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Figure 1: Source: Dilbert by Scott Adams, 2013-02-02.
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Data everywhere
With the era of big data, the volume of data has considerably grown over the past
years.

Source: Data Age 2025: The Evolution of Data to Life-Critica, Reinsel, D., Gantz J., et Rydning, J. (2017).

Figure 2: Annual size of the data volume.
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Data everywhere

Data also take more varied types (numbers, texts, images, videos, . . . ) and may come in
structured or unstructured form.

The large amount of data requires automated methods of data analysis.

This is what machine learning provides.
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Data everywhere: text

Source: Natural Language Processing for Healthcare Customers, Julien Simon (2018).

Figure 3: Amazon Comprehend Medical.
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https://aws.amazon.com/fr/blogs/aws/amazon-comprehend-medical-natural-language-processing-for-healthcare-customers/


Data everywhere: text

Source: Nyman et al. (2018).

Figure 4: Excitement (green) and Anxiety (red) in RTRS (Reuters). The y-axis displays the individual aggregate
word frequencies scaled by volume.

See also: Text mining for central banks, Bholat, D et al. (2015)Ewen Gallic Machine Learning and Statistical Learning 6/122

http://eprints.lse.ac.uk/62548/1/Schonhardt-Bailey_text%20mining%20handbook.pdf


Data everywhere: images

Let us consider these pictures.

Ewen Gallic Machine Learning and Statistical Learning 7/122



Data everywhere: images

Figure 5: Face detection face-api.js (https://github.com/justadudewhohacks/face-api.js/).
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Data everywhere: images

Figure 6: Expression recognition face-api.js (https://github.com/justadudewhohacks/face-api.js/).
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1. Artificial Intelligence
1.1. A bit of history

A bit of history

Figure 7: Talos (Source: Mathieu
Bablet (2013). Adrastée.
Ankama Éditions).

The dream of creating robots or artifical beings that think
can be found as early as antiquity, in Greek myths, e.g.:
• Pygmalion (sculptor who fells in love with its statue
which changed to a woman thanks to Aphrodite, the
goddess associated with love)
• Talos (automaton made of bronze forged by Hephaestus
the god of blacksmiths, in charge of protecting Crete)
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1. Artificial Intelligence
1.1. A bit of history

A bit of history

Around 350 BC, the Greek philosopher Aristotle
designed some formal logic (from λόγoς: "word",
"reason") aimed at determining whether an
argument is valid or not:
• the syllogism (from συλλoγισµός,
"conclusion", "inference"): two premises
leading to a conclusion
I All mens are mortal
I Socrates is a man
I therefore Socrates is mortal

Figure 8: Bust of Aristotle.
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A bit of history

Figure 9: George Boole.

In the middle of the 19th century, the structures
of mathematics were actively applied to logic. In
particular, the British mathematician George Boole
introduced a branch of algebra in which the values of
the variables are the truth values (values indicating
the relation of a proposition to truth) which was
later called Boolean algebra.

Ewen Gallic Machine Learning and Statistical Learning 14/122



1. Artificial Intelligence
1.1. A bit of history

A bit of history

In 1642, the mathematician Blaise Pascal invented
the first digital calculating machine. Figure 10: Four of Pascal’s calculators

and one machine built by Lépine in 1725,
Musée des Arts et Métiers.

Figure 11: Watercolour portrait of Ada
King, Countess of Lovelace, circa 1840,
possibly by Alfred Edward Chalon.

Between 1842 and 1843, Ada Lovelace translated an
article from the Italian mathematician Luigi Mene-
brea on the Analytical Engine (a general-purpose
computer). She added notes to the articles and
wondered whether such machines might become in-
telligent (the first general-purpose computers were
built in the late 1940s).
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1. Artificial Intelligence
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A bit of history

Figure 12: Alan Turing.

In 1950, Turing (1950) suggested that machines could do
as humans: use available information and reason to solve
problems and make decisions:
• I propose to consider the question, "Can machines
think?"

A few years later, in 1956, John McCarthy, Marvin Minsky,
Claude Shannon, and Nathaniel Rochester hosted a summer
workshop at Dartmouth College (the Dartmouth Summer Re-
search Project on Artificial Intelligence), a seminal event on
machine learning. Figure 13: Some participants of

the DSRPAI.
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1. Artificial Intelligence
1.1. A bit of history

A bit of history

Since then, the field of artificial intelligence has grown.

Some problems that are intellectually difficult for humans were solved by computers:
those that can be described as a list of mathematical rules.

But other tasks that may be really easy for humans to do but hard to formally describe
(such as interpreting a handwritten text, or recognizing a cat on a picture, i.e. problems
we solve intuitively) have proven to be more difficult to solve with a machine.
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1. Artificial Intelligence
1.1. A bit of history

A brief overview

The objective of the rest of the section is to provide a brief overview of what artificial
intelligence is.

We will not go into details at this point.

We are going to explain different approaches to artificial intelligence, some of which will
be studied in a little more detail in the following chapters:

• Knowledge-based approach
• Machine learning (in this course)
• Representation learning
• Deep learning (with Pierre Michel)
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1.2 Knowledge-based approach
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1. Artificial Intelligence
1.2. Knowledge-based approach

Knowledge-based approach

Figure 14: Akinator, a knowledge
based system.

Some attempts were made in artificial intelligence projects to
capture the knowledge of humans to help in the process of
decision making.
In these projects, the computer can reason about statements
about the world provided using a formal language.
This branch of artificial intelligence is known as knowledge
based approach.
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1.3 Machine learning
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1. Artificial Intelligence
1.3. Machine learning

Machine learning

Knowledge based systems rely on hard-code knowledge.

Some other computer systems rather acquire their own knowledge, by extracting patterns
from raw data.

They rely on past observations to learn from experience.

This capacity is known as machine learning.

Examples:

• automatic speach recognition
• fraud detection
• diagnosis of diseases
• . . .
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1. Artificial Intelligence
1.3. Machine learning

Definition

• According to Murphy (2012):
I machine learning is defined as a set of methods that can automatically detect

patterns in data, and then use the uncovered patterns to predict future data, or to
perform other kinds of decision making under uncertainty.

• We can also read in Athey (2018):
I machine learning is a field that develops algorithms designed to be applied to

datasets, with the main areas of focus being prediction (regression), classification,
and clustering or grouping tasks.
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1. Artificial Intelligence
1.3. Machine learning

Machine learning

Usually, machine learning is divided in two categories:

• the predictive or supervised learning approach ;
• the descriptive or unsupervised learning approach.

In this introduction, we will briefly give an overview of these two categories.
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1.3.1 Supervised learning
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1.3.1. Supervised learning

Supervised learning
The goal of the supervised learning approach is to learn a mapping from inputs x to
outputs y, given a labeled set of input-output pairs D = {(xi, yi)}ni=1, where:

• D is the training set

• n is the number of training examples

• xi, i.e., each training example is a vector a numbers called features, attributes,
covariates or explanatory variables:
I they are usually stored on a n× p design matrix
I but their structure may be more complex, such as an image, a text, a sequence, a

graph, . . .

• Yi is the response variable:
I it can be a categorical or nominal variable from a finite set
I or a real-valued scalar.
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1. Artificial Intelligence
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Supervised learning: classification and regression
• As we know the real value of yi, it is possible to compare the prediction with the observable

and therefore compute error metrics.
• When the response variable yi is categorical, the problem is known as classification (or

pattern recognition).
I detecting if an e-mail is ham or spam
I recognizing parts of speech (verbs, subject, pronouns, etc.)
I face detection on an image
I market segmentation
I . . .

• When the response variable yi is a real-valued scalar, the problem is known as regression.
I predict the wage of an individual
I predict the value of a financial asset
I predict the temperature at any location in a building
I . . .
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Supervised learning

With supervised learning problems, we assume that there exists a relationship between
the input variables x and the output variable y:

y = f(x) + ε,

where f is a fixed but unkown function of the predictors, and ε is a random error
term.
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1. Artificial Intelligence
1.3. Machine learning
1.3.1. Supervised learning

Supervised learning: estimating f

We are interested in estimating the function f , for two main reasons:

1. to predict the value of y for some inputs that may not be available
2. to understand how the value of y is affected by variations of the predictors, i.e., for

inference purposes.
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1. Artificial Intelligence
1.3. Machine learning
1.3.1. Supervised learning

Supervised learning: estimating f for prediction

If we are interested in estimating f for prediction purposes:

• we want to get ŷ = f̂(x) where f̂ is the estimation of f

• we may not be interested that much in the exact form of f̂ and may view it as a
black box. . . as long as it gets accurate predictions

• however, in EU, with the Article 22 of the General Data Protection Regulation, this
black box may represent an issue, as data subjects might have a right to
explainability.
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1. Artificial Intelligence
1.3. Machine learning
1.3.1. Supervised learning

Supervised learning: estimating f for inference

When we are interested in estimating the mapping from x to y for inference purposes,
we want to know how variations in the inputs x affect the output y.

In that case, we may want to know what are the important predictors among x that
can explain the variations of the response.

Besides, we may want to know more about the relationship between predictors and the
response:

• what is the magnitude?
• what is the sign of the relationship?
• is it linear? non-linear?
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1. Artificial Intelligence
1.3. Machine learning
1.3.1. Supervised learning

Classification
Let us consider some inputs x that we want to map to an output y. The output y takes its
values from a finite set, i.e., y ∈ {1, . . . , C}, with C the number of classes.

• If the value of C is 2:
I the problem is called a binary classification
I for example, y ∈ {0, 1} with 0 corresponding to a negative growth rate for an asset

and 1 to a positive one
• If the value of C is greater than 2:

I the problem is called a multiclass classification
I for example, y ∈ {1, 2, 3, 4} with 1 corresponding < 18 years old, 2 to 18− 25 yo, 3

to 26− 55 yo and 4 to > 55 yo.
• If the class labels are not mutually exclusive:

I the problem is called multi-label classification
I for example, 18− 25 years old and “woman”Ewen Gallic Machine Learning and Statistical Learning 32/122



1. Artificial Intelligence
1.3. Machine learning
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Classification

As what we want to accomplish is a mapping from inputs to outputs, the problem
corresponds to a function approximation:

• We first assume that yi = f(xi), i = 1, . . . , n for some unknown function f
• We want to learn how to estimate f , i.e, obtain f̂ , given a labeled training set x
• Then, we would like to make predictions ŷ0 = f̂(x0), where x0 are new inputs.
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1. Artificial Intelligence
1.3. Machine learning
1.3.1. Supervised learning

Classification: example

Figure 15: Left: Some labeled training examples of colored shapes, along with 3 unlabeled test cases. Right:
Representing the training data as an n× p design matrix. Row i represents the feature vector xi. The last
column is the label, yi ∈ {0, 1} (Source: Murphy 2012).

We want to classify the new inputs (the blue crescent, the yellow circle and the blue
arrow). These inputs were not observed before.
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1. Artificial Intelligence
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Classification: example

• The blue crescent: all blue items are classified as “yes”, which corresponds to the
label 1.
I It thus may be a good guess to label the blue crescent as 1

• The yellow circle: some circles are labeled 1 and other 2, some yellow objects are
labeled 1 and other 2.
I It is harder to decide the label to assign to the yellow circle

• The blue arrow: while the other arrow was labeled 0, all blue objects were labeled 1.
I It is also unclear here.
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1. Artificial Intelligence
1.3. Machine learning
1.3.1. Supervised learning

Classification: probabilistic prediction
With the previous example, we can understand that it may be a good idea to return a probability
associated with the label.

Let p (y | x,D) be the probability distribution of y given the input vector x and traning set D.

If the number of classes C is equal to two, we have:

p (y = 0 | x,D) + p (y = 1 | x,D) = 1

The “best guess” as to the true label can be set accordingly to the probability returned by the
model, using:

ŷ = f̂(x) = Carg max
c=1

p (y = c | x,D)

• This is the mode of the distribution (the most probable value).
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1. Artificial Intelligence
1.3. Machine learning
1.3.1. Supervised learning

Classification: spam or ham

One the famous examples includes the classification of e-mails as ham or spam.

Some real world examples are presented on Kaggle (with Python or with R).

The basic idea consists in classifying an e-mail into two classes:

• ham: y = 0, the e-mail is not unsolicited or undesired
• spam: y = 1, the e-mail is unsolicited or undesired

We have a training set for which we know the true class of the message.
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1. Artificial Intelligence
1.3. Machine learning
1.3.1. Supervised learning

Classification: spam or ham

One approach consists in creating a Document Term Matrix (DTM), which describes
the frequency of terms that occur in a collection of documents. Each document is an
e-mail here.

The rows of the DTM correspond to a document, and the columns correspond to terms
(words).

The element xij of that DTM corresponds to the occurrence of word j in email i.

The idea behind it is that some words, such as “buy”, “cheap”, “inherited”, “viagra”,
“free”, . . . appear more frequently in spam than in ham.
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1. Artificial Intelligence
1.3. Machine learning
1.3.1. Supervised learning

Classification: handwriting recognition

Another example is that of handwriting recognition.

The famous MNIST (Modified National Institute of Standards) database contains a
training set of 60,000 examples of handwritten digits (0 to 9) and a test set of 10,000
examples.

In this database, the digits have been size-normalized and centered to fit into a 28× 28
pixel bounding box.

Each pixel of each 28× 28 image have a grayscale value in the range 0 : 255.
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Classification: handwriting recognition

Figure 16: Sample images from the MNIST test dataset.

For each image, the correct
class is already known.
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1. Artificial Intelligence
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1.3.1. Supervised learning

Classification: face detection

Another classification problem is that of face detection: given a picture, we want to be
able to detect if we can detect a face on it, and if so, where it is.

This is a problem of object detection.

To tackle this problem, one can proceed as follows:

1. transform the picture from RBG to Grayscale (it is easier to detect faces in the
grayscale)

2. divide the image into many small overlapping patches at different locations, scales
and orientation

3. classify each patch based on whether it contains face-like texture or not.
4. return the locations where the probability of face is high enough.
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Classification: face detection

Both Figures are from Sung and Poggio (1998).

Figure 17: The 12 prototype patterns for approximating
the distribution of face patterns. The 6 patterns on the
left are "face" prototypes. The 6 on the right are
"non-face" prototypes. Figure 18: Face detection results.
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1.3.1. Supervised learning

Regression

In regression problems, the response variable is continuous.

As in the classification case:

• we assume that yi = f(xi), i = 1, . . . , n for some unknowm function f
• we want to estimate f given a labeled training set x
• then we want to make predictions ŷ0 = f̂(x0), where x0 are new inputs.
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1. Artificial Intelligence
1.3. Machine learning
1.3.1. Supervised learning

Regression: example
For example, if our input x is the speed of cars and the response variable y is the stopping
distance, we may be interested in estimating f such as yi = f(xi), for all i = 1, . . . , n training
examples.

Table 1: Sample of the data

speed dist

4 2
4 10
7 4
7 22
8 16

9 10
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Regression: example
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1.3.2 Unsupervised learning
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Unsupervised learning

The goal of the unsupervised learning approach is to discover patterns in the data,
to discover interesting things about the measurements on the inputs (such as finding
subgroups)

It is often more challenging than supervised learning:

• it is more prone to subjectivity
• there is no labeled data, so that we do not know the kind of pattern to look for
• there is no simple goal for the analysis such as prediction of a response

In addition, as there is no response variable, it is not possible to check the results as we
don’t know the “true answer”:

• there is no obvious error metric to use
Ewen Gallic Machine Learning and Statistical Learning 47/122



1. Artificial Intelligence
1.3. Machine learning
1.3.2. Unsupervised learning

Unsupervised learning

Formally speaking, with unsupervised learning:

• we want to build models of the form p(xi | θ): it therefore corresponds to an
unconditional density estimation
• xi is a vector of variables which thus requires multivariate probability models ;

While with supervised learning:

• we want to build models of the form p(yi | xi, θ): it corrresponds to conditional
density estimation
• yi is usually a single variable we want to predict and which requires a univariate
probability model.
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Clustering
A first example of unsupervised machine learning problem is that of clustering data into
groups.

Let us consider a famous dataset, the Iris flower (Anderson, 1935), which provides
information on the sepal length and width, as well as petal length and width for 50
flowers from each of 3 species of iris (setosa, versicolor and virginica).

Figure 19: Iris flowers. (Source: Machine Learning in R for beginers.)Ewen Gallic Machine Learning and Statistical Learning 49/122

https://www.datacamp.com/community/tutorials/machine-learning-in-r


1. Artificial Intelligence
1.3. Machine learning
1.3.2. Unsupervised learning

Clustering
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1.3. Machine learning
1.3.2. Unsupervised learning

Clustering

Let us assume we do not know a priori the different species of iris.

We see from the previous graph (the one on the left), that there may possibly be different
subgroups in the data, different clusters.

We do not know how many of them. Let us say that there are K clusters.

Our goal is twofold:

1. we aim at estimating the distribution over the number of clusters, i.e., p (K | D)
I as we do not know K, we can pick any value ; picking the “right” value is called

model selection

2. we want to estimate which cluster each point belongs to.
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1. Artificial Intelligence
1.3. Machine learning
1.3.2. Unsupervised learning

Discovering latent factors

With the era of big data, not only the number of observations n has considerably grown,
but also the number of variables p has exploded.

It is often very useful to reduce the dimensionality of the data:

• to do so, the data are projected to a lower dimensional subspace

Why doing so?

• most of the variability of the data may be explained by latent factors (factors that
are not directly observed).

The statistical procedures of dimension reduction will be coverd in Sébastien Laurent’s
course.
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1. Artificial Intelligence
1.3. Machine learning
1.3.2. Unsupervised learning

Discovering graph structure
Sometimes, we face graph data. A graph is simply a collection of nodes (or vertices)
and edges (or arcs) between them:

• for example, the nodes can be people on a network
• and the edges between two nodes may represent the fact that these nodes are
connected

Both nodes and edges may have properties:

• the node of a person may provide information on the age, gender, etc.
• the edge between two nodes may state the date at which the these two nodes got
connected.

Using unsupervised learning machine techniques on graphs may be useful to understand
the structure of the graph and discover some structures that may be not be obvious to a
human being (to detect community in a network or fraud, for example).Ewen Gallic Machine Learning and Statistical Learning 53/122
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1.4 Representation learning
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1. Artificial Intelligence
1.4. Representation learning

Representation learning

The performance of machine learning algorithms is tightly linked to the representation
of the data they are given.

They often require inputs that are mathematically and computationally convenient to
process.

For example, if an insurance company tries to predict the probability of death within the
year of its clients, it provides its system some relevent information (e.g., the age), some
variables (also called features).

The algorithm learns how each of the features correlates with some outcomes, but it
cannot influence the way that the features are defined.
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1. Artificial Intelligence
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Representation learning

Let us suppose that we wish to be able to detect bikes on pictures.

• We might use the presence or absence of wheels on the picture to do so.

But it may be a daunting task: the shadow of other objects falling on the wheel could make
recognition difficult, as well as low luminosity or the presence of chromatic aberration. . .

To overcome this issue: using machine learning to:

1. discover the mapping from representation to output
2. discover the representation itself

This approach is known as representation leaning.
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1. Artificial Intelligence
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Representation learning

The autoencoder is an example of representation leaning algorithm.

It works in two steps:

• it firts converts the input data into a different representation, by means of an
encoder function (it learns to compress input data)
• then it tries to generate from the compresses data a representation as close as
possible to its original input, by means of a decoder function (it learns to
uncompress).
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1.5 Deep Learning
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1. Artificial Intelligence
1.5. Deep Learning

Deep Learning
To explain the observed data, whether designing variables ourselves or using algorithms
for learning variables, the aim is usually to separate factors of variation.

These factors may or may not be observed directly. Plus, a huge number of factors may
influence the data we want to explain.

While some of the factors may prove to be useful to explain the observed data, other
should be discarded as they only add noise.

When it becomes almost as difficult to get a representation of the data (e.g., detecting
the presence of a wheel) as to solve the original problem (e.g., detecting bikes in a
picture), representation learning does not seem to be very handy. . .

This problem is overcome by deep learning, which introduces representations that are
expressed in terms of other, simpler representations.
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1. Artificial Intelligence
1.5. Deep Learning

Deep Learning

The multilayer perceptron is an example of a deep learning model.

It consists in a mathematical function that maps input values to output values.

This function is a composition of many simpler ones. Each of them provides a new
representation of the input.
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1. Artificial Intelligence
1.5. Deep Learning

To sum-up

Figure 20: A Venn diagram showing how deep learning is a kind of representation learning, which is in turn a
kind of machine learning, which is used for many but not all approaches to AI. (Source: Goodfellow et al.
(2016).)
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1. Artificial Intelligence
1.5. Deep Learning

And what about econometrics?

According to Varian (2014). Machine Learning and Econometrics:
• Machine learning, data mining, predictive analytics, etc. all use data to predict
some variable as a function of other variables.
I May or may not care about insight, importance, patterns
I May or may not care about inference—how y changes as some x changes

• Econometrics: Use statistical methods for prediction, inference, causal modeling
of economic relationships.
I Hope for some sort of insight, inference is a goal
I In particular, causal inference is goal for decision making
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2. Some initial concepts
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2.1 The estimation of f
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2. Some initial concepts
2.1. The estimation of f

The estimation of f

Let us consider that we have n observations of some inputs x and output y, for which
we assume a relationship of the form:

y = f(x) + ε

We wish to get f̂ , an estimate of f , so that:

ŷ = f̂(x).
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The estimation of f

We will rely on the n observations to teach (or train) our method how to estimate f .

Let us denote xij the value of the jth predictor, where j = 1, . . . , p for observation i,
where i = 1, . . . , n.

Let us denote yi the output or response variable for the ith observation.

Our training data containes n examples: {(x1, y1), . . . (xn, yn)}, where xi =
(xi1, . . . ,xip)>.

The estimation of f such that y ≈ f̂(x) for any observation (x, y), can usually be
characterized as either parametric or non-parametric.
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2.1.1. Parametric methods

Parametric methods

To estimate f using a parametric method, we usually proceed in a two-step procedure:

1. We first assume the functional form of f
I for example, we consider a linear relationship (f(x) = β0 + β1x1 + . . .+ βpxp)

2. We fit (or train) the selected model
I for the example where f is linear in x, we estimate the parameters β0 and βj ,

j = 1, . . . , p
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Parametric methods

Using a parametric form for f simplifies the estimation problem:

• it is easier to estimate some parameters than an arbitrary function f .

However, the model we choose usually does not match the true unknown form of f :

• as a consequence, if the model is too far from the true functional form, the
estimation does not do a good job.

To overcome this issue, one may be tempted to select a more flexible model, which
requires more parameters :

• but this may lead to a modeling error known as overfitting (more details will be
given later on): the predictions correspond too closely or exactly to the data and
therefore do not disentable the signal from the noise.
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Parametric methods: example

Let us take an example, that of the salaries for Professors in the US in 2008-09.

The salary of a professor may be linked, among other things, to the number of years
since he or she obtained their Ph.D and the number of years in activity (although we
may suspect some colinearity between these two predictors).

Salaryi = f(Years since Ph.Di,Years of servicei) + εi, ∀i ∈ 1, . . . , n.

Let us assume the following parametric form:

Salaryi = β0 + β1Years since Ph.Di + β2Years of servicei + εi
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Figure 21: Linear model fit by OLS of salary as a function of years since Ph.D
and years of service.

Some curvature are not
well taken into account
with this estimation.
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2.1.2. Non-parametric methods

Non-parametric methods

With non-parametric methods, the functional form of f is not assumed in a first step,
it is allowed to be obtained without guidance or constraints.

As they are not assuming a specific functional form for f , they can easily take into
account non-linearities in the relationship between the response and the predictors.

Relatively to parametric methods, non-parametric ones require a greater number of
observations for the estimation to be accurate:

• this comes from the fact that the problem is not reduced to estimate only a set of a
few parameters
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2.1.2. Non-parametric methods

Non-parametric methods: example

Let us provide an example of a non-parametric estimation.

We can use the same data on the salary of professors, and estimate the relationship
between salary and the years since Ph.D and.

To that end, we can estimate the function f by means of thin-plate spline.
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Non-parametric methods: example

We can vary the level of
smoothness: higher
levels leading to getting
closer to the perfect fit of
the observations (and to
overfitting!).

Figure 22: Thin-plate spline fit of salary as a function of years since Ph.D and
years of service.
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Prediction accuracy versus Model interpretability

From the previous example, we saw that the linear model is far more restricting than
the thin-plate spline one:

• the number of linear functions that can be fitted is far lower than the number of
possible shapes that we can obtain with the thin-plate splines

Some models are less flexible, more restrictive than others.

• Less flexible models tend to be less accurate than relatively more flexible ones. . .
• but on the other hand, they produce results that are easier to interpret.
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Prediction accuracy versus Model interpretability

There is therefore a trade-off between prediction accuracy and model interpretability.

Depending on the goal of the estimation, one might prefer giving-up some accuracy and
turn to more restrictive model to get more interpretable results.
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Prediction accuracy versus Model interpretability

Once again, the difference between inference and prediction is at play:

• if the aim of the analysis is inference, one might use a restrictive model
• if the aim is prediction, accuracy become more important and a more flexible model

may be uses.

But be careful! Sometimes, more flexible models may not lead to more accurate
predictions. . .
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Model accuracy

Once a model has been estimated, it is important to assess how good (or bad) the fit is.

For some specific data, it is also important to compare the results from different methods
to select the one that “best fits” the data.
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Quality of fit
For supervised learning methods, as we can compare the fit with the observed value, it is easy
to assess the performance of a given method.

In the context of a regression, several metrics can be used, among which the mean squared
error (MSE):

MSE = 1
n

n∑
i=1

(
yi − f̂(xi)

)2
,

where f̂(xi) is the prediction for the ith observation.

• When the distances between the observations and the predictions are low, the MSE will be
small

• When the distances between the observations and the predictions are high, the MSE will be
large
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Out of sample predictions

The quality of fit is usually measured not on the whole data set of observations, but
rather on a subsample.

It seems more relevant to assess the quality of fit on previously unseen data (to make
out of sample predictions):

• it tells us how good the model should perform in the future, when it is fed with
new data
• it avoids selecting a method that overfits the data

In practical terms, what is done is to split the data into three subsamples, one for training
the model, another one used for a tuning process, and a third one to test the quality
of fit.
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Method
The procedure, known as the validation set approach is as follows:

1. The learning method is fitted using a sample of training observations (training data):
{(x1, y1), . . . (xn, yn)}:
I the method learns from these data
I this yields f̂

2. Using f̂ on previously unseen data (evaluation data), the accuracy of the model is
assessed:
I this step helps choosing the method that gives the lowest MSE on evaluation data

3. Once the statistical learning procedure has been tuned, its accuracy is assessed on a third
subsample of previously unseed data (test data):
I this gives an “hones” assessment of the performance of the estimation

Training Evaluation Test → Metric
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Size of the samples

Figure 23: On the size of the samples. (Source: Berk 2008.)

But :

• the split sample approach is only justified asymptotically
• in the case of skewed distribution, observations from the tail may not be included. . .
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Splitting the data into subsamples

Berk (2008) also warns that splitting the data introduces a new source of uncertainty.

Using resampling could address this issue, but it is computationally expensive. . .
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Splitting the data into subsamples: example

Let us go through an example using data on Boston house prices.
import pandas as pd
from sklearn import datasets
from sklearn.model_selection import train_test_split

Loading Boston housing dataset:
boston=datasets.load_boston()
df_boston = pd.DataFrame(boston.data,

columns=boston.feature_names)
print(df_boston.shape)

## (506, 13)
Ewen Gallic Machine Learning and Statistical Learning 88/122
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Splitting the data into subsamples: example

Let us add the response variable to the pandas data frame:
df_boston['PRICE'] = boston.target
print(df_boston.head())

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT PRICE

0.00632 18 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98 24.0
0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14 21.6
0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7
0.03237 0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4
0.06905 0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 5.33 36.2

0.02985 0 2.18 0 0.458 6.430 58.7 6.0622 3 222 18.7 394.12 5.21 28.7
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Splitting the data into subsamples: example
And now we can use the train_test_split() method to create the train and test
train, test = train_test_split(df_boston, test_size=0.20,

random_state = 5)
print("Train shape:", train.shape)

## Train shape: (404, 14)
print("Test shape:", test.shape)

## Test shape: (102, 14)

• Here, we have 80% of observations in the training sample and 20% in the testing
sample.
• We have used a specific seed (random_state=5) so that the same “random”

splitting can be obtained in a subsequent evaluation.Ewen Gallic Machine Learning and Statistical Learning 90/122
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Splitting the data into subsamples: example

It is the, possible to use the same procedure to split the train dataset into two subsamples:
training data and evaluation data.
training, evaluation = train_test_split(train, test_size=0.20,

random_state = 5)
print("Training shape:", training.shape)

## Training shape: (323, 14)
print("Evaluation shape:", evaluation.shape)

## Evaluation shape: (81, 14)
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With only a few observations

When there is only a few observations and using the validation set approach leads to too
small training samples, we can use alternative approaches.

These approaches try to approximate the out-of-sample ideal.

One of those is known as cross-validation (CV). We will explain the basics for different
CV methods, including:

• k-fold cross-validation
• repeated cross validation
• leave one out cross validation.

These techniques may reduce problems linked to the composition of samples, which may
affect the quality of the estimation.
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k-fold Cross-validation

Consider a dataset with n training observations {(x1, y1), . . . (xn, yn)}.

This set of training observations can be divided in k subsets of roughly the same size.

For example, if n = 500 and we pick k = 5, we will divide the dataset in 5 subsets of
100 observations each.
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k-fold Cross-validation

• In each k-fold, the fitting procedure is performed on the k − 1 folds and evaluated on the
kth fold.

• The error metric is computed at each iteration
• Once each of the k-fold has served as an evaluation set, we can compute the average of the

error metrics (the cross-validation error).

1st Iteration Test → metric1

2nd Iteration Test → metric2

3rd Iteration Test → metric3

4th Iteration Test → metric4

5th Iteration Test → metric5
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k-fold Cross-validation

The choice of the number of folds is not straightforward.

• Relatively small values of k lead to larger training samples, which may result in
more bias in the estimation of the true surface.

• Relatively high values of k lead to less bias in the estimation of the true surface,
but they also lead to a higher variance of the estimated test error.

In the end, it depends on the size and structure of the dataset.

In practice, we often pick k = 3, k = 5 or k = 10.
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k-fold Cross-validation: example
In Python, we can use the KFold() function from the sklearn library:
import numpy as np
from sklearn.model_selection import KFold

X = ["a", "b", "c", "d", "e"]
kf = KFold(n_splits=5)
for train, test in kf.split(X):

print("%s %s" % (train, test))

## [1 2 3 4] [0]
## [0 2 3 4] [1]
## [0 1 3 4] [2]
## [0 1 2 4] [3]
## [0 1 2 3] [4]
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Repeated k-fold Cross-validation

Another method used for resampling is known as repeated k-fold cross validation.

It does the same as the k-fold cross validation, but it repeats the procedure of randomly
splitting the data into k folds and fitting the learning process iteratively.

With this technique, the folds are split in different ways at each repetition.

While repeated k-fold CV requires more time than k-fold CV, they may result in less
biased estimates.
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Repeated k-fold Cross-validation: example
In Python, we can use the RepeatedKFold() function from the sklearn library, by
specifying the parameter n_repeats:
import numpy as np
from sklearn.model_selection import RepeatedKFold
X = ["a", "b", "c", "d", "e"]
random_state = 123
rkf = RepeatedKFold(n_splits=3, n_repeats=1,

random_state=random_state)
for train, test in rkf.split(X):

print("%s %s" % (train, test))

## [0 2 4] [1 3]
## [1 2 3] [0 4]
## [0 1 3 4] [2]
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Repeated k-fold Cross-validation: example
Now, changing the parameter n_repeats:
random_state = 123
rkf = RepeatedKFold(n_splits=3, n_repeats=2,

random_state=random_state)
for train, test in rkf.split(X):

print("%s %s" % (train, test))

## [0 2 4] [1 3]
## [1 2 3] [0 4]
## [0 1 3 4] [2]
## [1 2 3] [0 4]
## [0 1 4] [2 3]
## [0 2 3 4] [1]
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Leave one out cross-validation

Leave one out cross validation is a k-fold cross validation where k = n, i.e., the
number of folds equals the number of training examples.

The idea is to leave one observation out and then perform the fitting procedure on all
remaining data. Then, iterate on each data point.

Each fitting procedure yields an estimation. It is then possible to average the results to
get the error metric.

While this procedure reduces the bias, as it uses all data points, it may be time consuming.

In addition, the estimations may be influenced by outliers.
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Leave one out cross-validation: example

In Python, we can use the LeaveOneOut() function from the library sklearn:
from sklearn.model_selection import LeaveOneOut
X = [1, 2, 3, 4, 5]
loo = LeaveOneOut()
for train, test in loo.split(X):

print("%s %s" % (train, test))

## [1 2 3 4] [0]
## [0 2 3 4] [1]
## [0 1 3 4] [2]
## [0 1 2 4] [3]
## [0 1 2 3] [4]
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Cross-validation and split samples

In all these CV methods, there is no validation dataset (unlike unlike split sample
methods), so that the results are conditional on the training data alone.

For CV to provide generalizable results from training data, the number of observations
should be large enough so that it reflects the joint probability distribution from which
data were generated.
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2.3.2 Bias-variance trade-off
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Bias-variance trade-off

When we estimate the response surface, we aim at getting an estimate as close as
possible to the true response surface.

The prediction error, i.e., the distance between the true value and the predicted one
(in a regression context) can be broken down into two pieces:

• the reducible error, which corresponds to the sum of two elements:
I the variance of the estimate
I the squared bias of the estimate

• the irreducible error
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Bias-variance trade-off
As in James et al. (2013), let us assume the following relationship between a response variable y
and some predictors x:

y = f(x) + ε,

where ε is a zero mean noise with variance σ2.

We estimate the function f using a statistical learning procedure on a training set and we are
interested in the prediction error, at a given value x0 from a test set.

The expected Mean Squared Error, at that value, can be written as:

E
[(
y0 − f̂(x0)

)2
]

= Var
(
f̂(x0)

)
+
[
Bias

(
f̂(x0)

)]2

︸ ︷︷ ︸
reducible error

+ Var(ε)︸ ︷︷ ︸
irreducible error

,

where
Bias

(
f̂(x0)

)
= E

[
f̂(x0)

]
− f(x0)Ewen Gallic Machine Learning and Statistical Learning 105/122
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Bias-variance trade-off

To minimize the expected test error, the method that needs to be chosen must therefore
simultaneously achieve low variance and low bias.

• The variance represents the amount by which f̂ would change if we estimated it
on a different training data set:
I in general, more flexible statistical (and more complex) methods lead to higher

variance

• The bias represents the amount by which the predicted values differ from the true
values:
I Bias

(
f̂(x)

)
= E

(
f̂(x)

)
− f(x)

I in general, more flexible statistical methods lead to lower bias.
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Bias-variance trade-off: example
Before giving an example of the bias-variance trade-off, let us have a look at the quality
of fit of different statistical learning methods that aim at estimating some function f .

Let us consider a function f from which we generate observations:

y = f(x) + ε,

where ε is a zero mean error term with variance σ2.

We aim at estimating f using statistical learning procedures with increasing levels of
flexibility:

• we will consider a linear regression and some regression splines for wich we will vary
the degree of freedom.
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Bias-variance trade-off: example

We estimate f on a training set and predict values:

• on the observed data of the training set
• on unobserved data from a test set.

Then we can look at the quality of fit through the lens of the Mean Squared Error.
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Bias-variance trade-off: example

Figure 24: Quality of fit as measured by MSE, using splines depending on the degrees of
freedom.

On the training
sample, the
higher the degree
of freedom:
• the higher

the flexibility
• the better
the match
compared
with
observed
data.
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Bias-variance trade-off: example

Figure 25: Quality of fit as measured by MSE, using splines depending on the degrees of freedom.

• On the test sample, the MSE first declines with flexibility and then increases with it.
• The grey dashed line on panel (B) corresponds to Var(ε)
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Bias-variance trade-off: example

Let us consider again the function f from which we generate observations (f(x) + ε),
with E(ε) = 0 and Var(ε) = σ2.

We estimate f on a training sample by means of smoothing splines for which we vary
the degree of freedom.

We are interested in the prediction error of y0 = f(x0) + ε at a point x0 from the test
sample.
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Bias-variance trade-off: example

We use simulations to estimate the bias, the variance and the MSE for the estimates for
f at x0:

• we randomly create training/test dataset
• on each sample, we estimate f with different learning techniques
• then predict the value at x0

It is then possible to get estimates of the bias, the variance and the MSE.

Ewen Gallic Machine Learning and Statistical Learning 112/122



2. Some initial concepts
2.3. Model accuracy
2.3.2. Bias-variance trade-off

Bias-variance trade-off: example

Figure 26: Quality of fit as measured by MSE, using splines depending on the degrees of freedom.
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Bias-variance trade-off: example

The tradeoff arises as:

• it is easy to obtain a method with low bias but high variance
I using a method with high flexibility

• it is easy to obtain a method with high bias but low variance
I using a method with low flexibility

We need to find a method with both variance and squared bias low.
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2.4 The curse of dimensionality
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The curse of dimensionality

The curse of dimensionality describes phenomenon that arise when working in high
dimensional feature space.

To explain what is the curse of dimensionality, let us borrow some materials from The
Curse of Dimensionality in classification by Vincent Spruyt.

Let us assume we want to build a classifier trained to distinguish dogs from cats.

We might be tempted to say that the performance of the classifier will increase as we
increase the number of covariables.

This is usually true, but only up to a certain number of additional covariable.
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The curse of dimensionality

Figure 27: 1 dimension Figure 28: 2 dimensions Figure 29: 3 dimensions

Source: Vincent Spruyt (2014)
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The curse of dimensionality

• In this example, adding covariates helped find
a plane that perfectly separates cats from dogs.
• But in the meantime, as long as we introduced

these covariates (and kept our training sample
with the same training examples), our data
became more sparse:
I the density of our training sample decreases

when the dimensionality increases
(combinatorics at play here).

Figure 30: A plane that separates dogs
from cats. Source: Vincent Spruyt (2014).
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The curse of dimensionality

• If we add more and more dimensions, the prob-
lem becomes more and more complex, and it
becomes easier to distinguish cats from dogs...
• But the risk of overfitting the data grows as
well... Figure 31: Hihgly dimensional

classification results projected on a lower
dimensional space. Source: Vincent
Spruyt (2014).
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2. Some initial concepts
2.4. The curse of dimensionality

The curse of dimensionality

To sum-up (Berk, 2008):

“ In short, higher dimensional data can be very useful when
there are more associations in the data that can be ex-

ploited. But at least ideally, a large p comes with a large N.
If not, what may look like a blessing can actually be a curse. ”
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