_volume. We see that nearby values are fairly strongly correlated, with correlations above 0.2 as far as 20 days apart.

Source: James et al. (2021)

- - ∃ - >

• T = 6051, L = 5, so 6046 short series (y, X) are available

- fit the model with 12 neurons and using 4281 training series
- forecast 1765 values after January 2, 1980

# RNN: Forecast of log trading volume on the NYSE



**FIGURE 10.16.** RNN forecast of log\_volume on the NYSE test data. The black lines are the true volumes, and the superimposed orange the forecasts. The forecasted series accounts for 42% of the variance of log\_volume.

See section 10.0.6 in James et al. (2021) for details of the implementation in R Emmanuel Flachaire Neural Networks and Deep Learning Recurrent neural network with a single hidden layer:

 $y_t \approx \alpha + A_t \beta$ 

 $A_t = [f(\alpha_1 + X_t\delta_1 + A_{t-1}\gamma_1), \dots, f(\alpha_M + X_t\delta_M + A_{t-1}\gamma_M)]$ 

- Lag of the dependent variable  $y_{t-1}$  can be used in  $X_t$
- With M = 1, f linear and  $X_t = y_{t-1}$ , we have an AR(L):

$$y_t \approx \beta_0 + y_{t-1}\beta_1 + \cdots + y_{t-L}\beta_{t-L}$$

- RNN and AR models have much in common
- By combining nonlinear functions (M > 1 and f nonlinear), RNN add more flexibilty → nonlinear and interaction effects

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
My son is a manga fan, so our next holiday will be in ....

- RNN don't predict Japan, since it doesn't remember manga
- RNN main limitation: short term memory
- Solution: Combine 2 hidden layers, one with short memory and the other one with longer memory
- LSTM combine a long-term state c and a short-term state h

イロト 不得 トイラト イラト・ラ

San

## $\mathsf{LSTM} \ \mathsf{vs.} \ \mathsf{RNN}$



Emmanuel Flachaire Neural Networks and Deep Learning

## LSTM



Figure 14-13. LSTM cell

Géron (2017)

Ξ

200

イロト イヨト イヨト

• c: drop some memories  $\otimes$  and add some new memories  $\oplus$ 

## 3. Using ML methods in Econometrics

- Misspecification detection
- Causal inference

A B > A B > A B > B
 B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

Sar

Machine Learning: solve the optimization problem

$$\underset{m}{\text{Minimize}} \sum_{i=1}^{n} \underbrace{\mathcal{L}(y_i, m(X_i))}_{\text{loss function}} + \underbrace{\lambda \|m\|_{\ell_q}}_{\text{penalization}}$$

• Choice of the loss function:

- $\mathcal{L} \rightarrow$  conditional mean, quantiles, classification
- m 
  ightarrow linear, splines, tree-based models, neural networks
- Choice of the penalization:

•  $\ell_q 
ightarrow$  lasso, ridge

•  $\lambda~\rightarrow$  over-fitting, under-fitting, cross validation

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sar

$$\underset{\beta}{\mathsf{Minimize}} \quad \sum_{i=1}^{n} (y_i - X_i \beta)^2 + \lambda \sum_{j=2}^{p} |\beta_j|^q$$

It is equivalent to minimize SSR subject to  $\sum_{j=2}^p |\beta_j|^q \leq c$ 

- The constraint restricts the magnitude of the coefficients
- It shrinks the coefficients towards zero as  $c\searrow$  (or  $\lambda\nearrow$ )
- Add some bias if it leads to a substantial decrease in variance
- q=2: Ridge,  $\hat{\beta} = (X^{\top}X + \lambda \mathbb{I}_n)^{-1}X^{\top}y$  is defined with  $p \gg n$
- q = 1: Lasso sets some coef exactly to 0, variable selection

 $\rightarrow$  High-dimensional problems ( $p \gg n$ )

San

### Random Forest, Boosting, Deep learning

$$\underset{m}{\text{Minimize}} \quad \sum_{i=1}^{n} (y_i - m(X_i))^2 + \lambda \int m''(x)^2 dx$$

It is equivalent to minimize SSR subject to  $\int m''(x)^2 dx \leq c$ 

- A fully nonparametric model:  $y \approx m(X_1, \dots, X_p)$
- The constraint restricts the flexibility of m
- Choice of m: Random forest, boosting or deep learning
- Similar to nonparametric econometrics (splines)
- Appropriate with many covariates (no curse of dimensionality)

 $\rightarrow$  Complex functional form

Pros:

- High-dimensional problems
- Complex functional forms

However,

- Black-box models
- Prediction is not causation

## 3. Using ML methods in Econometrics

- Misspecification detection
- Causal inference

20 C

### A major criticism to econometrics

Léo Breiman (Statistical Science, 2001):

Upon my return, I started reading the Annals of Statistics, the flagship journal of theoretical statistics, and was bemused. Every article started with

Assume that the data are generated by the following model: ...

wavelet theory. Even in applications, data models are universal. For instance, in the *Journal of the American Statistical Association (JASA)*, virtually every article contains a statement of the form:

Assume that the data are generated by the following model: ...

... an uncritical use of data models.

### Misspecification can lead to wrong conclusions

• Let us assume that the true regression function is:

$$y = \beta_0 + \beta_1 x + \beta_3 x^3 + \varepsilon \tag{5}$$

nan

• A parametric test of the following hypotheses:

$$H_0: y = \beta_0 + \beta_1 x + \varepsilon$$
 vs.  $H_1: y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$ 

may not reject the null, since  $\beta_2 = 0$  is true in (5)

• To the opposite, a test statistic based on

$$H_0: y = \beta_0 + \beta_1 x + \varepsilon$$
 vs.  $H_1: y = m(x) + \varepsilon$ 

would likely reject the null

• A nonparametric model is more appropriate under H<sub>1</sub>

### How machine learning tools may help econometrics?

• Parametric model:

$$y = X\beta + \varepsilon$$

• Fully-nonparametric model:

$$y = m(X) + \varepsilon$$

- Is the parametric regression model correctly specified?
  - If no, ML methods should outperform OLS estimation
  - If yes, ML methods should not outperform OLS estimation
- ML can be used to detect misspecification

- Boston housing dataset: 14 variables (2 dummies), 506 observations<sup>63</sup>
- OLS in a linear regression model, p=13

$$\mathsf{medv} = X\beta + \varepsilon$$

• Lasso with squares, cubes and pairwise interactions, p=117

$$\mathsf{medv} = X\beta_1 + X^2\beta_2 + X^3\beta_3 + (X:X)\beta_4 + \varepsilon$$

• Random Forest and Boosting in a nonparametric model, p=13

$$medv = m(X) + \varepsilon$$

• We compute the MSE by 10-folds Cross-Validation

 $^{63}X = [\mathsf{chas},\mathsf{nox},\mathsf{age},\mathsf{tax},\mathsf{indus},\mathsf{rad},\mathsf{dis},\mathsf{lstat},\mathsf{crim},\mathsf{black},\mathsf{rm},\mathsf{zn},\mathsf{ptratio}] \in \mathbb{R} \to \mathbb{R} \to \mathbb{R}$ 

```
1 library (MASS); library (randomForest); library (gbm); library (glmnet)
 2 data(Boston); nobs=nrow(Boston)
 3 set.seed(12345); nfold=10
 4 Kfold=cut(seq(1, nobs), breaks=nfold, labels=FALSE)
 5 mse.test=matrix(0,nfold,4)
 6 # generate X^2 X^3 and pairwise interactions for the Lasso
7 Xcol=colnames(Boston)[-14]
8 Xsqr=paste0("I(",Xcol,"^2)", collapse="+") # squared covariates
 9 Xcub=paste0("I(",Xcol,"^3)", collapse="+") # cubic covariates
10 fmla=paste0("medv~(.)^2+", Xsgr, "+", Xcub)
11 X=model.matrix(as.formula(fmla), data=Boston)[, -1]
12 v=Boston[.14]
   mysample=sample(1:nobs) # random sampling (permutation)
13
14
   for(i in 1:nfold){ # K-fold CV
     cat("K-fold loop: ". i. "\r")
15
16
    test=mysample[which(Kfold==i)]
17
    train=mysample[which(Kfold!=i)]
18
     # OLS, Lasso, Random Forest, Boosting
    fit .lm <- lm (medv ., data=Boston, subset=train)
19
20
    fit.la <- cv.glmnet(X[train ,], y[train], alpha=1)</pre>
21
     fit.rf <- randomForest(medv~., data=Boston, subset=train, mtry=6)
22
     fit.bo <- gbm(medv~., data=Boston[train,], distribution="gaussian",
        interaction.depth=6)
23
     # out-sample MSE
24
     mse, test [i,1]=mean((Boston$medy-predict(fit, lm, Boston))[-train]^2)
25
     mse.test[i,2]=mean((y-predict(fit.la,X,s="lambda.min"))[-train]^2)
26
     mse.test[i,3]=mean((Boston$medv-predict(fit.rf,Boston))[-train]^2)
27
     mse.test[i,4]=mean((Boston$medv-predict(fit.bo,Boston))[-train]^2)
28 }
29
   mse=colMeans(mse.test) # test error
   round (mse, digits=2)
30
   [1] 23.93 14.88 10.16 10.34
31
```

Boston housing dataset:<sup>64</sup>

| $\widehat{\mathcal{R}}^{10-CV}$ | OLS   | $LASSO_{x^2x^3int}$ | R.Forest | Boosting |
|---------------------------------|-------|---------------------|----------|----------|
| MSE                             | 23.93 | 14.88               | 10.16    | 10.34    |

- Random Forest and Boosting show impressive improvement over OLS, in terms of predictive performance
- ML models are known to capture complex functional forms
- It suggests that the parametric model lacks important nonlinear and/or interaction effects
- Lasso provides substantial improvement over OLS, but is still less performant than Random Forest and Boosting. It suggests that some nonlinearities are still not well captured.

<sup>64</sup>14 variables (2 dummies), 78 pairwise interactions, 506 observations: ► ≥ ∽ < Emmanuel Flachaire Misspecification detection

### GamLa: An econometric model for interpretable ML

A partially linear model:

$$y = g_1(X_1) + \ldots + g_p(X_p) + Z\gamma + \varepsilon$$

with Z a matrix of pairwise interactions  $Z = (X_1X_2, \ldots, X_{q-1}X_q)$ . The marginal effect is:

$$rac{\partial y}{\partial X_{j}}=g_{j}^{\prime}\left(X_{j}
ight)+c$$

where c is a constant term which depends on the other covariates.

- Combine non-linearity in X<sub>j</sub> and linear pairwise interactions
- The linearity assumption on interaction effects represents the price to pay to keep the model interpretable.

 $\rightarrow$  GamLa = GAM + variable selection (Lasso, Autometrics)<sup>65</sup>

| <sup>65</sup> Flachaire, Hacheme, | , Hué, | Laurent | (2022) | $\langle \Box \rangle$ | < ⊡ > | $\in \Xi \models$ | $<\Xi >$ | Ē | 500 |
|-----------------------------------|--------|---------|--------|------------------------|-------|-------------------|----------|---|-----|
| _                                 |        |         |        | <br>                   |       |                   |          |   |     |

## GamLa: An econometric model for interpretable ML

A partially linear model:

$$y = g_1(X_1) + \ldots + g_p(X_p) + Z\gamma + \varepsilon$$

• Estimation based on the Double Residuals (DR) method:

- **1** GAM of y on  $X_1, \ldots, X_p$ : compute the residuals  $\hat{\eta}_y$
- 2 GAM of  $Z_j$  on  $X_1, \ldots, X_p$ : compute the residuals  $\hat{\eta}_{z_j}, \forall j$
- **3** LASSO of  $\hat{\eta}_y$  on  $\hat{\eta}_{z_1}, \ldots, \hat{\eta}_{z_l} \to \text{obtain } \hat{\gamma}$

An application of FWL to semiparametric regression models

- Robinson (1988) shows that with DR  $\hat{\gamma}_{ols}$  is  $\sqrt{n}$ -consistent, even if  $\hat{g}_1(X), \ldots, \hat{g}_p(X)$  are consistent at slower rates
- Flachaire, Hacheme, Hué and Laurent (2022) show that using the DR approach is crucial to select correctly the interactions<sup>66</sup>

Boston housing dataset:

| $\widehat{\mathcal{R}}^{10-CV}$ | OLS   | $LASSO_{X^2X^3}$ int | R.Forest | GamLa |
|---------------------------------|-------|----------------------|----------|-------|
| MSE                             | 23.93 | 14.88                | 10.16    | 9.73  |

- GamLa shows impressive improvement over OLS, in terms of predictive performance
- GamLa performs as well as Random Forest and Boosting<sup>67</sup>
- It suggests that parametric models are outperformed by ML models when they lack important nonlinear and/or interaction effects only

<sup>67</sup>Model Confidence Set (MCS) test can be used to test if the MSE are significantly different (Hansen, Lunde and Nason 2011) can be used in classification (Candelon, Dumitrescu and Hurlin 2012) off

- Many results report that ML outperform parametric models in terms of predictive performance
- ML models outperform standard parametric model ... which are not well-specified!
- ML methods can help to detect and correct misspecification in parametric regression
- Parametric models can perform as well as ML models!

イロト イボト イヨト

3

San

# 3. Using ML methods in Econometrics

- Misspecification detection
- Causal inference

イロト イヨト イヨト

= 990

Kleinberg et al. (2015) Prediction policy problems

- Many policy applications where causal inference is not central
- Hips or knees replacement: costly, painful, recovery takes time
- Policy decision: predicting the riskiest patients<sup>68</sup>

Athey (2017) Beyond prediction: Using big data for policy problems

- Pure prediction methods are not helpful for causal problems
- Which patients should be given priority to receive surgery?
- Estimating heterogeneity in the effect of surgery is required

 $<sup>^{68}</sup>$ ML are used to predict the probability that a candidate would die within a year from other causes. Identify high risk patients who shouldn't receive surgery same

### High-dimensional parametric framework

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ● ● ●

Our main concern is the estimation and inference on  $\alpha$  in a high-dimensional framework:

$$y = d\alpha + X\beta + \varepsilon$$

- *d* is a target regressor as treatment, policy or other variable
- X may contain many variables, a few of them are important
- With sparsity, a variable selection method is used in a 1st step
- Since Lasso shrinks coefficients towards zero, coef are biased
- Correct this bias using an additional (unrestricted) estimation

#### $\rightarrow$ Post-selection estimation and inference

San

### The problem of post-selection inference

• Single Selection: OLS of y on d and the selected variables  $X^*$ 

$$y = d\alpha + X^*\beta + \varepsilon$$

- Unbiased  $\hat{\alpha}$  ... if the *true* model is selected only!
- Problem: mistakes from the variable selection can introduce omitted variable bias

one covariate  $X_j$  strongly correlated to d without a strong effect on y may be omitted in the variable selection process

• Ignoring variable selection uncertainty may be misleading

 $\rightarrow$  Naive post-selection estimation may be biased

San

### Post-selection inference: Double selection

Our main concern is estimation and inference on  $\boldsymbol{\alpha}$  in

$$y = d\alpha + X\beta + \varepsilon$$

• Double Selection:<sup>69</sup>

1 Lasso of y on X: select variables important to predict y

2 Lasso of d on X: select variables important to predict D

OLS of y on d and the union of the selected variables

$$y = d\alpha + X^{**}\beta + \varepsilon$$

- Idea: give a 2nd chance to omitted variables in the first Lasso
- $\hat{\alpha}$  is immunized against variable selection mistakes

 $\rightarrow$  valid post-selection inference in high-dimensions

<sup>69</sup>Belloni, Chernozhukov and Hansen (2014)  $\stackrel{\text{bpdf}}{\longrightarrow}$  Uniformly valid confidence set for  $\alpha$  despite imperfect model selection, and full efficiency for estimating  $\alpha \longrightarrow \infty$ 

### Post-selection inference: Partialling out

Our main concern is estimation and inference on  $\boldsymbol{\alpha}$  in

$$y = d\alpha + X\beta + \varepsilon$$

• Partialling out:

- 1 Lasso of y on X: compute the residuals  $\hat{\eta}_y$
- 2 Lasso of d on X: compute the residuals  $\hat{\eta}_d$

OLS of  $\hat{\eta}_{\gamma}$  on  $\hat{\eta}_{d}$  (double residuals approach)

$$\hat{\eta}_{y} = \hat{\eta}_{d}\alpha + \varepsilon$$

Idea: an application of the Frisch-Waugh-Lovell theorem<sup>70</sup>

ightarrow Partialling out and double selection are quite similar<sup>71</sup>

<sup>70</sup>But  $\hat{\alpha}_{ols}$  is different in the two models due to lasso variable selections <sup>71</sup>From the FLW theorem, the double selection estimator of  $\alpha$  is equal to the OLS estimator of the residuals of y on X<sup>\*\*</sup> on the residuals of d on X<sup>\*\*</sup>.  $\Xi \rightarrow \infty \infty$ 

### Threshold selection: Rigorous Lasso

- The choice of the penalization parameter  $\lambda$  is crucial
- Optimal  $\lambda$  for prediction and estimation are different
- CV targets prediction and lacks theoretical foundations
- Theoretical grounded and feasible selection for estimation:<sup>72</sup>

$$\lambda = 2c\sqrt{n}\hat{\sigma}\Phi^{-1}(1-\gamma/(2p))$$

in the case of homoskedasticity

• Another selection is proposed in the heteroskedasticity case

<sup>72</sup>See Belloni, Chernozhukov and Hansen (2014)  $\checkmark$  pdf c = 1.1 for post-Lasso and c = 0.5 for Lasso,  $\gamma = .1$  by default  $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle \langle$ 

### Bias of naive post-selection estimation



Source: Belloni, Chernozhukov, and Hansen (forthcoming).

*Notes:* The left panel shows the sampling distribution of the estimator of  $\alpha$  based on the first naive procedure described in this section: applying LASSO to the equation  $y_i = d_i + x_i^{\prime} \theta_j + \tau_{yi} + \zeta_i$  while forcing the treatment variable to remain in the model by excluding  $\alpha$  from the LASSO penalty. The right panel shows the sampling distribution of the "double selection" estimator (see text for details) as in Belloni, Chernozhukov, and Hansen (forthcoming). The distributions are given for centered and studentized quantities.

Source: Belloni, Chernozhukov, Hansen (2014)

## Application 1: Do poor countries catch up rich countries?

We are interested in the convergence hypothesis  $\alpha < 0$  in

$$y = d\alpha + X\beta + \varepsilon$$

where y is the growth rate of GDP, d is the initial level of GDP and X contains many countries characteristics

- The parameter of interest is  $\alpha$
- We test the null hypothesis  $H_0: \alpha = 0$
- If  $H_0$  is rejected and  $\alpha < 0$ : evidence of catch-up effect
- Covariate selection is crucial, since p = 63 and n = 90
- We use double selection and partialling out with rigorous Lasso
- Implementation is done with the R package hdm<sup>73</sup>

```
1 library (hdm)
2 data ("GrowthData") # the 2nd column is a vector of one #
3 y=as.matrix(GrowthData)[,1,drop=F]
4 d=as.matrix(GrowthData)[,3,drop=F]
5 X=as.matrix (GrowthData) [, -c(1, 2, 3), drop=F]
6 # fit models
7 LS. fit = lm(y^d+X)
8 PO. fit=rlassoEffect (X, y, d, method="partialling out")
9 DS.fit=rlassoEffect(X,y,d,method="double selection")
10 # inference on coef of interest
11 LS=summary(LS.fit)$coefficients[2,]
12 PO=summary (PO. fit) $ coefficients [1,]
13 DS=summary(DS.fit)$coefficients[1,]
14 rbind (ols=LS, double.selection=DS, partialling.out=PO)
                      Estimate Std. Error t value Pr(>|t|)
15
  ols
                    -0.009377989 0.02988773 -0.31377 0.75601
16
  double.selection
                    -0.050005855 0.01579138 -3.16665 0.00154
  partialling.out
                    -0.049811465 0.01393636 -3.57420 0.00035
18
```

## Application 1: Do poor countries catch up rich countries?

Inference on the parameter of interest  $\alpha$ :

|                  | Estimate | Std.Error | t value  | Pr(> t ) |
|------------------|----------|-----------|----------|----------|
| OLS              | -0.00938 | 0.02989   | -0.31377 | 0.75601  |
| Double selection | -0.05001 | 0.01579   | -3.16665 | 0.00154  |
| Partialling out  | -0.04981 | 0.01394   | -3.57420 | 0.00035  |

•  $H_0: \alpha = 0$  not rejected with OLS (large standard error)<sup>74</sup>

•  $H_0: \alpha = 0$  rejected with double selection and partialling out

- more precise estimate (smaller standard error)
- greater magnitude of the coefficient

Poor countries tend to catch up rich countries!

• Note that Single Selection (naive post-selection) put  $\alpha = 0$ :

15 rlasso(y<sup>d</sup>+X, post=TRUE)\$coefficients[2]

<sup>74</sup>It is not surprising given that p = 63 is comparable to  $n = 90 = 10^{-10}$   $m = 90 = 10^{-10}$ 

### Heterogeneous treatment effects: high-dimensions

If d is a treatment, we can consider heterogeneous effects as

$$y = d\alpha(X) + g(X) + \varepsilon$$

where  $\alpha(X)$  and g(X) are approximated by linear combinations of X or transformations of X,  $\alpha(X) = Z_1\beta$  and  $g(X) = Z_2\gamma$ .<sup>75</sup>

- The regression can be rewritten:  $y = dZ_1\beta + Z_2\gamma + \varepsilon$
- Several variables of interest  $\beta$
- Double Selection:
  - 1 Lasso of y on  $Z_2$ : select variables important to predict y
  - 2 Lasso of each interaction  $dZ_1$  on  $Z_2$ : select important variables
  - OLS of y on d and the union of the selected variables

### $\rightarrow$ assess heterogeneity with many determinants

 $^{75}Z_1$  and  $Z_2$  may include powers, b-splines, or interactions of  $X \equiv H = H = -9$ 

## Application 2: The effect of gender on wage

Several parameters of interest:

$$y = d\alpha + dX \beta + Z\gamma + \varepsilon$$

- y is the log of the wage, d is a dummy for female
- dX are the interactions between d and each covariate in X
- Z includes 2-ways interactions of the covariates Z = [X, X:X]
- The target variable is female *d*, in combination with other variables *dX*
- Our main interest is to make inference on  $\alpha$  and  $\beta$ 
  - If  $\beta=$  0: homogeneous wage gender gap given by  $\alpha$
  - If  $\beta = 0$ : heterogeneous wage gender gap explained by X
- Data: US Census in 2012, p = 116 and  $n = 29217^{76}$

76 for a recent application see Bach, Chernozhukov and Spindler (2021) 🕐 🖉 🖉

## Application 2: The effect of gender on wage

- 1 library (hdm)
  2 data (cps2012)
  3 y <- cps2012\$lnw
  4 X <- model.matrix (~-1+female+female: (widowed+divorced+
   separated+nevermarried+hsd08+hsd911+hsg+cg+ad+mw+so+we+
   exp1+exp2+exp3)+(widowed+divorced+separated+nevermarried
   +hsd08+hsd911+hsg+cg+ad+mw+so+we+exp1+exp2+exp3)^2, data
   = cps2012)
  5 X<-X[, which (apply (X,2,var)!=0)] #exclude constant variables
  6 index.gender <- grep ("female", colnames(X))</pre>
- 7 effects . female<-rlassoEffects (x=X, y=y, index=index . gender)

```
8 summary(effects.female)
```

Generic approach to generate all covariates:

```
9 Xcol=colnames(cps2012)[4:18]
10 dcol=colnames(cps2012)[3]
11 Xvar=paste(Xcol, collapse = "+")
12 Xint=paste(" (", paste(Xcol, collapse="+"), ")^2", sep="")
13 fmla=paste(" ~-1+", dcol, "+", dcol, ": (", Xvar, ")+", Xint, sep="")
14 X<-model.matrix(as.formula(fmla), data=cps2012)</pre>
```

イロト イヨト イヨト イヨト

Ξ

San

### Application 2: The effect of gender on wage

| 15 > summary(effects.female) |                       |             |             |          |              |     |  |
|------------------------------|-----------------------|-------------|-------------|----------|--------------|-----|--|
| 16                           | [1] "Estimates and    | significanc | e testing o | of the e | effect of    |     |  |
|                              | target variable       | s "         |             |          |              |     |  |
| 17                           |                       | Estimate.   | Std. Error  | t value  | Pr(> t )     |     |  |
| 18                           | female                | -0.154923   | 0.050162    | -3.088   | 0.002012     | **  |  |
| 19                           | female : widowed      | 0.136095    | 0.090663    | 1.501    | 0.133325     |     |  |
| 20                           | female : divorced     | 0.136939    | 0.022182    | 6.174    | 6.68  e  -10 | *** |  |
| 21                           | female : separated    | 0.023303    | 0.053212    | 0.438    | 0.661441     |     |  |
| 22                           | female : nevermarried | 0.186853    | 0.019942    | 9.370    | < 2e $-16$   | *** |  |
| 23                           | female : hsd08        | 0.027810    | 0.120914    | 0.230    | 0.818092     |     |  |
| 24                           | female : hsd911       | -0.119335   | 0.051880    | -2.300   | 0.021435     | *   |  |
| 25                           | female : hsg          | -0.012890   | 0.019223    | -0.671   | 0.502518     |     |  |
| 26                           | female:cg             | 0.010139    | 0.018327    | 0.553    | 0.580114     |     |  |
| 27                           | female : ad           | -0.030464   | 0.021806    | -1.397   | 0.162405     |     |  |
| 28                           | female:mw             | -0.001063   | 0.019192    | -0.055   | 0.955811     |     |  |
| 29                           | female : so           | -0.008183   | 0.019357    | -0.423   | 0.672468     |     |  |
| 30                           | female : we           | -0.004226   | 0.021168    | -0.200   | 0.841760     |     |  |
| 31                           | female:exp1           | 0.004935    | 0.007804    | 0.632    | 0.527139     |     |  |
| 32                           | female : exp2         | -0.159519   | 0.045300    | -3.521   | 0.000429     | *** |  |
| 33                           | female:exp3           | 0.038451    | 0.007861    | 4.891    | 1.00  e  -06 | *** |  |

 $\rightarrow$  smaller gender gap for nevermarried or divorced female

Emmanuel Flachaire

<ロト < 回 > < 三 > < 三 > < 三 > のへで

## Non-parametric framework

<□> <@> < E> < E> < E><</p>
### Homogeneous treatment effects: Partially linear model

Partially Linear Regression model PLR model

$$y = d\alpha + g(X) + \varepsilon$$
  
 $d = h(X) + \eta$ 

•  $\alpha$  is the target parameter, g and h are nuisance functions<sup>77</sup>

- Naive ML approach:
  - 1 ML of  $y d\hat{\alpha}$  on  $X \rightarrow \text{obtain } \hat{g}(X)$
  - 2 OLS of  $y \hat{g}(X)$  on  $d \rightarrow$  obtain  $\hat{\alpha}$

Initialize with  $\hat{\alpha} = 0$  and iterate until convergence

• However,  $\hat{lpha}$  is biased, because  $\hat{g}$  is not a good estimate of  $g^{78}$ 

<sup>77</sup> h maybe redondant, it is the propensity score in TE litterature <sup>78</sup>Since  $E(y|X) \neq g(X)$ , a ML fit of y on X is not a good estimate of  $g \equiv \Im \Im G$ 

### Homogeneous treatment effects: Partially linear model

Partially Linear Regression model

PLR model

$$y = d\alpha + g(X) + \varepsilon$$
  
 $d = h(X) + \eta$ 

- $\alpha$  is the target parameter, g and h are nuisance functions
- Double Residuals (DR):
  - **1** ML of y on X: compute residuals  $\hat{\eta}_y = y \hat{g}(X)$
  - 2 ML of d on X: compute residuals  $\hat{\eta}_d = d \hat{h}(X)$
  - **3** OLS of  $\hat{\eta}_y$  on  $\hat{\eta}_d \to \hat{\alpha}$

An application of FWL, or partialling out, with ML methods

- Robinson (1988) shows that with DR  $\hat{\alpha}$  is  $\sqrt{n}$ -consistent, even if  $\hat{g}(X)$  and  $\hat{h}(X)$  are consistent at slower rates<sup>79</sup>
- The role of DR is to immunize  $\hat{\alpha}$  against ML estimates:  $\hat{\alpha}$  is based on residuals  $\hat{\eta}_{v}$  and  $\hat{\eta}_{d}$ , which are  $\perp$  to  $\hat{g}(X)$  and  $\hat{h}(X)$

<sup>79</sup>Robinson considers kernel regression. Chernozukhov et al. (2018)  $\checkmark$  pdf establish that any ML method can be used, so long as it is  $n^{1/4}_{\Box}$ -consistent  $\equiv \neg \Im \Im$ 

# The role of double residuals (orthogonalization)

Distribution of  $\hat{\alpha} - \alpha_0$ 



### Homogeneous treatment effects: Partially linear model

Partially Linear Regression model

PLR model

San

$$y = d\alpha + g(X) + \varepsilon$$
$$d = h(X) + \eta$$

- $\alpha$  is the parameter of interest, g and h are nuisance functions
- Cross-fitting: split the sample into an auxiliary and a main
  - **1** ML estimation of g(X), h(X) on auxiliary sample
  - 2 Double Residuals estimation of  $\alpha$  by OLS on main sample

Flip the roles of both samples and average the results  $\frac{\hat{\alpha}_1 + \hat{\alpha}_2}{2}$ 

- Estimate nuisance fcts and target parameter on  $\neq$  samples
- Chernozukhov et al. (2018) show that cross-fitting is crucial to avoid overfitting

 $\rightarrow$  PLR: Double ML = Double Residuals + Cross-fitting

### Heterogeneous treatment effects: Fully nonparametric

Interactive Regression Model

IRM model

 $y = m(d, X) + \varepsilon$  $d = h(X) + \eta$ 

- d not additively separable  $\rightarrow$  very general heterogeneity in TE
- Parameter of interest: ATE =  $\mathbb{E}[y_1 y_0]^{80}$
- The estimator needs to check a Neyman-orthogonal condition with respect to the nuisance functions ( $\equiv$  DR in the PRL)
- So the estimator and inference are robust to small mistakes in the nuisance fonctions
- $\bullet\,$  The AIPW estimator turns out to check this  $\perp$  condition:

$$\mathsf{ATE} = \mathbb{E}\left[m(1, X) - m(0, X) + \frac{D(Y - m(1, X))}{h(X)} - \frac{(1 - D)(Y - m(0, X))}{(1 - h(X))}\right]$$

• This estimator is doubly-robust: to small mistakes in  $\hat{m}$  and  $\hat{h}$ 

<sup>80</sup>The observed outcome is with or without treatment:  $y = y_1 d + y_0 (1 - d)$ 

Heterogeneous treatment effects: Fully nonparametric

Interactive Regression Model

IRM model

$$y = m(d, X) + \varepsilon$$
$$d = h(X) + \eta$$

- d not additively separable  $\rightarrow$  very general heterogeneity in TE
- Double Machine Learning:<sup>81</sup>
  - $\textcircled{1} \textbf{ Neyman orthogonal condition } \rightarrow \textbf{AIPW estimator}$
  - 2 Cross-fitting  $\rightarrow$  ATE and *m*, *h* estimated from  $\neq$  samples
- ATE estimation and inference with good properties
- However, no detection and analysis of heterogeneity

 $\rightarrow$  IRM: Double ML = AIPW + Cross-fitting

<sup>81</sup>Chernozhukov et al. (2018) و pdf and Chernozhukov et al. (2017) و pdf and Chernozhukov et al. (2017) و pdf and Chernozhukov et al. (2017)

# Application 3: Insurance bonus on employment duration

• RCT to investigate the incentive effect of unemployment insurance (UI) bonus on unemployment duration:<sup>82</sup>

Individuals in the treatment groups were offered a cash bonus if they found a job within some pre-specified period of time (qualification period), provided that the job was retained for a specified duration

- y is the log of duration of unemployment for the UI claimants
- ATE estimation and inference in a PLR and IRM models
- Pennsylvania Reemployment Bonus data set
- Implementation is done with the R package DoubleML<sup>83</sup>

<sup>82</sup>Individuals in the treatment groups were offered a cash bonus if they found a job within some pre-specified period of time (qualification period), provided that the job was retained for a specified duration

<sup>83</sup>See 🕑 vignette and Bach, Chernozhukov, Kurz, Spindler (2021) 🕐 pdf

# Application 3: ATE in a PLR model

```
1 library (DoubleML)
2 library (mlr3)
3 # Initialization of the Data-Backend
4 data=fetch_bonus(return_type="data.table")
5 y="inuidur1"
6 d="tg"
7 x=c("female","black","othrace","dep1","dep2","q2","q3","q4",
      "q5","q6","agelt35","agegt54","durable","lusd","husd")
8 dml_data=DoubleMLData$new(data,y_col=y,d_cols=d,x_cols=x)
9 \# Initialization of the PLR Model
10 set.seed(31415) #required to replicate sample split
11 learner_g=lrn ("regr.ranger", num.trees=500, min.node.size=2,
      max.depth=5) #Random Forest from the ranger package
12 learner_m=lrn ("regr.ranger", num.trees=500, min.node.size=2,
      \max.depth=5)
13 dml_plr=DoubleMLPLR$new(dml_data,
14
                           ml_m = learner_m
                           ml_g = learner_g,
15
                           score = "partialling out",
16
                           n_folds = 5, n_rep = 1)
17
18 # Perform the ATE estimation and print the results
19 dml_plr$fit()
20 dml_plr$summary()
                                             イロト イボト イヨト・
```

# Application 3: ATE in a PLR model

- Hence, we can reject  $H_0: \alpha = 0$  at the 5% significance level
- It is consistent with the findings of previous studies that have analysed the Pennsylvania Bonus Experiment
- The ATE on unemployment duration is negative and significant

200

# Application 3: ATE in an IRM model

```
26 ## Initialization of the IRM Model
27 # Classifier for propensity score
28 learner_classif_m = lrn("classif.ranger", num.trees = 500,
      \min.node.size = 2, \max.depth = 5)
  dml_irm=DoubleMLIRM$new(dml_data,
29
                           ml_m = learner_classif_m,
30
                           ml_g = learner_g,
31
                           score = "ATE", #or "ATTE"
32
                           n_{folds} = 10, n_{rep} = 1
33
_{34} # Perform the estimation and print the results
35 dml_irm $ fit ()
36 dml_irm$summary()
37 Estimates and significance testing of the effect of target
      variables
  Estimate. Std. Error t value Pr(>|t|)
38
  tg -0.07345 0.03549 -2.069 0.0385 *
39
40
  Signif.codes: 0***0.001**0.01*0.05.0.1 1
41
```

The estimated coefficient is very similar to the estimate of the ATE in a PLR model and the conclusions remain unchanged.

DQR

### Causal Random Forest:<sup>84</sup>

- Random Forest is modified to estimate the CATE directly
- Grow a tree and evaluate its performance based on TE heterogeneity rather than predictive accuracy
- The idea is to find leaves where the treatment effect is constant but different from other leaves
- Split criterion: maximize heterogeneity in TE between leaves
- Honest tree: build tree and estimate CATE from  $\neq$  samples

 $\rightarrow$  valid estimation and confidence intervals for  ${\rm CATE^{85}}$ 

<sup>84</sup>Wager and Athey (2018)  $\checkmark$  pdf, Athey, Tibshirani and Wager (2019)  $\checkmark$  pdf <sup>85</sup>RF predictions are asymptotically unbiased and Gaussian, but cv rates below  $\sqrt{n}$  and they do not account for the uncertainty due to sample splitting  $\neg q q$  Detection and analysis of heterogeneity: Generic ML

Generic Machine Learning:<sup>86</sup>

- Do not attempt to get valid estimation and inference on the CATE itself, but on features of the CATE
- Obtain ML proxy predictor of CATE (auxiliary set) and target features of CATE based on this proxy predictor (main set)

#### Main interests:

- Test if there is evidence of heterogeneity (BLP)
- ATE for the 20% most (least) affected individuals? (GATES)
- Which covariates are associated to TE heterogeneity? (CLAN)

 $\rightarrow$  valid estimation and inference on  $\mathit{features}$  of CATE

<sup>86</sup>Chernozhukov, Demirer, Duflo and Fernàndez-Val (ဥ020) 🖓 🕐 🖻 🖌 🚊 - ઝવત

# Generic ML: Proxies of CATE

The main idea is to compute imperfect predictions of CATE and to use them as proxies to make inferences on features of CATE:

- Split the sample into a main set and auxiliary set (50/50 split)
- Fit  $y \approx m(1,X)$  with treated group from the auxiliary sample
- Fit  $y \approx m(0, X)$  with control group from the auxiliary sample
- Compute  $\widehat{S}(X_i) = \hat{m}(1, X_i) \hat{m}(0, X_i)$  from the main sample
- $\widehat{S}(X)$  is used to learn about treatment effect heterogeneity To control the uncertainty due to data splitting, this process is done many times  $\rightarrow$  cross-fitting<sup>87</sup>

The  $\widehat{S}(X_i)$  are imperfect predictions of CATE<sub>i</sub>  $\rightarrow$  proxies <sup>88</sup>

<sup>87</sup>We randomly split the sample *M* times. The parameter estimates, confidence bounds, and *p*-values reported are the medians across *M* splits. <sup>88</sup>CATE<sub>i</sub> =  $\mathbb{E}[y_1 - y_0|X_i] = m(1, X_i) - m(0, X_i)$   $(abc) \in \mathbb{R}^{36} \times \mathbb{R}^{36} \times \mathbb{R}^{36} \times \mathbb{R}^{36} \times \mathbb{R}^{36} \times \mathbb{R}^{36} \times \mathbb{R}^{36}$ Emmanuel Flachaire Causal Machine learning

# Causal Machine Learning: A brief roadmap



# Underlying assumptions

- Standard hypotheses: SUTVA, CIA and CSC
- Common support condition (CSC):  $0 < P(d_i = 1 | X_i = x) < 1$ 
  - ML estimation often provides better predictions
  - Adding covariates makes matching more difficult



Strittmatter and Wunsch (2021) The gender pay gap revisited with big data: Do methodological choices matter?

- Trimming in experiments vs. decomposition methods
  - $\rightarrow$  Beware of CSC when moving away from RCT framework

### Conclusion

The impact of ML for public policy evaluation:

- Dealing with many covariates  $(p \gg n)$
- Relying less on a priori specification
- Take care of heterogeneity
- However, do not forget underlying assumptions! (CSC)

Technical literature, where implementation becomes easier

- Double Lasso: R package hdm
- Double Machine Learning: R package DoubleML
- Generic Machine Learning: R package GenericML
- Generalized Random Forest: R package grf

An effervescent empirical and theoretical literature

イロト イボト イヨト

DQA

# Selected references in Causal ML

- Athey (2017) Beyond prediction: Using big data for policy problems, Science
- Athey (2018) The impact of machine learning on economics
- Athey, Tibshirani and Wager (2019) Generalized random forest, Ann. Statis.
- Bach, Chernozhukov and Spindler (2021) Closing the U.S. gender wage gap requires understanding its heterogeneity, arXiv:1812.04345
- Belloni, Chernozhukov and Hansen (2014) Inference on treatment effects after selection amongst high-dimensional controls, REStud
- Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey and Robins (2018) Double/debiased ML for treatment and structural parameters. Econometrics J.
- Chernozhukov, Demirer, Duflo and Fernàndez-Val (2020) Generic ML inference on heterogenous treatment effects in randomized experiments, arXiv:1712.04802
- Gaillac and L'Hour (2020) Machine Learning for Econometrics, Lecture notes
- Kleinberg, Ludwig, Mullainathan and Obermeyer (2015) Prediction Policy Problems, AER P&P
- L'Hour (2020), L'économétrie en grande dimension. INSEE M2020-01
- Strittmatter (2020) What is the value added by using causal machine learning methods in a welfare experiment evaluation.
- Strittmatter and Wunsch (2021) The gender pay gap revisited with big data: Do methodological choices matter? arXiv:2102.09207
- Wager and Athey (2018) Estimation and inference of heterogeneous treatment effects using random forests. JASA

### References

- Berk (2016) *Statistical Learning from a Regression Perspective*. Springer Texts in Statistics, ch.3-7
- Charpentier (2018), Classification from scratch website
- Charpentier, Flachaire and Ly (2018), Econometrics and Machine Learning, *Economics and Statistics*, 505 → english → french
- Efron and Hastie (2016) *Computer Age Statistical Inference*, Cambridge University Press, ch.17-19 • pdf
- Hastie, Tibshirani and Friedman (2009) The Elements of Statistical Learning. Springer, ch.7, 9-12, 15-16 • website • pdf
- Hastie, Tibshirani and Wainwright (2015) Statistical Learning with Sparsity: The Lasso and Generalizations. CRC Press, reduced to pdf
- James, Witten, Hastie and Tibshirani (2021) An Introduction to Statistical Learning. Springer, ch.2,5,6,8,9 • website • pdf
- Watt, Borhani and Katsaggelos (2016) *Machine Learning Refined*. Cambridge University Press, ch.1-6