
Manipulation de données avec dplyr
Rennes, 2016

Ewen Gallic
http://egallic.fr

Structures: Data Frames
In Economics, this might be the most frequent structure we use

data.frame objects are lists of vectors

Each column is a vector: the mode inside each column needs to be the same of all

observation

The data.frame() function is used to create a data.frame

·

·

·

·

women <- data.frame(height = c(58, 59, 60, 61, 62, 63, 64, 65,
 66, 67, 68, 69, 70, 71, 72),
 weight = c(115, 117, 120, 123, 126, 129, 132,
 135, 139, 142, 146, 150, 154, 159, 164))

2/48

Structures: Data Frames
head(women)

height weight
1 58 115
2 59 117
3 60 120
4 61 123
5 62 126
6 63 129

class(women)

[1] "data.frame"

3/48

Structures: Data Frames
dim(women)

[1] 15 2

nrow(women)

[1] 15

ncol(women)

[1] 2

4/48

Import Data
Whatever the type of data, there is probably a function to import it in the R session

With ASCII �les, the two main functions are read.table() ans scan()

We will not present the scan() function here

With other type of �les, one needs to load a speci�c library

·

·

·

·

5/48

Import Data: read.table()

ARGUMENT DESCRIPTION

file File name, or complete path to file (can be an URL)

header Whether the file contains the names of the variables at its first line ? (FALSE by default)

sep Field separator character (white character by default)

dec Character used for decimal points ("." by default)

na.strings Character vector of strungs to be interpreded as NA (NA by default)

The read.table() function is designed for data already organized as a table

The output is a data.frame

Here are the main parameters I use:

·

·

·

6/48

Import Data from Excel Files
I mainly use two functions:

For convenience, we will use the iris.xls �le contained in the folder of the gdata package

·

read.xls() from the gdata package

read_excel() from the readxl package

-

-

·

library(gdata)
xlsfile <- file.path(path.package("gdata"), "xls", "iris.xls")
iris <- read.xls(xlsfile) # Creates a temporary csv file

By default, the �rst sheet is imported. The sheet argument enables to import another sheet,

either by giving the number or the name of the sheet

The read_excel() function is faster, has almost the same names for the arguments, but is

not as robust at the moment as the read.xls() function. In addition, it returns a tbl_df
object, not a data.frame

·

·

7/48

Export Data from R
The function write.table() can be used to export a data.frame object (or a matrix) to an

ASCII �le:

·

write.table(my_data_frame, file = "file_name.txt", sep = ";")

To save one or more objects as is: save() ; to import the object(s) back: load():·

save(obj_1, obj_2, file = "my_file.rda")
load("my_file.rda")

To save the entire session: save.image(); to load the session: load()·

save.image("my_session.rda")
load("my_session.rda")

8/48

Access elements of a vector
Elements of a vector can be accessed by their numerical index or by their name (if they are

provided with one)

This can be done by the "["() function

The arguments of this function are the vector one wants to extract data from and a

numerical vector which contains the positions of the elements one wants to extract (or not),

or a logical vector (mask)

As it might be painful to write this function, R provides a shortcut to use the "["() function:

·

·

·

·

x <- c(4, 7, 3, 5, 0)
"["(x, 2)

[1] 7

9/48

Access elements of a vector
x[2] # The second element of x

[1] 7

x[-2] # All the elements of x minus the second one

[1] 4 3 5 0

x[3:5] # Elements of x from 3rd to 5th position

[1] 3 5 0

10/48

Access elements of a vector
i <- 3:5 ; x[i] # Elements of x from 3rd to 5th position

[1] 3 5 0

x[c(F, T, F, F, F)] # Second element from x

[1] 7

x[x<1] # Elements of x that are lower than 1

[1] 0

x<1 # Returns a logical vector

[1] FALSE FALSE FALSE FALSE TRUE

11/48

Access elements of a vector
To extract the positions of TRUE values from a logical vector: which()

To extract the positions of the �rst minimum (maximum) of a logical or numerical vector:

which.min() (which.max())

·

·

x <- c(2, 4, 5, 1, 7, 6)
which(x < 7 & x > 2)

[1] 2 3 6

which.min(x)

[1] 4

12/48

Access elements of a vector
which.max(x)

[1] 5

x[which.max(x)]

[1] 7

13/48

Modify elements of a vector
Simply use the <- symbol·

x <- seq_len(5)
x[2] <- 3
x

[1] 1 3 3 4 5

Multiple elements can be modi�ed using one instruction·

x[2] <- x[3] <- 0
x

[1] 1 0 0 4 5

14/48

Access elements of a matrix or data.frame
The same function "["() works

One just needs to indicate the rows (i) and columns (j) indices: x[i,j]

·

·

(x <- matrix(1:9, ncol = 3, nrow = 3))

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

x[1, 2]

[1] 4

15/48

Access elements of a matrix or data.frame
i and j can be vectors of length greater than one:·

i <- c(1,3) ; j <- 3
x[i,j] # Elements of first and third row for the third column

[1] 7 9

Not providing i returns all lines for the j columns

Not providing j returns all columns for the i rows

·

·

x[, 2] # Elements of the second column

[1] 4 5 6

16/48

Access elements of a matrix or data.frame
As for vectors, negative values indicate positions one does not want:·

x[, -c(1,3)] # x without first and third columns

[1] 4 5 6

17/48

Access elements of a matrix or data.frame
In the case of a data.frame, columns are named and can thus be accessed using these

names

·

women <-data.frame(height =c(58, 59, 60, 61, 62, 63, 64,
 65, 66, 67, 68,69, 70, 71, 72),
 weight =c(115, 117, 120, 123, 126, 129, 132, 135,
 139,142, 146, 150, 154, 159, 164))
colnames(women) # Names of the columns

[1] "height" "weight"

rownames(women) # Names of the rows

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14"
[15] "15"

18/48

Access elements of a matrix or data.frame
dimnames(women) # Names of both rows and columns

[[1]]
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14"
[15] "15"

[[2]]
[1] "height" "weight"

19/48

Access elements of a matrix or data.frame
To access a speci�c column: $:·

women$height

[1] 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

20/48

Data manipulation with dplyr
The packeg dplyr o�ers many functions that are really easy to use to manipulate data

We will also use the pipe (%>%) operator (from the package magrittr), which transmits a

value as the �rst argument of the following function

For instance :

·

·

·

library(magrittr)
mean(x) %>% log()

Computes the mean of the object x and the apply the logarithm function to the result of

mean(x). It can also be written in the following (but harder to read) way:

·

log(mean(x))

[1] 1.609438

21/48

Data manipulation with dplyr: selection
To select columns from a data.frame: select()·

library(dplyr)
women %>%
 select(height)

22/48

Data manipulation with dplyr: selection
To remove a columns from a data.frame: select() and a negative sign·

library(dplyr)
women %>%
 select(-height) %>%
 head()

weight
1 115
2 117
3 120
4 123
5 126
6 129

23/48

Data manipulation with dplyr: selection
To select rows according to their position: slice()·

women %>% slice(4:5)

height weight
1 61 123
2 62 126

24/48

Data manipulation with dplyr: �ltering
To return rows with matchin conditions: filter()·

women %>%
 filter(height == 60)

height weight
1 60 120

women %>%
 filter(weight > 120, height <= 62)

height weight
1 61 123
2 62 126

25/48

Data manipulation with dplyr: column modi�cations
To rename a column: rename(data, new_name_1 = old_name_1, new_name_2 =
old_name_2)

·

women <-
 women %>%
 rename(masse = weight)
head(women)

height masse
1 58 115
2 59 117
3 60 120
4 61 123
5 62 126
6 63 129

26/48

Data manipulation with dplyr: column modi�cations
Let us create another data.frame:·

unemp <- data.frame(year = 2012:2008,
 unemployed = c(2.811, 2.604, 2.635, 2.573, 2.064),
 active_pop = c(28.328, 28.147, 28.157, 28.074, 27.813))

27/48

Data manipulation with dplyr: column modi�cations
To modify (or create) columns: mutate()·

unemp <-
 unemp %>%
 mutate(unemp_rate = unemployed/active_pop*100,
 log_unemployed = log(unemployed),
 year = year / 1000)
head(unemp)

year unemployed active_pop unemp_rate log_unemployed
1 2.012 2.811 28.328 9.923044 1.0335403
2 2.011 2.604 28.147 9.251430 0.9570487
3 2.010 2.635 28.157 9.358241 0.9688832
4 2.009 2.573 28.074 9.165064 0.9450725
5 2.008 2.064 27.813 7.420990 0.7246458

28/48

Data manipulation with dplyr: ordering
Let us create another data.frame:·

df <- data.frame(last_name = c("Durand", "Martin",
 "Martin", "Martin", "Durand"),
 first_name = c("Sonia", "Serge", "Julien-Yacine",
 "Victor", "Emma"),
 grade = c(23, 18, 17, 17, 19))

29/48

Data manipulation with dplyr: ordering
To order observations according to one or multiple values: order():·

df %>% arrange(first_name, last_name)

last_name first_name grade
1 Durand Emma 19
2 Martin Julien-Yacine 17
3 Martin Serge 18
4 Durand Sonia 23
5 Martin Victor 17

To order by decreasing values: desc() (negative sign can be used for numeric columns)·

df %>% arrange(first_name, desc(last_name))

30/48

Data manipulation with dplyr: joining two
data.frame

Functions to join data.frames from dplyr have an easy syntax:·

xxx_join(x, y, by = NULL, copy = FALSE, ...)

x and y are the two tables to join

by is a character vector containing variables used to join the tables (if ommited, a natural join

using all variables with common names accross the two tables will be done)

·

·

31/48

Data manipulation with dplyr: joining two
data.frame

Let us create two data.frame to illustrate the di�erent join functions:·

exportations <- data.frame(year = 2011:2013,
 exportations = c(572.6, 587.3, 597.8))
importations <- data.frame(annee = 2010:2012,
 importations = c(558.1, 625.3,628.5))

32/48

Data manipulation with dplyr: joining two
data.frame
inner_join(): return all rows from x where there are matching values in x, and all columns

from x and y. If there are multiple matches between x and y, all combination of the matches

are returned

·

exportations %>%
 inner_join(importations, by = c(year = "annee"))

year exportations importations
1 2011 572.6 625.3
2 2012 587.3 628.5

33/48

Data manipulation with dplyr: joining two
data.frame
left_join(): return all rows from x, and all columns from x and y. Rows in x with no match

in y will have NA values in the new columns. If there are multiple matches between x and y,

all combinations of the matches are returned

·

exportations %>%
 left_join(importations, by = c(year = "annee"))

year exportations importations
1 2011 572.6 625.3
2 2012 587.3 628.5
3 2013 597.8 NA

34/48

Data manipulation with dplyr: joining two
data.frame
right_join(): return all rows from y, and all columns from x and y. Rows in y with no

match in x will have NA values in the new columns. If there are multiple matches between x
and y, all combinations of the matches are returned

·

exportations %>%
 right_join(importations, by = c(year = "annee"))

year exportations importations
1 2010 NA 558.1
2 2011 572.6 625.3
3 2012 587.3 628.5

35/48

Data manipulation with dplyr: joining two
data.frame
semi_join(): return all rows from x where there are matching values in y, keeping just

columns from x
·

exportations %>%
 semi_join(importations, by = c(year = "annee"))

year exportations
1 2011 572.6
2 2012 587.3

36/48

Data manipulation with dplyr: joining two
data.frame
anti_join(): return all rows from x where there are not matching values in y, keeping just

columns from x.

·

exportations %>%
 anti_join(importations, by = c(year = "annee"))

year exportations
1 2013 597.8

37/48

Data manipulation with dplyr: joining two
data.frame
full_join(): return all rows and all columns from both x and y. Where there are not

matching values, returns NA for the one missing

·

exportations %>%
 full_join(importations, by = c(year = "annee"))

year exportations importations
1 2011 572.6 625.3
2 2012 587.3 628.5
3 2013 597.8 NA
4 2010 NA 558.1

38/48

Data manipulation with dplyr: aggregation
To aggregate data, dplyr o�ers an easy way: summarise()

The arguments are a data.frame and one or multiple operations to do on the data.frame

Let us create some dummy observations:

·

·

·

Nombre d'ingenieurs et cadres au chômage

chomage <- data.frame(region = rep(c(rep("Bretagne", 4),

 rep("Corse", 2)), 2),

 departement = rep(c("Cotes-d'Armor", "Finistere",

 "Ille-et-Vilaine", "Morbihan",

 "Corse-du-Sud", "Haute-Corse"), 2),

 annee = rep(c(2011, 2010), each = 6),

 ouvriers = c(8738, 12701, 11390, 10228, 975, 1297,

 8113, 12258, 10897, 9617, 936, 1220),

 ingenieurs = c(1420, 2530, 3986, 2025, 259, 254,

 1334, 2401, 3776, 1979, 253, 241))

39/48

Data manipulation with dplyr: aggregation
If we want to compute the mean and standard deviation for the colums ouvriers and

ingenieurs:

·

chomage %>%
 summarise(moy_ouvriers = mean(ouvriers),
 sd_ouvriers = sd(ouvriers),
 moy_ingenieurs = mean(ingenieurs),
 sd_ingenieurs = sd(ingenieurs))

moy_ouvriers sd_ouvriers moy_ingenieurs sd_ingenieurs
1 7364.167 4801.029 1704.833 1331.482

40/48

Data manipulation with dplyr: aggregation
It is really simple to aggregate data on groups of observations, thanks to the group_by()
function

We just need to �rst group the data according to some values taken by one or multiple

variables, and then apply the aggregation to the result:

·

·

chomage %>%
 group_by(annee) %>%
 summarise(ouvriers = sum(ouvriers),
 ingenieurs = sum(ingenieurs))

A tibble: 2 × 3
annee ouvriers ingenieurs
<dbl> <dbl> <dbl>
1 2010 43041 9984
2 2011 45329 10474

41/48

Data manipulation with dplyr: aggregation
With groups depending on combination of variables:·

chomage %>%
 group_by(annee, region) %>%
 summarise(ouvriers = sum(ouvriers),
 ingenieurs = sum(ingenieurs))

Source: local data frame [4 x 4]
Groups: annee [?]

annee region ouvriers ingenieurs
<dbl> <fctr> <dbl> <dbl>
1 2010 Bretagne 40885 9490
2 2010 Corse 2156 494
3 2011 Bretagne 43057 9961
4 2011 Corse 2272 513

42/48

Data manipulation: tidyr
The package tidyr contains interesting functions to manipulate data

These functions are really important when one realise graphs with ggplot2

Unfortunately, their use is not as straightforward as the functions from the dplyr package

We will only focus on two functions here: gather() and spread()

These functions are useful to turn a large table to a long one, and reciprocally

·

·

·

·

·

43/48

Data manipulation: from a large table to a long one
First, let us create some dummy data:·

pop <- data.frame(city = c("Paris", "Paris", "Lyon", "Lyon"),
 arrondissement = c(1, 2, 1, 2),
 pop_municipale = c(17443, 22927, 28932, 30575),
 pop_all = c(17620, 23102, 29874, 31131))

44/48

Data manipulation: from a large table to a long one
The gather() function takes a data.frame as its �rst argument

The second argument (key) is the name we want to give to the column that will contain the

the names of the columns we want to gather, as a factor

The third argument (value) is the name we want to give to the column that will contain the

corresponding values

Then, we need to specify which colums to gather (either by giving or excluding variable

names, as in the select() function)

·

·

·

·

45/48

Data manipulation: from a large table to a long one
library(tidyr)
pop_long <-
 pop %>%
 gather(key = type_pop,
 value = population,
 pop_municipale,pop_all)
pop_long

city arrondissement type_pop population
1 Paris 1 pop_municipale 17443
2 Paris 2 pop_municipale 22927
3 Lyon 1 pop_municipale 28932
4 Lyon 2 pop_municipale 30575
5 Paris 1 pop_all 17620
6 Paris 2 pop_all 23102
7 Lyon 1 pop_all 29874
8 Lyon 2 pop_all 31131

46/48

Data manipulation: from a long table to large one
Now to go from a long table to a large one: spread()

The �rst argument is the data.frame

The second argument is the name of the colum that contains values that can be converted to

a factor. Each level of the factor will end up as a column name

The third argument is the name of the column that contains the values

·

·

·

·

47/48

Data manipulation: from a long table to large one
pop_long %>%
 spread(type_pop, population)

city arrondissement pop_all pop_municipale
1 Lyon 1 29874 28932
2 Lyon 2 31131 30575
3 Paris 1 17620 17443
4 Paris 2 23102 22927

48/48

