
Python for economists
Ewen Gallic

September 2019

2

Contents

List of Tables 9

List of Figures 11

Opening remarks 13
0.1 Objectives . 13
0.2 Who are these notes for? . 13

1 Introduction 15
1.1 Background information . 15
1.2 Versions . 17
1.3 Working space . 17

1.3.1 Python in a terminal . 17
1.3.2 IPython . 19
1.3.3 Spyder . 21
1.3.4 Jupyter Notebook . 22

1.3.4.1 Evaluation of an instruction 24
1.3.4.2 Text cells . 25
1.3.4.3 Deleting a cell . 27

1.4 Variables . 27
1.4.1 Assignment and deletion . 27
1.4.2 Naming Conventions . 29

1.5 Comments . 30
1.6 Modules and packages . 30
1.7 The Help System . 32

2 Types of Data 35
2.1 Strings . 35

3

4 CONTENTS

2.1.1 Concatenation of Strings . 37
2.1.2 Indexing and Extraction . 39
2.1.3 Available Methods with Strings 41

2.1.3.1 Conversion to upper or lower case 41
2.1.3.2 Seach Pattern for Strings 42
2.1.3.3 Splitting Strings . 43
2.1.3.4 Cleaning, completion 44
2.1.3.5 Replacements . 45

2.1.4 Conversion to character strings 46
2.1.5 Exercise . 47

2.2 Numerical values . 47
2.2.1 Integers . 47
2.2.2 Floating Point Numbers . 48
2.2.3 Complex numbers . 49
2.2.4 Conversions . 51

2.2.4.1 Conversion to Integer 51
2.2.4.2 Conversion to Floating Point Number 51
2.2.4.3 Conversion to Complex 52

2.3 Booleans . 53
2.4 Empty Object . 53
2.5 Dates and Times . 54

2.5.1 Module Datetime . 54
2.5.1.1 Date . 55
2.5.1.2 Time . 61
2.5.1.3 Datetime . 62
2.5.1.4 Timedelta . 65

2.5.2 pytz Module . 67
2.5.3 Exercices . 67

3 Structures 69
3.1 Lists . 69

3.1.1 Extraction of the Elements . 70
3.1.2 Modification . 72

3.1.2.1 Replacement . 72
3.1.2.2 Adding Elements . 72
3.1.2.3 Deleting Elements 73
3.1.2.4 Multiple assignments 73

3.1.3 Verifying if a Value is Present 74

CONTENTS 5

3.1.4 Copy of List . 74
3.1.5 Sorting . 76

3.2 Tuples . 77
3.2.1 Extraction of the Elements . 77
3.2.2 Modification . 77

3.3 Sets . 78
3.3.1 Modifications . 79

3.3.1.1 Adding Elements . 79
3.3.1.2 Deletion . 80

3.3.2 Belonging test . 81
3.3.3 Copying a Set . 81
3.3.4 Conversion to a List . 82

3.4 Dictionaries . 82
3.4.1 Extraction of the Elements . 83
3.4.2 Keys and values . 85
3.4.3 Search for Belonging . 86
3.4.4 Modification . 86

3.4.4.1 Replacement . 86
3.4.4.2 Adding Elements . 87
3.4.4.3 Deleting elements . 88

3.4.5 Copy of a Dictionary . 89
3.4.6 Exercise . 90

4 Operators 91
4.1 Arithmetic Operators . 91

4.1.1 Addition . 91
4.1.2 Subtraction . 92
4.1.3 Multiplication . 92
4.1.4 Division . 92
4.1.5 Modulo . 93
4.1.6 Power . 93
4.1.7 Order . 93
4.1.8 Mathematical Operators on Strings 94
4.1.9 Mathematical Operators on Lists or tuples 94

4.2 Comparison Operators . 95
4.2.1 Equality, Inequality . 96
4.2.2 Inferiority and Superiority, Strict or Broad 96
4.2.3 Inclusion and exclusion . 99

6 CONTENTS

4.3 Logical operators . 100
4.3.1 And logical . 100
4.3.2 Logical OR . 101
4.3.3 Logical Not . 102

4.4 Some Functions . 103
4.5 Some Constants . 104
4.6 Exercise . 105

5 Loading and Saving Data 107
5.1 Load Data . 108

5.1.1 Fichiers textes . 108
5.1.1.1 Import from the Internet 111

5.1.2 CSV Files . 112
5.1.2.1 Import From the Internet 113

5.1.3 JSON Files . 114
5.1.3.1 Import from the Internet 114

5.1.4 Excel Files . 115
5.2 Exporting data . 115

5.2.1 Text Files . 115
5.2.2 CSV Files . 117
5.2.3 JSON Files . 118
5.2.4 Exercise . 120

6 Conditions 121
6.1 Conditional if Instructions . 121
6.2 if-else Conditional Instructions . 123
6.3 if-elif Conditional Instructions . 124
6.4 Exercise . 125

7 Loops 127
7.1 Loops with while() . 127
7.2 Loops with for() . 128
7.3 Exercise . 132

8 Functions 135
8.1 Definition . 135

8.1.1 Adding a Description . 136
8.1.2 Parameters of a Function . 136

8.1.2.1 Call Without Parameter Names 137

CONTENTS 7

8.1.2.2 Positional Arguments, Arguments by Keywords . . . 137
8.1.2.3 Function as an Argument to Another Function . . . 140

8.2 Scope of a Function . 140
8.3 Lambda Functions . 143
8.4 Returning Several Values . 144
8.5 Exercise . 145

9 Introduction to Numpy 147
9.1 Arrays . 147

9.1.1 Creation . 148
9.1.1.1 Some Functions Generating array Objects 150

9.1.2 Dimensions . 153
9.1.3 Extracting Elements from an Array 155

9.1.3.1 Extraction Using Boolean 158
9.1.4 Modification . 159

9.1.4.1 Insterting Elements 160
9.1.4.2 Deleting / Removing Elements 161

9.1.5 Copyi of an Array . 164
9.1.6 Sorting . 166
9.1.7 Transposition . 166
9.1.8 Operations on Arrays . 168

9.1.8.1 + and - Operators 168
9.1.8.2 * and / Operators 169
9.1.8.3 Power . 170
9.1.8.4 Operations on Matrices 171

9.1.9 Logical Operators . 172
9.1.10 Some Constants . 173
9.1.11 Universal functions . 174
9.1.12 Mathematical and Statistical Methods and Functions 176

9.2 Generation of Pseudo-random Numbers 179
9.3 Exercise . 183

10 References 185

8 CONTENTS

List of Tables

2.3 Formatting codes . 59

4.1 Comparison operators . 95
4.2 Some numerical functions . 103
4.3 Some constants integrated in Python 105

5.1 Main Values for How to Open Files. 109
5.2 Parameters of the reader() Function 112

9.1 Logical Functions . 172
9.2 Formatting Codes . 173
9.3 Unary Universal Function . 174
9.4 Binary Universal Functions . 175
9.5 Mathematical and Statistical Methods 176
9.6 Statistical Functions . 178
9.7 Some Functions for Pseudo-random Number Generation 180

9

10 LIST OF TABLES

List of Figures

1.1 Programming, Scripting, and Markup Languages. 16
1.2 Python in a terminal. 18
1.3 Anaconda’s home window. 19
1.4 IPython console. 20
1.5 Spyder. 22
1.6 Jupyter Notebook. 23
1.7 An Empty Notebook. 24
1.8 Evaluated Cell. 24
1.9 Text cell not evaluated. 26

11

12 LIST OF FIGURES

Opening remarks

These notes were produced as part of an introductory course on Python for students
in the Econometrics and Big Data course of Aix-Marseille School of Economics /
École d’Economie d’Aix-Marseille (AMSE)

0.1 Objectives

The purpose of this book is to introduce you to the Python programming language,
to be able to use it efficiently and independently. The reader can and is strongly
encouraged to execute all the examples provided. Some chapters are closed with
exercises to better assimilate the concepts covered as they are read.

Obviously, Python being a very vast language, these notes cannot and are not intended
to be exhaustive of the use of this computer language.

0.2 Who are these notes for?

Initially, this book is intended for beginners who wish to learn the basics of Python. It
is intended for AMSE students but may be of interest to individuals with an approach
to data through the economic discipline wishing to discover Python.

I would like to thank Adrien Pacifico for his informative comments.

13

https://www.amse-aixmarseille.fr/
https://www.amse-aixmarseille.fr/

14 LIST OF FIGURES

Chapter 1

Introduction

This document is mainly constructed using different references, including :

• books : Briggs (2013), Grus (2015), VanderPlas (2016), McKinney (2017) ;
• (excellents) notebooks : Navaro (2018).

1.1 Background information

Python is a multiplatform programming language, written in C, under a free license.
It is an interpreted language, i.e., it requires an interpreter to execute commands,
and has no compilation phase. Its first public version dates from 1991. The main
programmer, Guido van Rossum, had started working on this programming language
in the late 1980s. The name given to the Python language comes from the interest of
its main creator in a British television series broadcast on the BBC called “Monty
Python’s Flying Circus”.

The popularity of Python has grown strongly in recent years, as confirmed by the
survey results provided since 2011 by Stack Overflow. Stack Overflow offers its users
the opportunity to complete a survey in which they are asked many questions to
describe their experience as a developer. The results of the 2019 survey show a new
breakthrough in the use of Python by developers. As shown in Figure 1.1 41.1% of
respondents indicate that they develop in Python, i.e., 2.3 percentage points higher
than a year earlier.

15

https://en.wikipedia.org/wiki/Guido_van_Rossum
https://stackoverflow.com/
https://insights.stackoverflow.com/survey/2019#technology

16 CHAPTER 1. INTRODUCTION

WebAssembly
Elixir

Clojure
Dart
Rust

Scala
Objective−C

VBA
R

Kotlin
Swift

Assembly
Go

Ruby
C

TypeScript
C++
PHP

C#
Bash/Shell/PowerShell

Java
Python

SQL
HTML/CSS
JavaScript

0 20 40 60

Percentage of respondants

Figure 1.1: Programming, Scripting, and Markup Languages.

1.2. VERSIONS 17

1.2 Versions

These course notes are intended to provide an introduction to Python, version 3.x. In
this sense, the examples provided will correspond to this version, not to the previous
ones.

Compared to version 2.7, version 3.0 has made significant changes. It should be
noted that Python 2.7 will take “its retirement” on January 1, 2020. After this date,
support will no longer be provided.

1.3 Working space

There are many environments in which to program in Python. We will briefly present
some of them.

It is assumed here that you have installed[Anaconda] (https://www.anaconda.com/)
on your computer. Anaconda is a free and open source distribution of the Python
and R programming languages for data science and machine learning applications.
In addition, when the terminal is mentioned in the notes, it is assumed that the
operating system of your machine is either Linux or Mac OS.

1.3.1 Python in a terminal

It is possible to call Python from a terminal, by executing the following command
(under Windows: in the start menu, launch the “Python 3.6” software):

python

What can be seen on screen is reproduced in Figure 1.2 :

https://pythonclock.org/
https://www.anaconda.com/

18 CHAPTER 1. INTRODUCTION

Figure 1.2: Python in a terminal.

We note the presence of the characters >>>> (prompt), which invite the user to enter a
command. Expressions are evaluated once they are submitted (using the ‘ENTEREE’
key) and the result is given, when there is no error in the code.

The presence of the characters >>> (prompt), which invite the user to enter a command
can be noticed. Expressions are evaluated once they are submitted (using the ‘ENTER’
key) and the result is given, when there is no error in the code.

For example, when evaluating 2+1:

>>> 2+1
3
>>>

The prompt at the end can be noted: this tells the user that Python is ready to
receive new instructions.

1.3. WORKING SPACE 19

1.3.2 IPython

There is a slightly more friendly environment than Python in the terminal: IPython.
It is also an interactive terminal, but with many more features, including syntax
highlighting or auto-completion (using the tab key).

IPython can be opened using a terminal, using the following instruction:

ipython

IPython can also be launched from Anaconda’s home window, by clicking on the
Launch button of the qtconsole application, visible in the Figure 1.3.

Figure 1.3: Anaconda’s home window.

The IPython console, once launched, looks as follows:

20 CHAPTER 1. INTRODUCTION

Figure 1.4: IPython console.

Let’s submit a simple instruction:
print("Hello World")

The results shows:

In [1]: print("Hello World")
Hello World

In [2]:

Several things should be noted. First, we note that at the end of the execution of
the instruction, IPython indicates that it is ready to receive new instructions, by
the presence of the prompt In[2]:. The number in brackets refers to the instruction
number. We note that it went from 1 to 2 after the execution. We also note that the
result of the call to the print() function, with the string of characters (delimited by
quotation marks), displays on the screen what was contained between the parentheses.

1.3. WORKING SPACE 21

1.3.3 Spyder

While when using Python in a terminal, it is recommended to have a text editor open
next to it (to be able to save instructions), such as, for example, Sublime Text for
Linux or Mac OS users, or notepad+++ for Windows.

Another alternative is to use a single integrated development environment (IDE)
that includes both an editor and a console. This is what Spyder offers, with many
additional features, such as project management, file explorer, command log, debugger,
etc.

To launch Spyder, one can open a terminal and simply evaluate Spyder (it is also
possible to launch the software using the Start Menu for Windows users). Spyder can
also be launched via Anaconda.

The development environment, as shown in Figure 1.5, is divided into several windows:

• on the left: the script editor;
• at the top right: a window to display Python help, the system tree or the

variables created;
• bottom right: one or more consoles.

https://www.sublimetext.com/
https://notepad-plus-plus.org/
https://www.spyder-ide.org/

22 CHAPTER 1. INTRODUCTION

Figure 1.5: Spyder.

1.3.4 Jupyter Notebook

A graphical user interface in a web browser for IPython has gained has gained
a strong popularity in the recent years: Jupyter Notebook. It is an open-source
application for creating and sharing documents that contain code, equations, graphical
representations and text. It is possible to include and execute different language
codes in Jupyter notebooks.

Jupyter Notebook can be launched through Anaconda. After clicking on the Launch
button of Jupyter Notebook in Anaconda, the default web browser launches and
offers a tree structure, as depicted in Figure 1.6. Without realizing it, a local web

http://jupyter.org/

1.3. WORKING SPACE 23

server was launched as well as a Python process (a kernel).

If the browser does not launch automatically, the page that should have been displayed
can be accessed at the following address: http://localhost:8890/tree?.

Figure 1.6: Jupyter Notebook.

To address the main functions of Jupyter, create a jupyter folder in a directory of
our choice. Once this folder has been created, navigate through the Jupyter tree
structure in the web browser.

Once in the folder, create a new Python 3 Notebook (by clicking on the New button
at the top left of the window, then on Python 3).

A notebook named Untitled has just been created, the page displays an empty
document, as shown in Figure 1.7.

http://localhost:8890/tree

24 CHAPTER 1. INTRODUCTION

Figure 1.7: An Empty Notebook.

If we look in our file explorer, in the newly created jupyter folder, a new file has
appeared: Untitled.ipynb.

1.3.4.1 Evaluation of an instruction

Let us go back to the web browser, to the page displaying your notebook.

Below the menu bar, we notice the presence of a framed area, a cell, that starts with
IN []:, like what we saw in the console on IPython. On the right, the grey area
invites us to submit instructions in Python.

Let us write the following instruction:
2+1

To submit the instruction for evaluation, there are several ways (make sure you have
clicked inside the cell):

• in the menu bar: Cell > Run Cells;
• in the shortcut bar: button Run ;
• with the keyboard: hold down the CTRL key and press Enter.

Figure 1.8: Evaluated Cell.

1.3. WORKING SPACE 25

1.3.4.2 Text cells

Among the advantages of notebooks over traditional scripts is the possibility to add
text boxes to accompany the codes and the corresponding output after evaluation.

Let’s add a cell below the first one. To do this, one can proceed either:

• using the menu bar: Insert > Insert Cell Below (to insert a cell below; if
you want an insertion above, just choose Insert Cell Above);

• by clicking in the frame of the cell from which you want to add (anywhere
except in the grayed out code area, so that you can switch to command' mode),
then pressing theBkey on the keyboard (A‘ for insertion above).

The new cell calls for a Python instruction to be entered. To indicate that the content
should be interpreted as text, it is necessary to specify it. Again, there are several
ways to do this:

• using the menu bar: Cell > Cell Type > Markdown;
• using the shortcut bar: in the drop-down menu where Code is written, by

selecting Markdown;
• in command mode (after clicking inside the cell frame, but not in the code

area), by pressing the M key on the keyboard.

The cell is then ready to receive text, written in markdown. For more information
on writing in Markdown, you can refer to this [cheat sheet] (https://github.com/
adam-p/markdown-here/wiki/Markdown-Cheatsheet).

Let’s enter a few lines of text to see very briefly how the cells written in Markdown
work.
A Level 1 Title

I will write *text in italics * and also **in bold **.

A Level 2 Title

I can write lists:

- with an item
- a second one
- and a third nesting a new list:

- with a subitem
- and a second one

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

26 CHAPTER 1. INTRODUCTION

- a fourth one including a numbered nested list:
1. with a subitem
1. and another .

Another Level 2 Title

I can even put equations in $LaTeX$.
Like $X \sim \ mathcal {N }(0.1) $.

To learn more about \LaTeX , we can refer to this :
[Wikipedia page](https :// en. wikibooks .org/wiki/LaTeX/

Mathematics).

Which gives, in Jupyter:

Figure 1.9: Text cell not evaluated.

Then, the cell still has to be evaluated, as if it were a cell containing a Python
instruction, to switch to a Markdown display (CTRL and ENTER).

To edit the text once we have switched to markdown, a simple double-click in the
cell text box does the trick.

1.4. VARIABLES 27

To change the cell type so that it becomes code:

• using the menu bar: Cell > Cell Type > Code ;
• using the shortcut bar: in the drop-down menu where Code is written, by

selecting Code ;
• in command mode, press the key on the Y keyboard.

1.3.4.3 Deleting a cell

To delete a cell:

• using the menu bar: Edit > Delete Cells ;
• using the shortcut bar: scissor icon;
• in command mode, press the D keyboard key twice.

1.4 Variables

1.4.1 Assignment and deletion

When we evaluated the 2+1 instructions earlier, the result was displayed in the console,
but it was not saved. In many cases, it is useful to keep the content of the result in
an object, so that it can be reused later. To do this, variables are used. To create
a variable, we use the equality sign (=), followed by what we want to save (text, a
number, several numbers, etc.) and preceded by the name we will use to designate
this variable.

For example, if we want to store the result of the calculation 2+1 in a variable that
we will name x, we write:
x = 2+1

To display the value of our variable x, we can use the function print():
print(x)

3

To change the value of the variable, a new assignment can be made:

28 CHAPTER 1. INTRODUCTION

x = 4
print(x)

4

It is also possible to give more than one name to the same content (a copy of x is
made):
x = 4;
y = x;
print(y)

4

If the copy is modified, the original will not be affected:
y = 0
print(y)

0

print(x)

4

A variable can be deletet with the instruction del:
del y

The display of the content of ‘y’ returns an error:
print(y)

Error in py_call_impl (callable , dots$args , dots$keywords):
NameError : name 'y' is not defined

##
Detailed traceback :

1.4. VARIABLES 29

File "<string >", line 1, in <module >

But we note that the variable x has not been deleted:
print(x)

4

1.4.2 Naming Conventions

The name of a variable can be composed of alphanumeric characters as well as the
underscore (_) (there is no limit on the length of the name). It is forbidden to start
the name of the variable with a number. It is also prohibited to include a space in
the name of a variable.

To increase the readability of the variable names, several methods exist. We will
adopt the following:

• all letters in lowercase;
• the separation of terms by an underscore (_).

For example, for a variable containing the value of a user’s identifier: id_user.

It should be noted that the variable names are case sensitive:
x = "toto"
print(x)

toto

print(X)

Error in py_call_impl (callable , dots$args , dots$keywords):
NameError : name 'X' is not defined

##
Detailed traceback :
File "<string >", line 1, in <module >

30 CHAPTER 1. INTRODUCTION

1.5 Comments

There are several ways to add comments in python.

One way is to use the number sign (#) to make a comment on a single line.
Everything that follows the number sign to the end of the line will not be evaluated
by Python. On the other hand, what comes before the number sign will be.
Un commentaire print("Bonjour")
print("Hello") # Un autre commentaire

Hello

The introduction of a block of comments (comments on several lines) is done
by surrounding what is to be commented with a delimiter: three single or double
quotation marks:
"""
A comment that starts on a line
and continues on to another
and stops at the third"""

1.6 Modules and packages

Some basic functions in Python are loaded by default. Others require a module to
be loaded. These modules are files that contain definitions as well as instructions.

Package are defined as a combination of modules that offer a set of functions.

Among the packages that will be used in these notes are:

• NumPy, a fundamental package for scientific calculations
• pandas, a package allowing easy data manipulation and analysis
• Matplotlib, a package allowing us to create graphics.

To load a module (or a package), we use the command import. For example, to load
the package pandas:

http://www.numpy.org/
https://pandas.pydata.org/
https://matplotlib.org/

1.6. MODULES AND PACKAGES 31

import pandas

This allows us to use functions contained in the module or package. For example,
here we can use the function Series(), contained in the package pandas, to create
an array of data indexed to a dimension :
x = pandas.Series([1, 5, 4])
print(x)

0 1
1 5
2 4
dtype: int64

It is possible to give an alias to the module or package that is imported, by specifying
it using the following syntax:
import module as alias

This is common practice to shorten the names of modules that will be used a lot. For
example, for pandas, the name is usually shortened to pd:
import pandas as pd
x = pd.Series([1, 5, 4])
print(x)

0 1
1 5
2 4
dtype: int64

A single function can also be imported from a module, and an alias can be assigned to
it (optionally). For example, with the pyplot() function of the package matplotlib,
we usually do the following:
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0, 5, 0.1);

32 CHAPTER 1. INTRODUCTION

y = np.sin(x)
plt.plot(x, y)

1.7 The Help System

To conclude this introduction, it seems important to mention the presence of help
and documentation in Python.

For information on functions, it is possible to refer to the[online documentation]
(https://docs.python.org/3/). It is also possible to get help inside the environment
we are using, using the question mark (?).

For example, when using IPython (which, let’s remember, is the case when working

https://docs.python.org/3/

1.7. THE HELP SYSTEM 33

with Jupyter Notebook), the help can be accessed using different syntaxes:

• ? : fournitprovides an introduction and an overview of the features offered in
Python (you leave it with the ESC key for example)

• object? : provides details about object (for example x? or plt.plot?)
• object?? : more details about object
• %quickref : short reference on Python syntaxes
• help() : access to the Python help system.

Note: the tabulation key on the keyboard allows not only autocompletion, but
also an exploration of the content of an object or module.

In addition, when it comes to finding help on a more complex problem, the right
thing to do is not hesitate to search on a search engine, in mailing lists and of course
on the many questions on Stack Overflow.

https://stackoverflow.com

34 CHAPTER 1. INTRODUCTION

Chapter 2

Types of Data

Many types of data are integrated into Python. In this section we will discuss strings,
numerical values, booleans (TRUE/FALSE), the null value, dates and times.

2.1 Strings

A string is a collection of characters such as letters, numbers, spaces, punctuation
marks, etc.

Strings are marked with single, double, or triple quotation marks.

Here is an example:
x = "Hello World"

To display the content of our variable x containing the string in the console, the
function print() can be used:
print(x)

Hello World

As indicated just before, single quotation marks can be used to create a string:

35

36 CHAPTER 2. TYPES OF DATA

y = 'How are you?'
print(y)

How are you?

To include apostrophes in a character string created using single quotation marks,
one must use an escape character: a backslash (\):
z = 'I\'m fine'
print(z)

I'm fine

Note that if the string is created using double quotation marks, it is not necessary to
use the escape character:
z = "I'm \"fine\""
print(z)

I'm "fine"

To specify a line break, we use the following string: \n.
x = "Hello, \nWorld"
print(x)

Hello ,
World

In the case of character strings on multiple lines, using single or double quotation
marks will return an error (EOL while scanning trial literal, i.e., detection of a syntax
error, Python was expecting something else at the end of the line). To write a string
on several lines, Python suggests using quotation marks (single or double) at the
beginning and end of the string three times:

2.1. STRINGS 37

x = """Hello,
World"""
print(x)

Hello ,
World

Remarque 2.1.1

The character \ (backslash) is the escape character. It allows to display certain
characters, such as quotation marks in a string defined by quotation marks, or
control characters, such as tabulation, line breaks, etc. Here are some common
examples:

Code Description Code Description
\n New line \r Line break
\t Tabulation \b Backspace
\\ Backslash \' Quotation mark
\" Double quotation mark \` Grave accent

To obtain the length of a string, Python offers the function len():
x = "Hello World !"
print(len(x))

13

print(x, len(x))

Hello World ! 13

2.1.1 Concatenation of Strings

To concatenate strings, i.e., to put them end to end, Python offers to use the operator
+:

38 CHAPTER 2. TYPES OF DATA

print("Hello" + " World")

Hello World

The * operator allows us to repeat a string several times:
print(3 * "Go Habs Go! " + "Woo Hoo!")

Go Habs Go! Go Habs Go! Go Habs Go! Woo Hoo!

When two literals of strings are side by side, Python concatenates them:
x = ('You shall ' 'not ' "pass!")
print(x)

You shall not pass!

It is also possible to add the content of a variable to a string, using brackets ({})
and the method format():
x = "I like to code in {}"
langage_1 = "R"
langage_2 = "Python"
preference_1 = x.format(langage_1)
print(preference_1)

I like to code in R

preference_2 = x.format(langage_2)
print(preference_2)

I like to code in Python

It is possible to add more than one variable content in a string, always with
brackets and the method format():

2.1. STRINGS 39

x = "I like to code in {} and in {}"
preference_3 = x.format(langage_1, langage_2)
print(preference_3)

I like to code in R and in Python

2.1.2 Indexing and Extraction

Strings can be indexed. Be careful, the index of the first character starts at 0.

To obtain the ith character of a string, brackets can be used. The syntax is as follows:
x[i-1]

For example, to display the first character, then the fifth of the Hello string:
x = "Hello"
print(x[0])

H

print(x[4])

o

The extraction can be done starting at the end of the chain, by preceding the value
of the index with the minus sign (-).

For example, to display the penultimate character of our string x:
print(x[-2])

l

The extraction of a substring by specifying its start and end position (implicitly or
not) is also done with the brackets. We just need to specify the two index values:
[start:end] as in the following example:

40 CHAPTER 2. TYPES OF DATA

x = "You shall not pass!"

From the fourth character (not included) to the ninth (included)
print(x[4:9])

shall

When the first value is not specified, the beginning of the string is taken by default;
when the second value is not specified, the end of the string is taken by default.
From the 4th character (non included) to the end of the string
print(x[4:])
From the beginning of the string to the penultimate (included)
print(x[:-1])
From the 3rd character before the end (included) to the end
print(x[-5:])

shall not pass!

You shall not pass

pass!

It is possible to add a third clue in the brackets: the step.
From the 4th character (not included),
to the end of the string, in steps of 3
print(x[4::3])

sln s

To obtain the chain in the opposite direction:

2.1. STRINGS 41

print(x[::-1])

!ssap ton llahs uoY

2.1.3 Available Methods with Strings

Many methods are available for strings. By adding a dot (.) after the name of an
object designating a string and then pressing the tab key, the available methods are
displayed in a drop-down menu.

For example, the count() method allows us to count the number of occurrences of
a pattern in the string. To count the number of occurrences of in in the following
string:
x = "le train de tes injures roule sur le rail de mon indifférence"
print(x.count("in"))

3

Remarque 2.1.2

Once the method call has been written, by placing the cursor at the end of
the line and pressing the Shift and Tabulation keys, explanations can be
displayed.

2.1.3.1 Conversion to upper or lower case

The lower() and upper() methods allow us to pass a string in lowercase and
uppercase characters, respectively.
x = "le train de tes injures roule sur le rail de mon indifférence"
print(x.lower())
print(x.upper())

42 CHAPTER 2. TYPES OF DATA

le train de tes injures roule sur le rail de mon indiff é
rence

LE TRAIN DE TES INJURES ROULE SUR LE RAIL DE MON INDIFF É
RENCE

2.1.3.2 Seach Pattern for Strings

When we wish to find a pattern in a string, we can use the method find(). A
pattern to be searched is provided in parameters. The find() method returns the
smallest index in the string where the pattern is found. If the pattern is not found,
the returned value is -1.
print(x.find("in"))
print(x.find("hello"))

6

-1

It is possible to add as an option an indication allowing to restrict the search on
a substring, by specifying the start and end index :
print(x.find("in", 7, 20))

16

Note: the end index can be omitted; in this case, the end of the string is used:
print(x.find("in", 20))

49

2.1. STRINGS 43

Remarque 2.1.3

If one does not want to know the position of the sub-chain, but only its presence
or absence, one can use the operator in: print("train" in x)

To perform a search without regard to case, the method capitalize() can be
used:
x = "Mademoiselle Deray, il est interdit de manger de la choucroute ici."
print(x.find("deray"))

-1

print(x.capitalize().find("deray"))

13

2.1.3.3 Splitting Strings

To split a string into substrings, based on a pattern used to delimit the substrings
(e.g., a comma or a space), the method split() can be used:
print(x.split(" "))

[' Mademoiselle ', 'Deray ,', 'il ', 'est ', 'interdit ', 'de ', '
manger ', 'de ', 'la ', 'choucroute ', 'ici .']

By indicating a numerical value as parameters, it is possible to limit the number of
substrings returned:
Le nombre de sous-chaînes maximum sera de 3
print(x.split(" ", 3))

[' Mademoiselle ', 'Deray ,', 'il ', 'est interdit de manger de
la choucroute ici .']

44 CHAPTER 2. TYPES OF DATA

The splitlines() method also allows us to separate a string of characters according
to a pattern, this pattern being an end of line character, such as a line break or a
carriage return for example.
x = '''"No, I am your Father!
- No... No. It's not true! That's impossible!
- Search your feelings. You know it to be true.
- Noooooooo! Noooo!"'''
print(x.splitlines())

['"No , I am your Father !', "- No ... No. It's not true! That
's impossible !", '- Search your feelings . You know it to be

true.', '- Noooooooo ! Noooo !" ']

2.1.3.4 Cleaning, completion

To remove blank characters (e.g., spaces, line breaks, quadratins, etc.) at the beginning
and end of a string, we can use the strip() method, which is sometimes very useful
for cleaning strings.
x = "\n\n Pardon, du sucre ? \n \n"
print(x.strip())

Pardon , du sucre ?

It is possible to specify in parameter which characters to remove at the beginning
and end of the string:
x = "www.egallic.fr"
print(x.strip("wrf."))

egallic

Sometimes we have to make sure to obtain a string of a given length (when we
have to provide a file with fixed widths for each column for example). The rjust()
method is then a great help. By entering a string length and a fill character, it returns

2.1. STRINGS 45

the string with a possible completion (if the length of the returned string is not long
enough with respect to the requested value), repeating the fill character as many
times as necessary.

For example, to have a longitude coordinate stored in a string of characters of length
7, adding spaces may be necessary:
longitude = "48.11"
print(x.rjust(7," "))

www. egallic .fr

2.1.3.5 Replacements

The replace() method allows to perform replacement of patterns in a character
string:
x = "Criquette ! Vous, ici ? Dans votre propre salle de bain ? Quelle surprise !"
print(x.replace("Criquette", "Ridge"))

Ridge ! Vous , ici ? Dans votre propre salle de bain ?
Quelle surprise !

This method is very convenient for removing spaces for example:
print(x.replace(" ", ""))

Criquette !Vous ,ici? Dansvotrepropresalledebain ?
Quellesurprise !

Here is a table listing some of the available methods ([exhaustive list in the documen-
tation] (https://docs.python.org/3/library/stdtypes.html#string-methods)):

Méthode Description
capitalize() Capitalization of the first character and lowercase of the rest
casefold() Removes case distinctions (useful for comparing strings without

regard to case)

https://docs.python.org/3/library/stdtypes.html#string-methods

46 CHAPTER 2. TYPES OF DATA

Méthode Description
count() Counts the number of occurrences (without overlap) of a pattern

encode() Encodes a string of characters in a specific encoding
find() Returns the smallest clue where a substring is found

lower() Returns the string having passed each alphabetical character in
lower case

replace() Replaces one pattern with another
split() Separates the chain into substring according to a pattern
title() Returns the string after passing each first letter of a word through a

capital letter
upper() Returns the string having passed each alphabetical character in

upper case

2.1.4 Conversion to character strings

When we want to concatenate a string with a number, Python returns an error.
nb_followers = 0
message = "He has " + nb_followers + "followers."

Error in py_call_impl (callable , dots$args , dots$keywords):
TypeError : must be str , not int

##
Detailed traceback :
File "<string >", line 1, in <module >

print(message)

Error in py_call_impl (callable , dots$args , dots$keywords):
NameError : name 'message ' is not defined

##
Detailed traceback :
File "<string >", line 1, in <module >

We should then convert the object that is not a string into a string beforehand. To
do this, Python offers the function str():

2.2. NUMERICAL VALUES 47

message = "He has " + str(nb_followers) + " followers."
print(message)

He has 0 followers .

2.1.5 Exercise

1. Create two variables named a and b so that they contain the following strings
respectively: 23 to 0 and C'est la piquette, Jack!.

2. Display the number of characters from a, then b.
3. Concatenate a and b in a single string, adding a comma as a separating character.
4. Same question by choosing a separation that allows a line break between the

two sentences.
5. Using the appropriate method, capitalize a and b.
6. Using the appropriate method, lowercase a and b.
7. Extract the word la and Jack from the string b, using indexes.
8. Look for the sub-chain piqu in b, then do the same with the sub-chain mauvais.
9. Return the position (index) of the first character a found in the string b, then

try with the character w.
10. Replace the occurrences of the pattern a by the pattern Z in the substring b.
11. Separate the string b using the comma as a sub-chain separator.
12. (Bonus) Remove all punctuation characters from string b, then use an appropri-

ate method to remove white characters at the beginning and end of the string.
(Use the ‘regex’ library).

2.2 Numerical values

There are four categories of numbers in Python: integers, floating point numbers and
complexes.

2.2.1 Integers

Integers (ints), in Python, are signed integers.

48 CHAPTER 2. TYPES OF DATA

Remarque 2.2.1

The type of an object is accessed using the type() function in Python.

x = 2
y = -2
print(type(x))

<class 'int '>

print(type(y))

<class 'int '>

2.2.2 Floating Point Numbers

Floats are real numbers. They are written using a dot to distinguish the integer part
from the decimal part of the number.
x = 2.0
y = 48.15162342
print(type(x))

<class 'float '>

print(type(y))

<class 'float '>

Scientific notations can also be used, using E or e to indicate a power of 10. For
example, to write 3.212:
x = 3.2E12
y = 3.2e12
print(x)

2.2. NUMERICAL VALUES 49

3200000000000.0

print(y)

3200000000000.0

In addition, when the number is equal to a fraction of 1, it is possible to avoid writing
the zero:
print(0.35)

0.35

print(.35)

0.35

2.2.3 Complex numbers

Python allows us to natively manipulate complex numbers, of the form z = a+ ib,
where a and b are floating point numbers, and such that i2 = (−i)2 = 1. The real
part of the number, R(z), is a while its imaginary part, I(z), is b.

In python, the imaginary unit i is denoted by the letter j.
z = 1+3j
print(z)

(1+3j)

print(type(z))

<class 'complex '>

50 CHAPTER 2. TYPES OF DATA

It is also possible to use the complex() function, which requires two parameters (the
real part and the imaginary part):
z = complex(1, 3)
print(z)

(1+3j)

print(type(z))

<class 'complex '>

Several methods are available with complex numbers. For example, to access the
conjugate, Python provides the method conjugate():
print(z.conjugate())

(1-3j)

Access to the real part of a complex or its imaginary part is done using the real()
and imag() methods, respectively.
z = complex(1, 3)
print(z.real())

Error in py_call_impl (callable , dots$args , dots$keywords):
TypeError : 'float ' object is not callable

##
Detailed traceback :
File "<string >", line 1, in <module >

print(z.imag())

Error in py_call_impl (callable , dots$args , dots$keywords):
TypeError : 'float ' object is not callable

##
Detailed traceback :

2.2. NUMERICAL VALUES 51

File "<string >", line 1, in <module >

2.2.4 Conversions

To convert a number to another digital format, Python has a few functions.

2.2.4.1 Conversion to Integer

The conversion of an integer or string is done using the function int():
x = "3"
x_int = int(x)
print(type(x_int))

<class 'int '>

print(type(x))

<class 'str '>

Note that the conversion of a floating point number truncates the number to keep
only the integer part:
x = 3.6
x_int = int(x)
print(x_int)

3

2.2.4.2 Conversion to Floating Point Number

To convert a number or string to a floating point number or string (if
possible), Python suggests using the function float().

52 CHAPTER 2. TYPES OF DATA

x = "3.6"
x_float = float(x)
print(type(x_float))

<class 'float '>

With an integer:
x = 3
x_float = float(x)
print(x_float)

3.0

2.2.4.3 Conversion to Complex

The conversion of a number or a string of characters into a complex number is done
with the function complex():
x = "2"
x_complex = complex(x)
print(x_complex)

(2+0j)

With a float :
x = 2.4
x_complex = complex(x)
print(x_complex)

(2.4+0 j)

2.3. BOOLEANS 53

2.3 Booleans

Logical data can have two values: True or False. They correspond to a logical
condition. Care must be taken to ensure that the case is well respected.
x = True
y = False
print(x, y)

True False

True can be automatically converted to 1; False to 0. This can be very convenient,
for example, when counting true or false values in the columns of a data table.
res = True + True + False + True*True
print(res)

3

2.4 Empty Object

The empty object, commonly called null, has an equivalent in Python: None. To
assign it to a variable, one should be careful with case:
x = None
print(x)

None

print(type(x))

<class 'NoneType '>

54 CHAPTER 2. TYPES OF DATA

The None object is a neutral variable, with “null” behavior.

To test if an object is the None object, we proceed as follows (the result is a Boolean):
x = 1
y = None
print(x is None)

False

print(y is None)

True

2.5 Dates and Times

There are several moduels to manage dates and time in Python. We will explore part
of the datetime module.

2.5.1 Module Datetime

Python has a module called datetime which offers the possibility to manipulate dates
and durations (dates and times).

There are several types of objects designating dates:

• date: a date according to the Gregorian calendar, indicating the year, month
and day

• time: a given time, without taking into account a particular day, indicating
the hour, minute, second (possibly the microsecond and time zone as well)

• datetime: a date combining date and time;
• timedelta: a time between two objects of the type dates, time or datetime;
• tzinfo: an abstract basic type, providing information about time zones;
• timezone: a type using the tzinfo type as a fixed offset from UTC.

2.5. DATES AND TIMES 55

2.5.1.1 Date

Objects of type date refer to dates in the Gregorian calendar, for which the following
characteristics are mentioned: year, month and day.

To create a date object, the syntax is as follows:
date(year, month, day)

For example, to create the date of April 23, 2013:
from datetime import date
debut = date(year = 2013, month = 4, day = 23)
print(debut)

2013 -04 -23

print(type(debut))

<class 'datetime .date '>

Remarque 2.5.1

It is not mandatory to specify the name of the parameters in the call to the
date function. However, the order of priority should be as follows: year, month,
day.

The attributes of the created date can then be accessed (they are integers):
print(debut.year) # Extract the year

2013

print(debut.month) # Extract the month

4

56 CHAPTER 2. TYPES OF DATA

print(debut.day) # Extract the day

23

Some methods are available for objects of the type date. We will review some of
them.

2.5.1.1.1 ctime()

The ctime() method returns the date as a string.
print(debut.ctime())

Tue Apr 23 00:00:00 2013

2.5.1.1.2 weekday()

The weekday() method returns the position of the day of the week (Monday being 0,
Sunday 6)
print(debut.weekday())

1

Remarque 2.5.2

This method can be very handy when analyzing data to explore aspects of
weekly seasonality.

2.5.1.1.3 isoweekday()

In the same vein as weekday(), the isoweekday() method returns the position of
the day of the week, this time assigning the value 1 to Monday and 7 to Sunday.

2.5. DATES AND TIMES 57

print(debut.isoweekday())

2

2.5.1.1.4 toordinal()

The toordinal() method returns the day number, taking as a reference the value 1
for the first day of year 1.
print(debut.toordinal())

734981

2.5.1.1.5 isoformat()

The isoformat() method returns the date in ISO numbering, as a string.
print(debut.isoformat())

2013 -04 -23

2.5.1.1.6 isocalendar()

The isocalendar() method returns a nuplet (c.f. Section ??) with three elements:
year, week number and day of week (all three in ISO numbering).
print(debut.isocalendar())

(2013 , 17, 2)

https://fr.wikipedia.org/wiki/Num%C3%A9rotation_ISO_des_semaines

58 CHAPTER 2. TYPES OF DATA

2.5.1.1.7 replace()

The replace() method returns the date after making a modification.
x = debut.replace(year=2014)
y = debut.replace(month=5)
z = debut.replace(day=24)
print(x, y, z)

2014 -04 -23 2013 -05 -23 2013 -04 -24

This has no impact on the original object:
print(debut)

2013 -04 -23

It is possible to modify several elements at the same time:
x = debut.replace(day=24, month=5)
print(x)

2013 -05 -24

2.5.1.1.8 strftime()

The strftime() method returns, as a string, a representation of the date, depending
on a mask used.

For example, to have the date represented as DD-MM-YYYY (two-digit day, two-digit
month and four-digit year):
print(debut.strftime("%d-%m-%Y"))

23 -04 -2013

2.5. DATES AND TIMES 59

In the previous example, two things are noteworthy: the presence of formatting
instructions (which begin with the percentage symbol) and the presence of other
characters (here, hyphens). It can be noted that characters can be replaced by others,
this is a choice to represent the date by separating its elements with dashes. It is
possible to adopt another type of writing, for example with slashes, or even other
character strings:
print(debut.strftime("%d/%m/%Y"))

23/04/2013

print(debut.strftime("Jour : %d, Mois : %m, Annee : %Y"))

Jour : 23, Mois : 04, Annee : 2013

As for the formatting guidelines, they correspond to the codes required by the C
standard (c.f. the Python documentation). Here are some of them:

Table 2.3: Formatting codes

Code Description Example
%a Abbreviation of the day of the week (depends on

the location)
Tue

%A Full weekday (depends on location) Tuesday
%b Abbreviation of the month (depends on the

location)
Apr

%B Name of the full month (depends on location) April
%c Date and time (depends on location) in format %a

%e %b %H:%M:%S:%Y
Tue Apr 23

00:00:00 2013
%C Century (00-99) (integer part of the year’s division

by 100)
20

%d Day of the month (01–31) 23
%D Date in format %m/%d/%y 04/23/13
%e Day of the month in decimal number (1–31) 23
%F Date in format %Y-%m-%d 2013-04-23
%h Same as %b Apr
%H Hour (00–24) 00

https://docs.python.org/fr/3/library/datetime.html#strftime-strptime-behavior

60 CHAPTER 2. TYPES OF DATA

Code Description Example
%I Hour (01–12) 12
%j Day of the year (001–366) 113
%m Month (01–12) 04
%M Minute (00-59) 00
%n Line break in output, white character in input \n
%p AM/PM PM AM
%r Hour in format 12 AM/PM 12:00:00 AM
%R Same as %H:%M 00:00
%S Second (00-61) 00
%t Tabulation in output, white character in input \t
%T Same as %H:%M:%S 00:00:00
%u Day of the week (1–7), starts on Monday 2
%U Week of the year (00–53), Sunday as the beginning

of the week, and the first Sunday of the year defines
the week

16

%V Week of the year (00-53). If the week (which begins
on a Monday) that contains January 1 has four or
more days in the New Year, then it is considered
Week 1. Otherwise, it is considered as the last of

the previous year, and the following week is
considered as week 1 (ISO 8601 standard)

17

%w Day of the week (0–6), Sunday being equal to 0 2
%W Week of the year (00–53), Monday being the first

day of the week, and typically, the first Monday of
the year defines week 1 (U.K. convention)

16

%x Date (depends on location) 04/23/13
%X Hour (depends on location) 00:00:00'
%y Year without the “century” (00–99) 13
%Y Year (in input, only from 0 to 9999) 2013
%z Offset in hours and minutes with respect to UTC

time
%Z Abbreviation of the time zone (output only) CEST

2.5. DATES AND TIMES 61

2.5.1.2 Time

Time objects refer to specific times without taking into account a particular day.
They provide information on the hour, minute, second (possibly the microsecond and
time zone as well).

To create a time object, the syntax is as follows:
time(hour, minute, second)

For example, to create the moment 23:04:59 (twenty-three hours, four minutes and
fifty-nine seconds):
from datetime import time
moment = time(hour = 23, minute = 4, second = 59)
print(moment)

23:04:59

print(type(moment))

<class 'datetime .time '>

We can add information about the microsecond. Its value must be between zero and
one million.
moment = time(hour = 23, minute = 4, second = 59, microsecond = 230)
print(moment)

23:04:59.000230

print(type(moment))

<class 'datetime .time '>

The attributes of the created date (they are integers) can then be accessed, including
the following:

62 CHAPTER 2. TYPES OF DATA

print(moment.hour) # Extract the hour

23

print(moment.minute) # Extract the minute

4

print(moment.second) # Extract the second

59

print(moment.microsecond) # Extract the microsecond

230

Some methods for time objects are available. Their use is similar to objects of the
date class (refer to Section 2.5.1.1).

2.5.1.3 Datetime

The datetime objects combine the elements of the date and time objects. They
provide the day in the Gregorian calendar as well as the hour, minute, second (possibly
the microsecond and time zone).

To create a datetime object, the syntax is as follows:
datetime(year, month, day, hour, minute, second, microsecond)

For example, to create the date 23-04-2013 at 17:10:00:
from datetime import datetime
x = datetime(year = 2013, month = 4, day = 23,

hour = 23, minute = 4, second = 59)
print(x)

2.5. DATES AND TIMES 63

2013 -04 -23 23:04:59

print(type(x))

<class 'datetime . datetime '>

The datetime objects have the attributes of the date objects (c.f. Section 2.5.1.1)
and time type (c.f. Section 2.5.1.2).

As for methods, relatively more are available. We will comment on some of them.

2.5.1.3.1 today() et now()

The today() and now() methods return the current datetime, the one at the time
the instruction is evaluated:
print(x.today())

2019 -09 -20 19:14:30.914757

print(datetime.today())

2019 -09 -20 19:14:30.918129

The distinction between the two lies in the time zone. With today(), the attribute
tzinfo is set to None, while with now(), the attribute tzinfo, if specified, is taken
into account.

2.5.1.3.2 timestamp()

The timestamp() method returns, as a floating point number, the timestamp POSIX
corresponding to the datetime object. The timestamp POSIX corresponds to the
Posix time, equivalent to the number of seconds elapsed since January 1, 1970, at
00:00:00 UTC.

64 CHAPTER 2. TYPES OF DATA

print(x.timestamp())

1366751099.0

2.5.1.3.3 date()

The date() method returns a date type object whose year, month and day attributes
are identical to those of the object :
x_date = x.date()
print(x_date)

2013 -04 -23

print(type(x_date))

<class 'datetime .date '>

2.5.1.3.4 time()

The time() method returns an object of type time whose hour, minute, second,
microsecond attributes are identical to those of the object :
x_time = x.time()
print(x_time)

23:04:59

print(type(x_time))

<class 'datetime .time '>

2.5. DATES AND TIMES 65

2.5.1.4 Timedelta

The objects of type timedelta represent times between two dates or times.

To create an object of type timedelta, the syntax is as follows:
timedelta(days, hours, minutes, seconds, microseconds)

It is not mandatory to provide a value for each parameter. When a parameter does
not receive a value, its default value is 0.

For example, to create an object indicating a duration of 1 day and 30 seconds:
from datetime import timedelta
duree = timedelta(days = 1, seconds = 30)
duree

datetime . timedelta (1, 30)

datetime.timedelta(1, 30)

The attributes (having been defined) can then be accessed. For example, to access
the number of days represented by the duration:
duree.days

1

1

The total_seconds() method is used to obtain the duration expressed in seconds:
duree = timedelta(days = 1, seconds = 30, hours = 20)
duree.total_seconds()
158430.0

2.5.1.4.1 Time Between Two Objects date or datetime.

When subtracting two objects of type date, the number of days between these two
dates is obtained, in the form of an object of type timedelta:

66 CHAPTER 2. TYPES OF DATA

from datetime import timedelta
beginning = date(2018, 1, 1)
end = date(2018, 1, 2)
nb_days = end-beginning
print(type(nb_days))

<class 'datetime . timedelta '>

print(nb_days)

1 day , 0:00:00

When subtracting two objects of type datetime, we obtain the number of days,
seconds (and microseconds, if entered) separating these two dates, in the form of an
object of type timedelta:
beginning = datetime(2018, 1, 1, 12, 26, 30, 230)
end = datetime(2018, 1, 2, 11, 14, 31)
duration = end-beginning
print(type(duration))

<class 'datetime . timedelta '>

print(duration)

22:48:00.999770

It can be noted that the durations given take into account leap years. Let us first
look at the number of days between February 28 and March 1 for a non-leap year:
beginning = date(2021, 2,28)
end = date(2021, 3, 1)
duration = end - beginning
duration

2.5. DATES AND TIMES 67

datetime.timedelta(1)

Now let’s look at the same thing, but in the case of a leap year:
beginning_leap = date(2020, 2,28)
end_leap = date(2020, 3, 1)
beginning_leap = end_leap - beginning_leap
beginning_leap

datetime.timedelta(2)

It is also possible to add durations to a date:
debut = datetime(2018, 12, 31, 23, 59, 59)
print(debut + timedelta(seconds = 1))

2019 -01 -01 00:00:00

2.5.2 pytz Module

If date management is of particular importance, a library proposes to go a little further,
especially with regard to time zone management. This library is called pytz. Many
examples are available on[the project web page] (https://pypi.org/project/pytz/).

2.5.3 Exercices

1. Using the appropriate function, store the date of August 29, 2019 in an object
called d then display the type of the object.

2. Using the appropriate function, display the current date.
3. Store the next date in an object named d2 : “2019-08-29 20:30:56”. Then,

display in the console with the print() function the year, minute and second
attributes of d2.

4. Add 2 days, 3 hours and 4 minutes to d2, and store the result in an object
called d3.

5. Display the difference in seconds between d3 and d2.

https://pypi.org/project/pytz/

68 CHAPTER 2. TYPES OF DATA

6. From the object d2, display the date of d2 as a string so that it follows the
following syntax: “Month Day, Year”, with “Month” the name of the month
(August), “Day” the two-digit day number (29) and “Year” the year of the date
(2019).

Chapter 3

Structures

Python features several different basic integrated structures. In this section we will
discuss some of them: lists, tuplets, sets and dictionaries.

3.1 Lists

One of the most flexible structures in Python is the list. It is a grouping of values.
The creation of a list is done by writing the values by separating them with a comma
and surrounding them by square brackets ([and]).
x = ["Pascaline", "Gauthier", "Xuan", "Jimmy"]
print(x)

[' Pascaline ', 'Gauthier ', 'Xuan ', 'Jimmy ']

The content of a list is not necessarily text:
y = [1, 2, 3, 4, 5]
print(y)

[1, 2, 3, 4, 5]

It is even possible to include elements of different types in a list:

69

70 CHAPTER 3. STRUCTURES

z = ["Piketty", "Thomas", 1971]
print(z)

[' Piketty ', 'Thomas ', 1971]

A list can contain another list:
tweets = ["aaa", "bbb"]
followers = ["Anne", "Bob", "Irma", "John"]
compte = [tweets, followers]
print(compte)

[[' aaa ', 'bbb '], ['Anne ', 'Bob ', 'Irma ', 'John ']]

3.1.1 Extraction of the Elements

Access to the elements is made thanks to its indexation (be careful, the index of the
first element is 0):
print(x[0]) # The first element of x

Pascaline

print(x[1]) # The second element of x

Gauthier

Access to an element can also be done by starting from the end, by putting the minus
sign (-) in front of the index:
print(x[-1]) # The last element of x

Jimmy

3.1. LISTS 71

print(x[-2]) # The penultimate element of x

Xuan

Splitting a list so as to obtain a subset of the list is done with the colon (:):
print(x[1:2]) # The first and second elements of x

[' Gauthier ']

print(x[2:]) # From the second element (not included) to the end of x

['Xuan ', 'Jimmy ']

print(x[:-2]) # From the first to the penultimate (not included)

[' Pascaline ', 'Gauthier ']

Remarque 3.1.1

The extraction from a list using the brackets returns a list.

When extracting items from the list using the brackets, it is possible to add a third
parameter, the step :
print(x[::2]) # Every other element

[' Pascaline ', 'Xuan ']

Access to nested lists is done by using the brackets several times:
tweets = ["aaa", "bbb"]
followers = ["Anne", "Bob", "Irma", "John"]
conuts = [tweets, followers]
res = conuts[1][3] # The 4th item of the 2nd item on the list counts

72 CHAPTER 3. STRUCTURES

The number of elements in a list is obtained with the function len() :
print(len(conuts))

2

print(len(conuts[1]))

4

3.1.2 Modification

Lists are mutable, i.e., their content can be modified once the object has been created.

3.1.2.1 Replacement

To modify an element in a list, the indexes can be used:
x = [1, 3, 5, 6, 9]
x[3] = 7 # Replacing the 4th element
print(x)

[1, 3, 5, 7, 9]

3.1.2.2 Adding Elements

To add items to a list, the method append() can be used:
x.append(11) # Add value 11 at the end of the list
print(x)

[1, 3, 5, 7, 9, 11]

3.1. LISTS 73

It is also possible to use the extend() method, to concatenate lists:
y = [13, 15]
x.extend(y)
print(x)

[1, 3, 5, 7, 9, 11, 13, 15]

3.1.2.3 Deleting Elements

To removing an item from a list, the method remove() can be used:
x.remove(3) # Remove the fourth element
print(x)

[1, 5, 7, 9, 11, 13, 15]

The del command can also be used:
x = [1, 3, 5, 6, 9]
del x[3] # Remove the fourth element
print(x)

[1, 3, 5, 9]

3.1.2.4 Multiple assignments

Several values can be modified at the same time:
x = [1, 3, 5, 6, 10]
x[3:5] = [7, 9] # Replaces 4th and 5th values
print(x)

[1, 3, 5, 7, 9]

74 CHAPTER 3. STRUCTURES

The modification can increase the size of the list:
x = [1, 2, 3, 4, 5]
x[2:3] = ['a', 'b', 'c', 'd'] # Replaces the 3rd value
print(x)

[1, 2, 'a', 'b', 'c', 'd', 4, 5]

Several values can be deleted at the same time:
x = [1, 2, 3, 4, 5]
x[3:5] = [] # Removes the 4th and 5th values
print(x)

[1, 2, 3]

3.1.3 Verifying if a Value is Present

By using the operator in, it is possible to test the belonging of an object to a list:
x = [1, 2, 3, 4, 5]
print(1 in x)

True

3.1.4 Copy of List

Be careful, copying a list is not trivial in Python. Let’s take an example.
x = [1, 2, 3]
y = x

Let’s modify the first element of y, and look at the content of y and x:

3.1. LISTS 75

y[0] = 0
print(y)

[0, 2, 3]

print(x)

[0, 2, 3]

As can be seen, using the equal sign simply created a reference and not a copy.

To copy a list, there are several ways to do so. Among them, the use of the list()
function:
x = [1, 2, 3]
y = list(x)
y[0] = 0
print("x : ", x)

x : [1, 2, 3]

print("y : ", y)

y : [0, 2, 3]

It can be noted that when a splitting is done, a new object is created, not a reference:
x = [1, 2, 3, 4]
y = x[:2]
y[0] = 0
print("x : ", x)

x : [1, 2, 3, 4]

76 CHAPTER 3. STRUCTURES

print("y : ", y)

y : [0, 2]

3.1.5 Sorting

To sort the objects in the list (without creating a new one), Python offers the method
sort() :
x = [2, 1, 4, 3]
x.sort()
print(x)

[1, 2, 3, 4]

It also works with text values, sorting in alphabetical order:
x = ["c", "b", "a", "a"]
x.sort()
print(x)

['a', 'a', 'b', 'c ']

It is possible to provide the sort() method with parameters. Among these parameters,
there is one, key, which provides a function for sorting. This function must return
a value for each object in the list, on which the sorting will be performed. For
example, with the len() function, which, when applied to text, returns the number
of characters:
x = ["aa", "a", "aaaaa", "aa"]
x.sort(key=len)
print(x)

['a', 'aa ', 'aa ', 'aaaaa ']

3.2. TUPLES 77

3.2 Tuples

The tuples are sequences of Python objects.

To create a tuple, one lists the values, separated by commas:
x = 1, 4, 9, 16, 25
print(x)

(1, 4, 9, 16, 25)

It should be noted that tuplets are identified by a series of values, surrounded in two
brackets.

3.2.1 Extraction of the Elements

The elements of a tuple are extracted in the same way as those in the lists (see
Section 3.1.1).
print(x[0])

1

3.2.2 Modification

Unlike lists, tuplets are inalterable (i.e. cannot be modified after they have been
created):
x[0] = 1

Error in py_call_impl (callable , dots$args , dots$keywords):
TypeError : 'tuple ' object does not support item assignment

##
Detailed traceback :
File "<string >", line 1, in <module >

78 CHAPTER 3. STRUCTURES

It is possible to nest tuplets inside another tuple. To do this, parentheses are used:
x = ((1, 4, 9, 16), (1, 8, 26, 64))
print(x)

((1, 4, 9, 16) , (1, 8, 26, 64))

3.3 Sets

Sets are unordered collections of unique elements. The sets are unalterable, not
indexed.

To create a set, Python provides the set() function. One or more elements con-
stituting the set are provided, separated by commas and surrounded by braces
({}):
new_set = set({"Marseille", "Aix-en-Provence",

"Nice", "Rennes"})
print(new_set)

{'Nice ', 'Rennes ', 'Aix -en - Provence ', 'Marseille '}

Equivalently, rather than using the set() function, the set can only be defined using
the brackets:
new_set = {"Marseille", "Aix-en-Provence", "Nice", "Rennes"}
print(new_set)

{'Nice ', 'Rennes ', 'Aix -en - Provence ', 'Marseille '}

On the other hand, if the set is empty, Python returns an error if the set() function
is not used: il est nécessaire d’utiliser la fonction set :
empty_set = {}
type(empty_set)

3.3. SETS 79

<class 'dict '>

The type of the object we have just created is not set but dict (i.e. Section 3.4).
Also, to create the empty set, we use set():
empty_set = set()
print(type(empty_set))

<class 'set '>

During the creation of a set, if there are duplicates in the values provided, these will
be deleted to keep only one value:
new_set = set({"Marseille", "Aix-en-Provence", "Nice", "Marseille", "Rennes"})
print(new_set)

{'Nice ', 'Rennes ', 'Aix -en - Provence ', 'Marseille '}

The length of a set is obtained using the len() function:
print(len(new_set))

4

3.3.1 Modifications

3.3.1.1 Adding Elements

To add an element to a set, Python offers the add() method:
new_setv.add("Toulon")

Error in py_call_impl (callable , dots$args , dots$keywords):
NameError : name 'new_setv ' is not defined

##

80 CHAPTER 3. STRUCTURES

Detailed traceback :
File "<string >", line 1, in <module >

print(new_set)

{'Nice ', 'Rennes ', 'Aix -en - Provence ', 'Marseille '}

If the element is already present, it will not be added:
new_set.add("Toulon")
print(new_set)

{'Nice ', 'Aix -en - Provence ', 'Toulon ', 'Rennes ', 'Marseille
'}

3.3.1.2 Deletion

To remove a value from a set, Python offers the method remove():
new_set.remove("Toulon")
print(new_set)

{'Nice ', 'Aix -en - Provence ', 'Rennes ', 'Marseille '}

If the value is not present in the set, Python returns an error message:
new_set.remove("Toulon")

Error in py_call_impl (callable , dots$args , dots$keywords):
KeyError : 'Toulon '

##
Detailed traceback :
File "<string >", line 1, in <module >

3.3. SETS 81

print(new_set)

{'Nice ', 'Aix -en - Provence ', 'Rennes ', 'Marseille '}

3.3.2 Belonging test

One of the advantages of sets is the quick search for presence or absence of values
(faster than in a list). As with the lists, the belonging tests are performed using the
operator in:
print("Marseille" in new_set)

True

print("Paris" in new_set)

False

3.3.3 Copying a Set

To copy a set, as for lists (c.f. Section ??), the equality sign should not be used.
Copying a set is done using the copy() method:
new_set = set({"Marseille", "Aix-en-Provence", "Nice"})
y = new_set.copy()
y.add("Toulon")
print("y : ", y)

y : {' Toulon ', 'Nice ', 'Aix -en - Provence ', 'Marseille '}

print("set : ", new_set)

82 CHAPTER 3. STRUCTURES

set : {'Nice ', 'Aix -en - Provence ', 'Marseille '}

3.3.4 Conversion to a List

One of the interests of sets is that they contain unique elements. Also, when you want
to obtain the distinct elements of a list, it is possible to convert it into a set (with
the set() function), then to convert the set into a list (with the list() function):
my_list = ["Marseille", "Aix-en-Provence", "Marseille", "Marseille"]
print(my_list)

[' Marseille ', 'Aix -en - Provence ', 'Marseille ', 'Marseille ']

my_set = set(my_list)
print(my_set)

{'Aix -en - Provence ', 'Marseille '}

my_new_list = list(my_set)
print(my_new_list)

['Aix -en - Provence ', 'Marseille ']

3.4 Dictionaries

Python dictionaries are an implementation of key-value objects, the keys being
indexed.

Keys are often text, values can be of different types and structures.

To create a dictionary, you can proceed by using braces ({}). As encountered in the
Section 3.3, if we evaluate the following code, we get a dictionary :

3.4. DICTIONARIES 83

empty_dict = {}
print(type(empty_dict))

<class 'dict '>

To create a dictionary with entries, the braces can be used. Each entry is separated
by commas, and the key is distinguished from the associated value by two points (:):
my_dict = { "nom": "Kyrie",

"prenom": "John",
"naissance": 1992,
"equipes": ["Cleveland", "Boston"]}

print(my_dict)

{'nom ': 'Kyrie ', 'prenom ': 'John ', 'naissance ': 1992 , '
equipes ': [' Cleveland ', 'Boston ']}

It is also possible to create a dictionary using the dict() function, by providing a
sequence of key-values:
x = dict([("Julien-Yacine", "Data-scientist"),

("Sonia", "Director")])
print(x)

{'Julien - Yacine ': 'Data - scientist ', 'Sonia ': 'Director '}

3.4.1 Extraction of the Elements

Extraction from dictionaries is based on the same principle as for lists and tuples (see
Section @ref(#structure-liste-extraction)). However, the extraction of an element
from a dictionary is not based on its position in the dictionary, but by its key:
print(my_dict["prenom"])

John

84 CHAPTER 3. STRUCTURES

print(my_dict["equipes"])

[' Cleveland ', 'Boston ']

If the extraction is done by a key not present in the dictionary, an error will be
returned:
print(my_dict["age"])

Error in py_call_impl (callable , dots$args , dots$keywords):
KeyError : 'age '

##
Detailed traceback :
File "<string >", line 1, in <module >

You can test the presence of a key with the operator in:
print("prenom" in my_dict)

True

print("age" in my_dict)

False

The extraction of values can also be done using the get() method, which returns a
None value if the key is not present:
print(my_dict.get("prenom"))

John

print(my_dict.get("age"))

None

3.4. DICTIONARIES 85

3.4.2 Keys and values

Using the key() method, the keys of the dictionary can be accessed:
the_keys = my_dict.keys()
print(the_keys)

dict_keys ([' nom ', 'prenom ', 'naissance ', 'equipes '])

print(type(the_keys))

<class 'dict_keys '>

It is then possible to transform this key enumeration into a list:
the_keys_list = list(the_keys)
print(the_keys_list)

['nom ', 'prenom ', 'naissance ', 'equipes ']

The values() method provides the dictionary values:
the_values = my_dict.values()
print(the_values)

dict_values ([' Kyrie ', 'John ', 1992 , [' Cleveland ', 'Boston
']])

print(type(the_values))

<class 'dict_values '>

The items() method provides keys and values in the form of tuples:

86 CHAPTER 3. STRUCTURES

the_items = my_dict.items()
print(the_items)

dict_items ([(' nom ', 'Kyrie '), (' prenom ', 'John '), ('
naissance ', 1992) , (' equipes ', [' Cleveland ', 'Boston '])])

print(type(the_items))

<class 'dict_items '>

3.4.3 Search for Belonging

Thanks to the methods keys(), values() and items(), it is easy to search for the
presence of objects in a dictionary.
print("age" in the_keys)

False

print("nom" in the_keys)

True

print(['Cleveland', 'Boston'] in the_values)

True

3.4.4 Modification

3.4.4.1 Replacement

To replace the value associated with a key, the brackets ([]) and the equality sign
(=) can be used.

3.4. DICTIONARIES 87

For example, to replace the values associated with the team key:
my_dict["equipes"] = ["Montclair Kimberley Academy",

"Cleveland Cavaliers", "Boston Celtics"]
print(my_dict)

{'nom ': 'Kyrie ', 'prenom ': 'John ', 'naissance ': 1992 , '
equipes ': [' Montclair Kimberley Academy ', 'Cleveland
Cavaliers ', 'Boston Celtics ']}

3.4.4.2 Adding Elements

Adding an element to a dictionary can be done with brackets ([]) and the equality
sign (=):
my_dict["taille_cm"] = 191
print(my_dict)

{'nom ': 'Kyrie ', 'prenom ': 'John ', 'naissance ': 1992 , '
equipes ': [' Montclair Kimberley Academy ', 'Cleveland
Cavaliers ', 'Boston Celtics '], 'taille_cm ': 191}

To add the content of another dictionary to a dictionary, Python offers the update()
method.

Let’s create a second dictionary first:
second_dict = {"masse_kg" : 88, "debut_nba" : 2011}
print(second_dict)

{' masse_kg ': 88, 'debut_nba ': 2011}

Let’s add the content of this second dictionary to the first:
my_dict.update(second_dict)
print(my_dict)

88 CHAPTER 3. STRUCTURES

{'nom ': 'Kyrie ', 'prenom ': 'John ', 'naissance ': 1992 , '
equipes ': [' Montclair Kimberley Academy ', 'Cleveland
Cavaliers ', 'Boston Celtics '], 'taille_cm ': 191, 'masse_kg
': 88, 'debut_nba ': 2011}

If the second dictionary is subsequently modified, it will not affect the first:
second_dict["poste"] = "PG"
print(second_dict)

{' masse_kg ': 88, 'debut_nba ': 2011 , 'poste ': 'PG '}

print(my_dict)

{'nom ': 'Kyrie ', 'prenom ': 'John ', 'naissance ': 1992 , '
equipes ': [' Montclair Kimberley Academy ', 'Cleveland
Cavaliers ', 'Boston Celtics '], 'taille_cm ': 191, 'masse_kg
': 88, 'debut_nba ': 2011}

3.4.4.3 Deleting elements

There are several ways to delete an element in a dictionary. For example, with the
operator del :
del my_dict["debut_nba"]
print(my_dict)

{'nom ': 'Kyrie ', 'prenom ': 'John ', 'naissance ': 1992 , '
equipes ': [' Montclair Kimberley Academy ', 'Cleveland
Cavaliers ', 'Boston Celtics '], 'taille_cm ': 191, 'masse_kg
': 88}

It is also possible to use the pop() method:

3.4. DICTIONARIES 89

res = my_dict.pop("masse_kg")
print(my_dict)

{'nom ': 'Kyrie ', 'prenom ': 'John ', 'naissance ': 1992 , '
equipes ': [' Montclair Kimberley Academy ', 'Cleveland
Cavaliers ', 'Boston Celtics '], 'taille_cm ': 191}

In the previous instruction, we added an assignment of the result of applying the
pop() method to a variable named res. As can be seen, the pop() method, in
addition to deleting the key, returned the associated value:
print(res)

88

3.4.5 Copy of a Dictionary

To copy a dictionary, and not create a reference (which is the case if you use the
equality sign), Python provides, as for sets, a copy() method:
d = {"Marseille": 13, "Rennes" : 35}
d2 = d.copy()
d2["Paris"] = 75
print("d: ", d)

d: {' Marseille ': 13, 'Rennes ': 35}

print("d2: ", d2)

d2: {' Marseille ': 13, 'Rennes ': 35, 'Paris ': 75}

90 CHAPTER 3. STRUCTURES

3.4.6 Exercise

1. Create a dictionary named photo, including the following key-value pairs:

2. key: id, value: 1,

3. key: description, value: A photo of the Old Port of Marseille,

4. key: loc, value: a list in which the following coordinates are given 5.3772133,
43.302424.

5. add the following key-value pair to the photo dictionary: key : user, value :
bob.

6. Look for an entry with a key that is worth description in the photo dictionary.
If this is the case, display the corresponding entry (key and value).

7. Delete the entry in photo whose key is user.

8. Modify the value of the entry loc in the photo dictionary, to propose a new
list, whose coordinates are as follows: 5.3692712 and 43.2949627.

Chapter 4

Operators

Python includes different operators, allowing operations to be performed between
operands, i.e., between variables, literals or expressions.

4.1 Arithmetic Operators

The basic arithmetic operators are integrated in Python.

We have already used some of them in the previous chapters to perform operations on
integers or floating point numbers (addition, subtraction, etc.). Let’s take a quick look
at the most common arithmetic operators used to perform operations on numbers.

4.1.1 Addition

An addition between two numbers is made using the + symbol:
print(1+1) # Addition

2

91

92 CHAPTER 4. OPERATORS

4.1.2 Subtraction

A subtraction between two numbers is performed using the - symbol:
print(1-1) # Subtraction

0

4.1.3 Multiplication

A multiplication between two numbers is performed using the * symbol:
print(2*2) # Multiplication

4

4.1.4 Division

A (real) division between two numbers is made using the symbol /:
print(3/2) # Division

1.5

To perform a Euclidean division (or division with remainder), slash is doubled:
print(3//2) # Euclidean division

1

4.1. ARITHMETIC OPERATORS 93

4.1.5 Modulo

The modulo (remainder of the Euclidean division) is obtained using the symbol %:
print(12%10) # Modulo

2

4.1.6 Power

To raise a number to a given power, we use two stars (**):
print(2**3) # 2^3

8

4.1.7 Order

The order of operations follows the PEMDAS rule (Parentheses, Exponents, Multipli-
cation and Division, Adition and Subtraction).

For example, the following instruction first performs the calculation 2× 2, then adds
1:
print(2*2+1)

5

The following instruction, using brackets, first calculates 2 + 1, then multiplies the
result with 2:
print(2*(2+1))

6

94 CHAPTER 4. OPERATORS

4.1.8 Mathematical Operators on Strings

Some mathematical operators presented in Section 4.1 can be applied to strings.

When using the symbol + between two strings, Python concatenates these two strings
(see Section 2.1.1) :
a = "euro"
b = "dollar"
print(a+b)

eurodollar

When a string is “multiplied” by a scalar n, Python repeats this string n times:
2*a

'euroeuro '

4.1.9 Mathematical Operators on Lists or tuples

Some mathematical operators can also be applied to lists.

When using the symbol + between two lists, Python concatenates them into one:
l_1 = [1, "apple", 5, 7]
l_2 = [9, 11]
print(l_1 + l_2)

[1, 'apple ', 5, 7, 9, 11]

Same with tuples:
t_1 = (1, "apple", 5, 7)
t_2 = (9, 11)
print(t_1 + t_2)

4.2. COMPARISON OPERATORS 95

(1, 'apple ', 5, 7, 9, 11)

By “multiplying” a list by a scalar n, Python repeats this list n times:
print(3*l_1)

[1, 'apple ', 5, 7, 1, 'apple ', 5, 7, 1, 'apple ', 5, 7]

Same with tuples:
print(3*t_1)

(1, 'apple ', 5, 7, 1, 'apple ', 5, 7, 1, 'apple ', 5, 7)

4.2 Comparison Operators

Comparison operators allow objects of all basic types to be compared with each other.
The result of a comparison test produces Boolean values.

Table 4.1: Comparison operators

Operator Python Operator Description
= == Equal to
6= != (or <>) Different from
> > Greater than
≥ >= & Greater than or equal to
< < Lower than
≤ <= Less than or equal to
∈ in In
/∈ not in Not it

96 CHAPTER 4. OPERATORS

4.2.1 Equality, Inequality

To test the content equality between two objects:
a = "Hello"
b = "World"
c = "World"

print(a == c)

False

print(b == c)

True

The inequality between two objects:
x = [1,2,3]
y = [1,2,3]
z = [1,3,4]

print(x != y)

False

print(x != z)

True

4.2.2 Inferiority and Superiority, Strict or Broad

To know if an object is inferior (strictly or not) or inferior (strictly or not) to another:

4.2. COMPARISON OPERATORS 97

x = 1
y = 1
z = 2

print(x < y)

False

print(x <= y)

True

print(x > z)

False

print(x >= z)

False

It is also possible to compare two strings. The comparison is carried out according to
the lexicographical order:
m_1 = "eat"
m_2 = "eating"
m_3 = "drinking"
print(m_1 < m_2) # eat before eating?

True

print(m_3 > m_1) # drinking after eat?

False

98 CHAPTER 4. OPERATORS

When comparing two lists together, Python works step by step. Let’s look through
an example to see how this comparison is done.

Let’s create two lists:
x = [1, 3, 5, 7]
y = [9, 11]

Python will start by comparing the first elements of each list (here, it is possible, the
two elements are comparable; otherwise, an error would be returned):
print(x < y)

True

As 1<9, Python returns True.

Let’s change x so that the first element is greater than the first element of y.
x = [10, 3, 5, 7]
y = [9, 11]
print(x < y)

False

This time, as $10>$9, Python returns False.

Now let’s change the first element of x so that it is equal to y:
x = [10, 3, 5, 7]
y = [10, 11]
print(x < y)

True

This time, Python compares the first element of x with that of y. As the two are
identical, the second elements are compared. This can be demonstrated by evaluating
the following code:

4.2. COMPARISON OPERATORS 99

x = [10, 12, 5, 7]
y = [10, 11]
print(x < y)

False

4.2.3 Inclusion and exclusion

As encountered several times in Chapter 3, the inclusion tests are performed using
the operator in.
print(3 in [1,2, 3])

True

To test if an item is excluded from a list, tuple, dictionary, etc., we use not in:
print(4 not in [1,2, 3])

True

print(4 not in [1,2, 3, 4])

False

With a dictionary:
dictionnaire = {"nom": "Rockwell", "prenom": "Criquette"}
"age" not in dictionnaire.keys()

True

100 CHAPTER 4. OPERATORS

4.3 Logical operators

Logical operators operate on one or more logical objects (Boolean).

4.3.1 And logical

The and operator allows logical “AND” comparisons to be made. We compare two
objects, x and y (these objects can result from a previous comparison, for this both
only need to be Boolean).

If one of the two objects x and y is true, the logical “AND” comparison returns true:
x = True
y = True
print(x and y)

True

If at least one of them is false, the logical “AND” comparison returns false:
x = True
y = False

print(x and y)

False

print(y and y)

False

If one of the two compared objects is equal to the empty value (None), then the
logical “AND” comparison returns :

• the value None if the other object is worth True or None
• the value False if the other object is worth False.

4.3. LOGICAL OPERATORS 101

x = True
y = False
z = None
print(x and z)

None

print(y and z)

False

print(z and z)

None

4.3.2 Logical OR

The operator or allows logical “OR” comparisons to be made. Again, we compare
two Booleans, x and y.

If at least one of the two objects x and y is true, the logical “OR” comparison returns
true:
x = True
y = False
print(x or y)

True

If both are false, the logical “OR” comparison returns false:
x = False
y = False
print(x or y)

102 CHAPTER 4. OPERATORS

False

If one of the two objects is None, the logical “OR” comparison returns :

• True if the other object is worth True
• None if the other object is worth False or None.

x = True
y = False
z = None
print(x or z)

True

print(y or z)

None

print(z or z)

None

4.3.3 Logical Not

The operator not, when applied to a Boolean, evaluates the latter at its opposite
value:
x = True
y = False
print(not x)

False

4.4. SOME FUNCTIONS 103

print(not y)

True

When using the operator not on an empty value (None), Python returns True:
x = None
not x

True

4.4 Some Functions

Python has many useful functions for manipulating structures and data. Table 4.2
lists some of them. Some require the loading of the math library, others require
the statistics library. We will see other functions specific to the NumPy library in
Chapter 9.

Table 4.2: Some numerical functions

Function Description
math.ceil(x) Smallest integer greater than or equal to x

math.copysign(x,
y)

Absolute value of x but with the sign of y

math.floor(x) Smallest integer less than or equal to x
math.round(x,

ndigits)
Rounded from x to ndigits decimal places

math.fabs(x) Absolute value of x
math.exp(x) Exponential of x
math.log(x) Natural logarithm of x (based on e)

math.log(x, b) Logarithm based on b of x
math.log10(x) Logarithm in base 10 of x
math.pow(x,y) x high to the power y
math.sqrt(x) Square root of x
math.fsum() Sum of the values of x

104 CHAPTER 4. OPERATORS

Function Description
math.sin(x) Sine of x
math.cos(x) Cosine of x
math.tan(x) Tangent of x

math.asin(x) Arc-sineus of x
math.acos(x) Arc-cosinus of x
math.atan(x) Arc-tangent of x
math.sinh(x) Hyperbolic sine of x
math.cosh(x) Hyperbolic cosine of x
math.tanh(x) Hyperbolic tangent of x

math.asinh(x) Hyperbolic arc-sine of x
math.acosh(x) Hyperbolic arc-cosine of x
math.atanh(x) Hyperbolic arc-tangent of x

math.degree(x) Conversion of radians x to degrees
math.radians(x) Conversion of x from degrees to radians

math.factorial() Factory of x
math.gcd(x, y) Largest common divisor of x and y

math.isclose(x, y,
rel_tol=1e-09,

abs_tol=0.0)

Compare x and y and returns if they are close to the
tolerance level rel_tol (abs_tol is the absolute

minimum tolerance)
math.isfinite(x) Returns True if x is either infinite, or NaN

math.isinf(x) Returns True if x is infinite, False otherwise
math.isnan(x) Returns True if x is NaN, False if not

statistics.mean(x) Average of x
statistics.median(x) Median of x
statistics.mode(x) Mode of x
statistics.stdev(x) Standard deviation of x
statistics.variance(x) Variance of x

4.5 Some Constants

The math library offers some constants, as shown in Table 4.3.

4.6. EXERCISE 105

Table 4.3: Some constants integrated in Python

Function Description
‘math.pi The number Pi (π)

math.e The constant e
math.tau The constant τ , equal to 2π
math.inf The infinite (∞)

-math.inf Minus infinity (−∞)
math.nan Floating point number not to number

4.6 Exercise

1. Calculate the rest of the Euclidean division of 10 by 3.
2. Display the largest common divisor between 6209 and 4435.
3. Let us consider two objects: a = 18 and b = -4. Test it if:

• a is strictly less than b,
• a is greater than or equal to b,
• a is different from b.

4. Let x be the list such as x =[1, 1, 1, 2, 3, 5, 8]. Check whether:

• 1 is in x;
• 0 is in x;
• 1 and 0 are in x;
• 1 or 0 are in x;
• 1 or 0 is not present in x.

106 CHAPTER 4. OPERATORS

Chapter 5

Loading and Saving Data

To explore data and/or perform statistical or econometric analyses, it is important to
know how to import and export data.

First of all, it is important to mention the notion of a working directory. In computer
science, the current directory of a process refers to a directory of the file system
associated with that process.

When we launch Jupyter Notebook, a tree structure is displayed, and we navigate
inside it to create or open a notebook. The directory containing the notebook is the
current directory. When Python is told to import data (or export objects), the origin
(or destination) will be indicated relatively in the current directory, unless absolute
paths (i.e., a path from the root /) are used.

If a Python program is started from a terminal, the current directory is the directory
in which the terminal is located at the time the program is started.

To display the current directory in Python, the following code can be used:
import os
cwd = os.getcwd()
print(cwd)

/Users/ ewengallic / Dropbox / Universite_Aix_Marseille /
Magistere_2_Programming_for_big_data /Cours/ chapters / python /
Python_for_economists

107

108 CHAPTER 5. LOADING AND SAVING DATA

Remarque 5.0.1

The listdir() function of the os library is very useful: it allows to list all the
documents and directories contained in the current directory, or in any directory
if the parameter path informs the path (absolute or relative). After importing
the function (from os import getcwd), it can be called: os.listdir().

5.1 Load Data

Depending on the data format, data import techniques differ.

Remarque 5.1.1

Chapter ?? provides other ways to import data, with the pandas library.

5.1.1 Fichiers textes

When the data is present in a text file (ASCII), Python offers the open() function.

The (simplified) syntax of the open() function is as follows:
open(file, mode='r', buffering=-1,

encoding=None, errors=None, newline=None)

Here is what the parameters correspond to (there are others):

• file: a string indicating the path and name of the file to be opened;
• mode: specifies the way the file is opened (see the lines below for possible values);
• buffering: specifies using an integer the behavior to be adopted for buffering

(1 to buffering per line; an integer > 1 to indicate the size in bytes of the chunks
to be buffered);

• encoding: specifies the encoding of the file;
• errors: specifies how to handle encoding and decoding errors (e.g., strict

returns an exception error, ignore ignores errors, replace replaces them,
backslashreplace replaces malformed data with escape sequences);

• newline : controls the end of the lines (\n, \r, etc.).

5.1. LOAD DATA 109

Table 5.1: Main Values for How to Open Files.

Value Description
r Opening to read (default)
w Opening to write
x Opening to create a document, fails if the file already exists
a Opening to write, adding at the end of the file if it already exists
+ Opening for update (read and write)
b To be added to an opening mode for binary files (rb or wb)
t Text mode (automatic decoding of bytes in Unicode). Default if not

specified (adds to the mode, like b)

It is important to remember to close the file once we have finished using it. To do
this, we use the close() method.

In the fichiers_exemples folder is a file called text_file.txt which contains three
lines of text. Let’s open this file, and use the .read() method to display its content:
path = "./fichiers_exemples/fichier_texte.txt"
Opening in read-only mode (default)
my_file = open(path, mode = "r")
print(my_file.read())

Bonjour , je suis un fichier au format txt.
Je contiens plusieurs lignes , l'idée étant de montrer

comment fonctionne l'importation d'un tel fichier dans
Python .

Trois lignes devraient suffir .

my_file.close()

A common practice in Python is to open a file in a with block. The reason for this
choice is that a file opened in such a block is automatically closed at the end of the
block.

The syntax is as follows:

110 CHAPTER 5. LOADING AND SAVING DATA

Opening in read-only mode (default)
with open(path, "r") as mon_fichier:

data = function_to_get_data_from_my_file()

For example, to retrieve each line as an element of a list, a loop running through each
line of the file can be used. At each iteration, the line is retrieved:
Opening in read-only mode (default)
with open(path, "r") as my_file:

data = [x for x in my_file]
print(data)

['Bonjour , je suis un fichier au format txt .\n', "Je
contiens plusieurs lignes , l'idée étant de montrer comment
fonctionne l'importation d'un tel fichier dans Python .\n",
'Trois lignes devraient suffir .']

Note: at each iteration, the strip() method can be applied. It returns the character
string of the line, by removing any white characters at the beginning of the string :
Opening in read-only mode (default)
with open(path, "r") as my_file:

data = [x.strip() for x in my_file]
print(data)

['Bonjour , je suis un fichier au format txt.', "Je contiens
plusieurs lignes , l'idée étant de montrer comment

fonctionne l'importation d'un tel fichier dans Python .", '
Trois lignes devraient suffir .']

The readlines() method can also be used to import lines into a list:
with open(path, "r") as my_file:

data = my_file.readlines()
print(data)

['Bonjour , je suis un fichier au format txt .\n', "Je
contiens plusieurs lignes , l'idée étant de montrer comment

5.1. LOAD DATA 111

fonctionne l'importation d'un tel fichier dans Python .\n",
'Trois lignes devraient suffir .']

Character encoding may be a problem during import. In this case, it may be a good
idea to change the value of the encoding parameter of the open() function. The
available encodings depend on the locale. The available values are obtained using the
following method (code not executed in these notes):
import locale
locale.locale_alias

5.1.1.1 Import from the Internet

To import a text file from the Internet, methods from the urllib library can be used:
import urllib
from urllib.request import urlopen
url = "http://egallic.fr/Enseignement/Python/fichiers_exemples/fichier_texte.txt"
with urllib.request.urlopen(url) as my_file:

data = my_file.read()
print(data)

b"Bonjour , je suis un fichier au format txt .\ nJe contiens
plusieurs lignes , l'id\xc3\xa9e \xc3\ xa9tant de montrer
comment fonctionne l'importation d'un tel fichier dans
Python .\ nTrois lignes devraient suffir ."

As can be seen, the encoding of characters is a concern here. We can apply the
method decode():
print(data.decode())

Bonjour , je suis un fichier au format txt.
Je contiens plusieurs lignes , l'idée étant de montrer

comment fonctionne l'importation d'un tel fichier dans
Python .

Trois lignes devraient suffir .

112 CHAPTER 5. LOADING AND SAVING DATA

5.1.2 CSV Files

CSV files (comma separated value) are very common. Many databases export their
data to CSV (e.g., World Bank, FAO, Eurostat, etc.). To import them into Python,
you can use the csv module.

Again, we use the open() function, with the parameters described in Section 5.1.1.
Then, we use the reader() method of the csv module:
import csv
with open('./fichiers_exemples/fichier_csv.csv') as my_file:

my_file_reader = csv.reader(my_file, delimiter=',', quotechar='"')
data = [x for x in my_file_reader]

print(data)

[[' nom ', 'prénom ', 'équipe '], [' Irving ', ' "Kyrie"', ' "
Celtics "'], [' James ', ' " Lebron "', ' " Lakers "', ''], ['
Curry ', ' " Stephen "', ' " Golden State Warriors "']]

The reader() method can take several arguments, described in Table 5.2.

Table 5.2: Parameters of the reader() Function

Argument Description
csvfile The object opened with open()
dialect Parameter specifying the “dialect” of the CSV file (e.g.,

excel, excel-tab, unix)
delimiter The character delimiting the fields (i.e., the values of the

variables)
quotechar Character used to surround fields containing special

characters
escapechar Escape character

doublequote Controls how the quotechar appear inside a field: when
True, the character is doubled, when False, the escape

character is used as a prefix to the quotechar
lineterminator String of characters used to end a line

skipinitialspace When True, the white character located just after the
field separation character is ignored

5.1. LOAD DATA 113

Argument Description
strict When True, returns an exception error if there is a bad

input of CSV

A CSV file can also be imported as a dictionary, using the csv.DictReader() method
of the CSV module :
import csv
path = "./fichiers_exemples/fichier_csv.csv"
with open(path) as my_file:

my_file_csv = csv.DictReader(my_file)
data = [ligne for ligne in my_file_csv]

print(data)

[OrderedDict ([(' nom ', 'Irving '), ('prénom ', ' "Kyrie "'), ('
équipe ', ' " Celtics "')]), OrderedDict ([(' nom ', 'James '), ('
prénom ', ' " Lebron "'), ('équipe ', ' " Lakers "'), (None ,
[''])]), OrderedDict ([(' nom ', 'Curry '), ('prénom ', ' "
Stephen "'), ('équipe ', ' " Golden State Warriors "')])]

5.1.2.1 Import From the Internet

As with txt files, a CSV file hosted on the Internet can be loaded:
import csv
import urllib.request
import codecs

url = "http://egallic.fr/Enseignement/Python/fichiers_exemples/fichier_csv.csv"
with urllib.request.urlopen(url) as my_file:

my_file_csv = csv.reader(codecs.iterdecode(my_file, 'utf-8'))
data = [ligne for ligne in my_file_csv]

print(data)

[[' nom ', 'prénom ', 'équipe '], [' Irving ', ' "Kyrie"', ' "
Celtics "'], [' James ', ' " Lebron "', ' " Lakers "', ''], ['

114 CHAPTER 5. LOADING AND SAVING DATA

Curry ', ' " Stephen "', ' " Golden State Warriors "']]

5.1.3 JSON Files

To import files in JSON format (JavaScript Object Notation), which are widely used
when communicating with an API, you can use the json library, and its load()
method:
import json
url = './fichiers_exemples/tweets.json'

with open(url) as my_file_json:
data = json.load(my_file_json)

Then, you can display the imported content using the pprint() function:
from pprint import pprint
pprint(data)

{' created_at ': 'Wed Sep 26 07:38:05 +0000 2018 ',
'id ': 11,
'loc ': [{' long ': 5.3698} , {'lat ': 43.2965}] ,
'text ': 'Un tweet !',
'user_mentions ': [{'id ': 111, 'screen_name ': 'nom_twittos1

'},
{'id ': 112, 'screen_name ': 'nom_twittos2

'}]}

5.1.3.1 Import from the Internet

Once again, it is possible to import JSON files from the Internet:
import urllib
from urllib.request import urlopen
url = "http://egallic.fr/Enseignement/Python/fichiers_exemples/tweets.json"
with urllib.request.urlopen(url) as my_file:

5.2. EXPORTING DATA 115

data = json.load(my_file)
pprint(data)

{' created_at ': 'Wed Sep 26 07:38:05 +0000 2018 ' ,
'id ': 11,
'loc ': [{' long ': 5.3698} , {'lat ': 43.2965}] ,
'text ': 'Un tweet !',
'user_mentions ': [{'id ': 111 , 'screen_name ': 'nom_twittos1

'},
{'id ': 112 , 'screen_name ': 'nom_twittos2

'}]}

5.1.4 Excel Files

Excel files (xls or xlsx) are also widely used in economics. The reader is referred to
Section ?? for a method of importing Excel data with the pandas library.

5.2 Exporting data

It is not uncommon to have to export data, for instance to share it. Again, the function
open() is used, by playing with the value of the parameter mode (see Table 5.1).

5.2.1 Text Files

Let’s say we need to export lines of text to a file. Before giving an example with
the open() function, let’s look at two important functions to convert the contents of
some objects to text.

The first, str(), returns a string version of an object. We have already applied it to
numbers that we wanted to concatenate in Section 2.1.4.
x = ["pomme", 1, 3]
str(x)

116 CHAPTER 5. LOADING AND SAVING DATA

"[' pomme ', 1, 3]"

The result of this instruction returns the list as a string: "['pomme', 1, 3]".

The second function that seems important to address is repr(). This function returns
a string containing a printable representation on an object screen. In addition, this
channel can be read by the interpreter.
y = "Fromage, tu veux du fromage ?\n"
repr(y)

"'Fromage , tu veux du fromage ?\\n '"

The result writes: "'Fromage, tu veux du fromage ?\\n'".

Let’s say we want to export two lines:

• the first, a text that indicates a title (“Kyrie Irving Characteristics”);
• the second, a dictionary containing information about Kyrie Irving (see below).

Let’s define this dictionary:
z = { "name": "Kyrie",

"surname": "Irving",
"date_of_birth": 1992,
"teams": ["Cleveland", "Boston", "Nets"]}

One of the syntaxes for exporting data in txt format is:
Ouverture en mode lecture (par défaut)
path = "path/to/file.txt"
with open(path, "w") as my_file:

function_to_export()

We create a variable indicating the path to the file. Then we open the file in writing
mode by specifying the parameter mode = "w". Then, we still have to write our lines
in the file.
path = "./fichiers_exemples/Irving.txt"
with open(path, mode = "w") as my_file:

5.2. EXPORTING DATA 117

my_file.write("Characteristics of Kyrie Irving\n")
my_file.writelines(repr(z))

32

If the file is already existing, having used mode="w", the old file will be overwritten
by the new one. If we want to add lines to the existing file, we will use mode="a" for
example:
with open(path, mode = "a") as my_file:

my_file.writelines("\nAnother line\n")

If we want to be warned if the file already exists, and to make the writing fail if this
is the case, we can use mode="x":
with open(path, mode = "x") as my_file:

my_file.writelines("A new line that will not be added\n")

Error in py_call_impl (callable , dots$args , dots$keywords):
FileExistsError : [Errno 17] File exists : './
fichiers_exemples / Irving .txt '

##
Detailed traceback :
File "<string >", line 1, in <module >

5.2.2 CSV Files

As economists, we are more likely to have to export data in CSV format rather than
text, due to the rectangular structure of the data we are handling. As for the import
of CSV (c.f. Section 5.1.2), on utilise le module csv. we use the module csv. To
write to the file, we use the writer() method. The formatting parameters of this
function are the same as those of the reader() function (see Table 5.2).

Example of creating a CSV file:
import csv
path = "./fichiers_exemples/ffile_export.csv"

118 CHAPTER 5. LOADING AND SAVING DATA

with open(path, mode='w') as my_file:
my_file_write = csv.writer(my_file, delimiter=',',

quotechar='"',
quoting=csv.QUOTE_MINIMAL)

my_file_write.writerow(['Country', 'Year', 'Quarter', 'GR_PIB'])
my_file_write.writerow(['France', '2017', 'Q4', 0.7])
my_file_write.writerow(['France', '2018', 'Q1', 0.2])

29
20
20

Of course, most of the time, we do not write each entry by hand. We export the data
contained in a structure. Section ?? provides examples of this type of export, when
the data are contained in two-dimensional tables created with the pandas library.

5.2.3 JSON Files

It may be necessary to save structured data in JSON format, for example when an
API (e.g., the Twitter API) has been used that returns objects in JSON format.

To do this, we will use the json library, and its dump() method. This method allows
to serialize an object (for example a list, like what you get with the Twitter API
queried with the twitter-python library) in JSON.
import json
x = [1, "apple", ["seed", "red"]]
y = { "name": "Kyrie",

"surname": "John",
"year_of_birth": 1992,
"teams": ["Cleveland", "Boston", "Nets"]}

x_json = json.dumps(x)
y_json = json.dumps(y)

print("x_json: ", x_json)

5.2. EXPORTING DATA 119

x_json : [1, "apple", [" seed", "red "]]

print("y_json: ", y_json)

y_json : {" name ": "Kyrie", " surname ": "John", "
year_of_birth ": 1992 , "teams ": [" Cleveland ", " Boston ", "
Nets "]}

As can be seen, there are some minor problems with accentuated character rendering.
We can specify, using the parameter ensure_ascii evaluated at False that we do
not want to make sure that non-ascii characters are escaped by sequences of type
\uXXXX.
x_json = json.dumps(x, ensure_ascii=False)
y_json = json.dumps(y, ensure_ascii=False)

print("x_json: ", x_json)

x_json : [1, "apple", [" seed", "red "]]

print("y_json: ", y_json)

y_json : {" name ": "Kyrie", " surname ": "John", "
year_of_birth ": 1992 , "teams ": [" Cleveland ", " Boston ", "
Nets "]}

path = "./fichiers_exemples/export_json.json"

with open(path, 'w') as f:
json.dump(json.dumps(x, ensure_ascii=False), f)
f.write('\n')
json.dump(json.dumps(y, ensure_ascii=False), f)

1

120 CHAPTER 5. LOADING AND SAVING DATA

If we want to re-import in Python the content of the file export_json.json:
path = "./fichiers_exemples/export_json.json"
with open(path, "r") as f:

data = []
for line in f:

data.append(json.loads(line, encoding="utf-8"))

print(data)

['[1, "apple", [" seed", "red "]]', '{" name ": "Kyrie", "
surname ": "John", " year_of_birth ": 1992 , "teams ": ["
Cleveland ", " Boston ", "Nets "]} ']

5.2.4 Exercise

1. Create a list named a containing information on the unemployment rate in
France in the second quarter of 2018. This list must contain three elements:

• the year;
• the quarter;
• the value of the unemployment rate (9.1%).

2. Export the contents of the list a in CSV format, preceded by a line specifying
the names of the fields. Use the semicolon (;) as a field separator.

3. Import the file created in the previous question into Python.

Chapter 6

Conditions

Often, depending on the evaluation of an expression, one wants to perform one
operation rather than another. For example, when a new variable is created in a
statistical analysis, and this variable takes its values according to another, it may
be necessary to use conditional instructions : “if the value is less than x, then. . .
otherwise, . . . ”.

In this short chapter, we look at how to write conditional instructions.

6.1 Conditional if Instructions

The simplest conditional instruction that can be found is if. If and only if an
expression is evaluated at True, then an instruction will be evaluated.

The syntax is as follows:
if expression:

instruction

The lines after the colon (:) must be placed in a block, using a tab stop.

121

122 CHAPTER 6. CONDITIONS

Remarque 6.1.1

A code block is a grouping of statements. Nested codes indented at the same
position are part of the same block:
block 1 line
block 1 line

block2 line
block2 line

block line1

In the code below, we define a variable, x, that contains the integer 2. The following in-
struction evaluates the expression x == 2 (see Section @ref(#operateurs-comparaison)
for reminders on comparison operators). If the result of this expression is True, then
the content of the block is evaluated.
x = 2
if x == 2:

print("Hello")

Hello

If we change the value of x so that the expression x == 2 returns False:
x = 3
if x == 2:

print("Hello")

Inside the block, several instructions can be written that will be evaluated if the
expression is True:
x = 2
if x == 2:

y = "Hello"
print(y + ", x vaut : " + str(x))

Hello , x vaut : 2

6.2. IF-ELSE CONDITIONAL INSTRUCTIONS 123

Remarque 6.1.2

When writing a code, it may be practical to use ‘if’ conditional instructions to
evaluate or not certain parts of the code. For example, when we write a script,
there are times when we have to re-evaluate the beginning, but some parts don’t
need to be re-evaluated every time, like graphical outputs (which takes time).
Of course, it is possible to comment on these parts of codes that do not require
a new evaluation. But we can also put the instructions in a conditional block:

• at the beginning of the script, we create a variable graph = False;
• before creating a graph, it is placed in a block if graph:

When executing the script, it is then possible to choose to create and export the
graphs of the if graph: blocks by modifying the graph variable as desired.

6.2 if-else Conditional Instructions

If the condition is not verified, other instructions can be evaluated using the ‘if-else’
instructions.

The syntax is as follows:
if expression:

instructions
else:

other_instructions

For example, suppose we want to create a variable related to temperature, taking the
value warm if the value of the variable temperature exceeds 28 degrees C, otherwise
cold. Let’s say the temperature is 26 degrees C:
temperature = 26
heat = ""

if temperature > 28:
heat = "hot"

else:
heat = "cold"

print("It is " + heat + " out there")

124 CHAPTER 6. CONDITIONS

It is cold out there

If the temperature is now 32 degrees C:
temperature = 32
heat = ""

if temperature > 28:
heat = "hot"

else:
heat = "cold"

print("It is " + heat + " out there")

It is hot out there

6.3 if-elif Conditional Instructions

If the condition is not verified, another one can be tested and then other instructions
evaluated if the second one is verified. Otherwise, another one can be tested, and so
on. Instructions may also be evaluated if none of the conditions have been assessed
at True. To do this, conditional ‘if-elif’ instructions can be used.

The syntax is as follows:
if expression:

instructions
elif expression_2:

instructions_2
elif expression_3:

instructions_3
else:

other_instruction

The previous example lacks some common sense. Can we say that the fact that it is
28 degrees C or less it is cold? Let’s add a few nuances:

6.4. EXERCISE 125

temperature = -4
heat = ""

if temperature > 28:
heat = "hot"

elif temperature <= 28 and temperature > 15:
heat = "not too hot"

elif temperature <= 15 and temperature > 0:
heat = "cold"

else:
heat = "very cold"

print("It is " + heat + " out there")

It is very cold out there

Remarque 6.3.1

The advantage of using if-elif' conditional instructions over writing
severalif’ conditional instructions in succession is that with the first way of
doing things, comparisons stop as soon as one is completed, which is more
efficient.

6.4 Exercise

Let us consider a list named europe containing the following values, as strings:
“Germany”, “France” and “Spain”.

Let us consider a second list, named asia, containing in the form of strings: “Vietnam”,
“China” and “India”.

The objective will be to create a continent variable that will indicate either Europe,
Asia or other at the end of the code execution.

Using conditional instructions of the if-elif' type, write a code that checks
the value of a variable namedcountry. Another variable, namedcontinent‘
will take values depending on the content of the former one, such that:

126 CHAPTER 6. CONDITIONS

• if the country value is present in the europe list, the variable continent should
be set to Europe

• if the country value is present in the asia list, the variable continent should
be set to Asia

• if the country value is not present in europe or asia, the variable continent
will be set to Other.

To do this:

1. Create the two lists europe and asia as well as the variable country (setting the
value to Spain) and the variable continent (initiated with an empty character
string).

2. Write the code to achieve the explained objective, and display the content of
the continent variable at the end of the execution.

3. Change the initial value of country to China then Brazil and in each case,
execute the code written in the previous question.

Chapter 7

Loops

When the same operation has to be repeated several times, for a given number of
times or as long as a condition is verified (or as long as it is not verified), loops can be
used, which is much less painful than evaluating by hand or by copying and pasting
the same instruction.

We will discuss two types of loops in this chapter:

• those for which we do not know a priori the number of iterations (the number
of repetitions) to be performed: while() loops

• those for which we know a priori how many iterations are necessary: for()
loops

Remarque 7.0.1

It is possible to stop a for() loop before a predefined number of iterations; in
the same way, it is possible to use a while() loop by knowing in advance how
many iterations to perform.

7.1 Loops with while()

The principle of a while() loop is that instructions inside the loop will be repeated
as long as a condition is met. The idea is to make this condition depend on one or
more objects that will be modified during the iterations (otherwise, the loop would

127

128 CHAPTER 7. LOOPS

turn infinitely).

The syntax is as follows:
while condition:

instructions

As for conditional instructions (see Section 6), the instructions are placed inside a
block.

Let’s look at an example of a while() loop:
x = 100
while x/3 > 1:

print(x/3)
x = x/3

33.333333333333336
11.111111111111112
3.703703703703704
1.234567901234568

print(x/3>1)

False

print(x/3)

0.41152263374485604

In this loop, at each iteration, the value of x divided by 3 is displayed, then the value
of x is replaced by a third of its current value. This operation is repeated as long as
the expression x/3 > 1 returns True.

7.2 Loops with for()

When we know the number of iterations in advance, we can use a for() loop. The
syntax is as follows:

7.2. LOOPS WITH FOR() 129

for object in possible_values:
instructions

with object the name of a local variable at the function for(), possible_values an
object comprising n elements defining the values that object will take for each of the
n turns, and instructions the instructions that will be executed at each iteration.

In the following example, we will calculate the square of the first n integers. The
values that our object variable (which we will call i) will take will be integers from
1 to n. To obtain a sequence of integers in Python, we can use the range() function,
which takes the following parameters:

• start : (optional, default, 0) start value for the sequence (included) ;
• stop : end value of the sequence (not included) ;
• step : (optional, default 1) the step.

Before calculating the sequence of the n first squares, let’s look at an example of how
the range() function works:
print(list(range(0, 4))) # Les entiers de 0 à 3

[0, 1, 2, 3]

print(list(range(4))) # Les entiers de 0 à 3

[0, 1, 2, 3]

print(list(range(2, 10))) # Les entiers de 2 à 9

[2, 3, 4, 5, 6, 7, 8, 9]

print(list(range(2, 10, 3))) # Les entiers de 2 à 9 par pas de 3

[2, 5, 8]

To display the sequence of the first 10 first squares, we can write:

130 CHAPTER 7. LOOPS

message = "The squared value of {} is {}"
n=10
for i in range(0, n+1):

print(message.format(i,i**2))

The squared value of 0 is 0
The squared value of 1 is 1
The squared value of 2 is 4
The squared value of 3 is 9
The squared value of 4 is 16
The squared value of 5 is 25
The squared value of 6 is 36
The squared value of 7 is 49
The squared value of 8 is 64
The squared value of 9 is 81
The squared value of 10 is 100

During the first iteration, i is 0. In the second case, i is 1. In the third, i is 2, etc.

If we want to store the result in a list:
n=10
n_squares = []
for i in range(0, n+1):

n_squares.append(i**2)

print(n_squares)

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

It is not mandatory to use the range() function in a for() loop, you can define the
values “by hand”:
message = "The squared value of {} is {}"
for i in [0, 1, 2, 8, 9, 10]:

print(message.format(i,i**2))

The squared value of 0 is 0
The squared value of 1 is 1

7.2. LOOPS WITH FOR() 131

The squared value of 2 is 4
The squared value of 8 is 64
The squared value of 9 is 81
The squared value of 10 is 100

In the same spirit, it is not mandatory to iterate on numerical values:
message = "There is(are) {} letter(s) in the name: {}"
for first_name in ["Pascaline", "Gauthier", "Xuan", "Jimmy"]:

print(message.format(len(first_name), first_name))

There is(are) 9 letter (s) in the name: Pascaline
There is(are) 8 letter (s) in the name: Gauthier
There is(are) 4 letter (s) in the name: Xuan
There is(are) 5 letter (s) in the name: Jimmy

Nothing prevents loops from being made inside loops:
message = "i equals {} and j equals {}"
for i in range(0,3):

for j in range(0,3):
print(message.format(i, j))

i equals 0 and j equals 0
i equals 0 and j equals 1
i equals 0 and j equals 2
i equals 1 and j equals 0
i equals 1 and j equals 1
i equals 1 and j equals 2
i equals 2 and j equals 0
i equals 2 and j equals 1
i equals 2 and j equals 2

As can be seen, iteration is done for each value of i, and for each of these values, a
second iteration is performed on the values of j.

132 CHAPTER 7. LOOPS

Remarque 7.2.1

The letters i and j are often used to designate a counter in a for() loop, but
this is obviously not a requirement.

In a loop, if we want to increment a counter, we can use the symbol += rather than
writing ‘counter = counter + . . . “ :
message = "New value for j: {}"
j = 10
for i in range(0, 4):

j += 5
print(message.format(j))

New value for j: 15
New value for j: 20
New value for j: 25
New value for j: 30

print(j)

30

7.3 Exercise

1. Write a very naive program to determine if a number is prime or not. To do
this:

1. define a number variable containing a natural integer of your choice (not
too large),

2. using a loop, check if each integer up to the square root of your number,
is a divisor of your number (stop if ever it is the case)

3. at the loop output, write a conditional instruction indicating whether or
not the number is a prime one.

7.3. EXERCISE 133

2. Choose a ‘mystery’ number between 1 and 100, and store it in an object called
mystere_number. Then, create a loop that at each iteration performs a random
draw of an integer between 1 and 100. As long as the number drawn is different
from the mystery number, the loop must continue. At the output of the loop, a
variable called nb_drawings will contain the number of prints made to obtain
the mystery number.

Note: to draw a random number between 1 and 100, the method randint() of the
module random may help).

3. Use a loop to scan integers from 1 to 20 using a for loop, displaying in the
console at each iteration if the current number is even.

4. Use a for() loop to repeat the Fibonacci sequence until its tenth term (the Fn

sequence is defined by the following recurrence relationship: Fn = Fn−1 + Fn−2;
the initial values are F0 = 0 and F1 = 1).

134 CHAPTER 7. LOOPS

Chapter 8

Functions

Most of the time, we use the basic functions or those contained in modules. However,
when retrieving data online or formatting data imported from various sources, it may
be necessary to create our own functions. The advantage of creating one’ s functions
is revealed when one has to carry out a series of instructions repeatedly, with some
slight differences (we can then apply the functions within a loop, as we discussed in
Chapter 7).

8.1 Definition

A function is declared using the keyword def. What it returns is returned using the
keyword return.

La syntaxe est la suivante :
def name_function(arguments):

body of the function

Once the function is defined, it is called by referring to its name:
name_function()

So, all we need to do is add parentheses to the name of the function to call it. Indeed,
function_name refers to the object that contains the function that is called using the

135

136 CHAPTER 8. FUNCTIONS

expression function_name(). For example, if we want to define the function that
calculates the square of a number, here is what we can write:
def square(x):

return x**2

It can then be called:
print(square(2))

4

print(square(-3))

9

8.1.1 Adding a Description

It is possible (and strongly recommended) to add a description of what the func-
tion does, by adopting some conventions (see https://www.python.org/dev/peps/
pep-0257/) =
def square(x):

"""returns the squared value of x"""
return x**2

When the next instruction is then evaluated, the description of the function is
displayed:
`?`(square)

In Jupyter Notebook, after writing the name of the function, the description can also
be displayed by pressing the Shift and Tabulation keys on the keyboard.

8.1.2 Parameters of a Function

In the example of the square() function we created, we filled in only one argument,
called x. If the function we wish to create requires several argument, they must be

https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/

8.1. DEFINITION 137

separated by a comma.

Let us consider, for example, the following problem. We have a production function
Y (L,K,M), which depends on the number of workers L and the amount of capital
K, and the equipment M , such that Y (L,K,M) = L0.3K0.5M2. This function can
be written in Python as follows:
def production(l, k, m):

"""
Returns the value of the production according to
labour, capital and materials

Keyword arguments:
l -- labour (float)
k -- capital (float)
m -- materials (float)
"""
return l**0.3 * k**0.5 * m**(0.2)

8.1.2.1 Call Without Parameter Names

Using the previous example, if we are given L = 60 and K = 42 and M = 40, we can
deduce the production:
prod_val = production(60, 42, 40)
print(prod_val)

46.289449781254994

It should be noted that the name of the parameters has not been mentioned here.
When the function was called, the value of the first parameter was assigned to the
first parameter (l), the second to the second parameter (k) and finally the third to
the third parameter (m).

8.1.2.2 Positional Arguments, Arguments by Keywords

There are two types of arguments that can be given to a function in Python:

138 CHAPTER 8. FUNCTIONS

• the positional arguments;
• arguments by keywords.

Unlike positional arguments, keyword arguments have a default value assigned by
default. We speak of a formal argument to designate the arguments of the function
(the variables used in the body of the function) and an effective argument to designate
the value that we wish to give to the formal argument To define the value to be given
to a formal argument, we use the equality symbol. When calling the function, if the
user does not explicitly define a value, the default value will be assigned. Thus, it
is not necessarily necessary to specify the arguments by keywords when calling the
function.

It is important to note that positional arguments (those that do not have a default
value) must appear first in the argument list.

Let’s take an example with two positional arguments (l and m) and one argument
per keyword (k):
def production_2(l, m, k=42):

"""
Returns the value of the production according to
labour, capital and materials

Keyword arguments:
l -- labour (float)
m -- materials (float)
k -- capital (float) (default 42)
"""
return l**0.3 * k**0.5 * m**(0.2)

The production_2() function can be called, to give the same result, in the following
three ways:
By naming all argument, by ommitting k
prod_val_1 = production_2(l = 42, m = 40)
By naming all argument and specifying k
prod_val_2 = production_2(l = 42, m = 40, k = 42)
By naming only the argument k
prod_val_3 = production_2(42, 40, k = 42)
Without naming any argument
prod_val_4 = production_2(42, 40, 42)

8.1. DEFINITION 139

res = [prod_val_1, prod_val_2, prod_val_3, prod_val_4]
print(res)

[41.59215573604822 , 41.59215573604822 , 41.59215573604822 ,
41.59215573604822]

Remarque 8.1.1

If the function contains several positional arguments; when evaluating:
• or all positional arguments are named by their name;
• or none;
• there are no in-between.

As long as all the positional arguments are named during the evaluation, they can be
listed in different orders:
def production_3(a, l, m = 40, k=42):

"""
Returns the value of the production according to
labour, capital and materials

Keyword arguments:
a -- total factor productivity (float)
l -- labour (float)
m -- materials (float) (default 40)
k -- capital (float) (default 42)
"""
return a * l**0.3 * k**0.5 * m**(0.2)

prod_val_1 = production_3(1, 42, m = 38)
prod_val_2 = production_3(a = 1, l = 42)
prod_val_3 = production_3(l = 42, a = 1)
prod_val_4 = production_3(m = 40, l = 42, a = 1)

res = [prod_val_1, prod_val_2, prod_val_3, prod_val_4]
print(res)

[41.16765711449734 , 41.59215573604822 , 41.59215573604822 ,

140 CHAPTER 8. FUNCTIONS

41.59215573604822]

8.1.2.3 Function as an Argument to Another Function

A function can be provided as an argument to another function.
def square(x):

"""Returns the squared value of x"""
return x**2

def apply_fun_to_4(fun):
"""Applies the function `fun` to 4"""
return fun(4)

print(apply_fun_to_4(square))

16

8.2 Scope of a Function

When a function is called, the body of that function is interpreted. Variables that
have been defined in the body of the function are assigned to a local namespace. In
other words, they live only within this local space, which is created at the moment of
the call of the function and destroyed at the end of it. This is referred to as the scope
of the variables. Thus, a variable with a local scope (assigned in the local space) can
have the same name as a global variable (defined in the global workspace), without
designating the same object, or overwrite this object.

Let’s look at this through an example.
Definition of a global variable:
value = 1

Definition of a local variable in function f

8.2. SCOPE OF A FUNCTION 141

def f(x):
value = 2
new_value = 3
print("value equals: ", value)
print("new_value equals: ", new_value)
return x + value

Let’s call the f() function, then look at the value and new_value values after
executing the function.
res = f(3)

value equals : 2
new_value equals : 3

print("value equals: ", value)

value equals : 1

print("new_value equals: ", new_value)

Error in py_call_impl (callable , dots$args , dots$keywords):
NameError : name 'new_value ' is not defined

##
Detailed traceback :
File "<string >", line 1, in <module >

As can be seen, during the evaluation, the local variable of the name value was 2,
which did not refer to the variable of the same name defined in the global environment.
After executing the f() function, this local value variable is deleted, and the same
applies to the local new_value variable, which does not exist in the global environment
(hence the error returned).

Without going into too much detail, it seems important to know some principles about
the scope of variables. Variables are defined in environments, which are embedded in
each other. If a variable is not defined in the body of a function, Python will search
in a parent environment.

142 CHAPTER 8. FUNCTIONS

value = 1
def f(x):

return x + value

print(f(2))

3

If we define a function within another function, and call a variable not defined in the
body of that function, Python will search in the directly superior environment. If it
does not find, it will search in the even higher environment, and so on until ir reaches
the global environment.
The value variable is not defined in
the local environment of g().
Python will then search in f().
value = 1
def f():

value = 2
def g(x):

return x + value

return g(2)

print(f())

4

The value variable is not defined in g() or f()
but in the higher environment (here, global)
value = 1
def f():

def g(x):
return x + value

return g(2)

8.3. LAMBDA FUNCTIONS 143

print(f())

3

If a variable is defined in the body of a function and we want it to be accessible in
the global environment, we can use the keyword global:
def f(x):

global y
y = x+1

f(3)
print(y)

4

Remarque 8.2.1

The variable that we want to define globally from a local space of the function
must not have the same name of one of the parameters.

8.3 Lambda Functions

Python offers what are called lambdas functions, or anonymous functions. A lambda
function has only one instruction whose result is that of the function.

They are defined using the keyword lambda. The syntax is as follows:
name_function = lambda arguments : result

The arguments are to be separated by commas.

Let’s take the function square() created previously:
def square(x):

return x**2

144 CHAPTER 8. FUNCTIONS

The equivalent lambda function is written:
square_2 = lambda x: x**2
print(square_2(4))

16

With several parameters, let’s look at the lambda function equivalent to the
production() function:
def production(l, k, m):

"""
Returns the value of the production according to
labour, capital and materials.

Keyword arguments:
l -- labour (float)
k -- capital (float)
m -- materials (float)
"""
return l**0.3 * k**0.5 * m**(0.2)

production_2 = lambda l,k,m : l**0.3 * k**0.5 * m**(0.2)
print(production(42, 40, 42))

40.987803063838406

print(production_2(42, 40, 42))

40.987803063838406

8.4 Returning Several Values

It can sometimes be convenient to return several elements in return for a function.
Although the list is a candidate for this feature, it may be better to use a dictionary,
to be able to access the values with their key!

8.5. EXERCISE 145

import statistics
def desc_stats(x):

"""Returns the mean and standard deviation of `x`"""
return {"mean": statistics.mean(x),
"std_dev": statistics.stdev(x)}

x = [1,3,2,6,4,1,8,9,3,2]
res = stat_des(x)

Error in py_call_impl (callable , dots$args , dots$keywords):
NameError : name 'stat_des ' is not defined

##
Detailed traceback :
File "<string >", line 1, in <module >

print(res)

5

message = "The average value equals {} and the standard deviation is {}"
print(message.format(res["mean"], res["std_dev"]))

Error in py_call_impl (callable , dots$args , dots$keywords):
TypeError : 'int ' object is not subscriptable

##
Detailed traceback :
File "<string >", line 1, in <module >

8.5 Exercise

1. Create a function named sum_n_entiers which returns the sum of the first
integer n. Its only parameter will be n.

2. Using a loop, display the sum of the first 2 integers, then 3 first integers, then 4
first integers, etc. up to 10.

146 CHAPTER 8. FUNCTIONS

3. Create a function that from two points represented by pairs of coordinates
(x1, y1) and (x2, y2) returns the Euclidean distance between these two points.
Propose a second solution using a lambda function.

Chapter 9

Introduction to Numpy

This chapter is devoted to an important library for numerical calculations: NumPy
(abbreviation of Numerical Python).

It is common practice to import NumPy by assigning it the alias np:
import numpy as np

9.1 Arrays

NumPy offers a popular data structure, arrays, on which calculations can be performed
efficiently. Arrays are a useful structure for performing basic statistical operations as
well as pseudo-random number generation.

The structure of the tables is similar to that of the lists, but the latter are slower
to process and use more memory. The gain in processing speed of the ‘NumPy’
arrays comes from the fact that the data is stored in contiguous memory blocks, thus
facilitating read access.

To be convinced, we can use the example of Pierre Navaro given in his notebook on
NumPy.. Let’s create two lists of 1000 length each, with numbers drawn randomly
using the random() function of the random module. Let’s divide each element in the
first list by the element at the same position in the second line, then calculate the
sum of these 1000 divisions. Then let’s look at the execution time using the magic
function %timeit:

147

https://github.com/pnavaro/python-notebooks/blob/master/13.Numpy.ipynb
https://github.com/pnavaro/python-notebooks/blob/master/13.Numpy.ipynb

148 CHAPTER 9. INTRODUCTION TO NUMPY

from random import random
from operator import truediv
l1 = [random() for i in range(1000)]
l2 = [random() for i in range(1000)]
%timeit s = sum(map(truediv,l1,l2))

(uncomment the last line and test on a Jupyter Notebook)

Now, let’s transform the two lists into NumPy tables with the array() method, and
do the same calculation with a NumPy method:
a1 = np.array(l1)
a2 = np.array(l2)
%timeit s = np.sum(a1/a2)

As can be seen by executing these codes in an IPython environment, the execution
time is much faster with the NumPy methods for this calculation.

9.1.1 Creation

The creation of an array can be done with the array() method, from a list, as we
just did:
list = [1,2,4]
table = np.array(liste)

Error in py_call_impl (callable , dots$args , dots$keywords):
NameError : name 'liste ' is not defined

##
Detailed traceback :
File "<string >", line 1, in <module >

print(table)

Error in py_call_impl (callable , dots$args , dots$keywords):
NameError : name 'table ' is not defined

##
Detailed traceback :

9.1. ARRAYS 149

File "<string >", line 1, in <module >

print(type(table))

Error in py_call_impl (callable , dots$args , dots$keywords):
NameError : name 'table ' is not defined

##
Detailed traceback :
File "<string >", line 1, in <module >

If array() is provided with a list of nested lists of the same length, a multidimensional
array will be created:
list_2 = [[1,2,3], [4,5,6]]
table_2 = np.array(list_2)
print(table_2)

[[1 2 3]
[4 5 6]]

print(type(table_2))

<class 'numpy. ndarray '>

Tables can also be created from tuples:
tup = (1, 2, 3)
table = np.array(tup)
print(table)

[1 2 3]

print(type(table))

<class 'numpy. ndarray '>

150 CHAPTER 9. INTRODUCTION TO NUMPY

An 1-dimension array can be casted to a 2-dimension array (if possible), by changing
its shape attribute:
table = np.array([3, 2, 5, 1, 6, 5])
table.shape = (3,2)
print(table)

[[3 2]
[5 1]
[6 5]]

9.1.1.1 Some Functions Generating array Objects

Some of the functions in NumPy produce pre-filled arrays. This is the case of the
zeros() function. When given an integer value n, the zeros() function creates a
one-dimensional array, with n 0 :
print(np.zeros(4))

[0. 0. 0. 0.]

The type of zeros (e. g. int, int32, int64, int64, float, float32, float64, etc.)
can be specified using the dtype argument:
print(np.zeros(4, dtype = "int"))

[0 0 0 0]

More explanations on the types of data with NumPy are availableon the online docu-
mentation.

The type of the elements of an array is indicated via the argument dtype:
x = np.zeros(4, dtype = "int")
print(x, x.dtype)

[0 0 0 0] int64

https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.dtypes.html
https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.dtypes.html

9.1. ARRAYS 151

It is also possible to convert the type of elements into another type, using the
astype() method:
y = x.astype("float")
print(x, x.dtype)

[0 0 0 0] int64

print(y, y.dtype)

[0. 0. 0. 0.] float64

When provided with a tuple longer than 1, zeros() creates a multidimensional array:
print(np.zeros((2, 3)))

[[0. 0. 0.]
[0. 0. 0.]]

print(np.zeros((2, 3, 4)))

[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]
##
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]

The empty() function of Numpy also returns an array on the same principle as zeros(),
but without initializing the values inside.
print(np.empty((2, 3), dtype = "int"))

[[0 0 0]
[0 0 0]]

152 CHAPTER 9. INTRODUCTION TO NUMPY

The ones() function of Numpy returns the same kind of arrays, with 1s in initialized
values:
print(np.ones((2, 3), dtype = "float"))

[[1. 1. 1.]
[1. 1. 1.]]

To choose a specific value for initialization, you can use the full() function of Numpy:
print(np.full((2, 3), 10, dtype = "float"))

[[10. 10. 10.]
[10. 10. 10.]]

print(np.full((2, 3), np.inf))

[[inf inf inf]
[inf inf inf]]

The eye() function of Numpy creates a two-dimensional array in which all elements
are initialized to zero, except those of the diagonal initialized to 1 :
print(np.eye(2, dtype="int64"))

[[1 0]
[0 1]]

By modifying the keyword argument k, the diagonal can be shifted:
print(np.eye(3, k=-1))

[[0. 0. 0.]
[1. 0. 0.]
[0. 1. 0.]]

9.1. ARRAYS 153

The identity() function of Numpy creates an identity matrix in the form of an array:
print(np.identity(3, dtype = "int"))

[[1 0 0]
[0 1 0]
[0 0 1]]

The arange() function of Numpy allows to generate a sequence of numbers separated
by a fixed interval, all stored in an array. The syntax is as follows:
np.arange(start, stop, step, dtype)

with start the start value, stop the finish value, step the step, i.e., the spacing
between the numbers in the sequence and type the type of numbers :
print(np.arange(5))

[0 1 2 3 4]

print(np.arange(2, 5))

[2 3 4]

print(np.arange(2, 10, 2))

[2 4 6 8]

9.1.2 Dimensions

To know the size of an array, the value of the attribute ndim can be displayed:
print("ndim tableau : ", table.ndim)

ndim tableau : 2

154 CHAPTER 9. INTRODUCTION TO NUMPY

print("ndim tableau_2 : ", table_2.ndim)

ndim tableau_2 : 2

The number of elements in the array can be obtained by the size attribute or by the
size() function of Numpy:
print("size tableau : ", table.size)

size tableau : 6

print("size tableau_2 : ", table_2.size)

size tableau_2 : 6

print("np.size(tableau) :", np.size(table))

np.size(tableau) : 6

The shape attribute returns a tuple indicating the length for each dimension of the
array:
print("size tableau : ", table.shape)

size tableau : (3, 2)

print("size tableau_2 : ", table_2.shape)

size tableau_2 : (2, 3)

9.1. ARRAYS 155

9.1.3 Extracting Elements from an Array

Access to the elements of an array is done in the same way as for lists (see Section 3.1.1),
using indexes. The syntax is as follows:
array[lower:upper:step]

with lower the lower boundary of the index range, upper the upper range, and step
the spacing between the values.

• When lower is not specified, the first element (indexed 0) is considered as the
value assigned to lower.

• When upper' is not specified, the last element is considered as
the value assigned toupper’.

• When step is not specified, a step of 1 is assigned by default.

Let’s take a quick look at some examples, using two objects: an array of dimension 1,
and a second of dimension 2.
table_1 = np.arange(1,13)
table_2 = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
table_2 = np.array(table_2)

Access to the first element:
message = "table_{}[0] : {} (type : {})"
print(message.format(0, table_1[0], type(table_1[0])))

table_0 [0] : 1 (type : <class 'numpy.int64 '>)

print(message.format(1, table_2[0], type(table_2[0])))

table_1 [0] : [1 2 3] (type : <class 'numpy. ndarray '>)

Access to the elements can be done from the end:
print("tableau_1[-1] : ", tableau_1[-1]) # last element

Error in py_call_impl (callable , dots$args , dots$keywords):
NameError : name 'tableau_1 ' is not defined

156 CHAPTER 9. INTRODUCTION TO NUMPY

##
Detailed traceback :
File "<string >", line 1, in <module >

print("tableau_2[-1] : ", tableau_2[-1]) # last element

Error in py_call_impl (callable , dots$args , dots$keywords):
NameError : name 'tableau_2 ' is not defined

##
Detailed traceback :
File "<string >", line 1, in <module >

Slicing is possible:
the elements from the 2nd (not included) to the 4th
print("Slice Table 1 : \n", table_1[2:4])

Slice Table 1 :
[3 4]

print("Sclie Table 2 : \n", table_2[2:4])

Sclie Table 2 :
[[7 8 9]
[10 11 12]]

For two-dimensional arrays, the elements can be accessed in the following ways:
Within the 3rd element, access the 1st element
print(table_2[2][0])

7

print(table_2[2,0])

9.1. ARRAYS 157

7

To extract columns from an array with two entries:
print("Second column: \n", table_2[:, [1]])

Second column :
[[2]
[5]
[8]
[11]]

print("Second and third columns: \n", table_2[:, [1,2]])

Second and third columns :
[[2 3]
[5 6]
[8 9]
[11 12]]

For this last instruction, we specify with the first argument not filled in (before the
two points) that we want all the elements of the first dimension, then, with the
comma, we indicate that we look inside each element of the first dimension, and that
we want the values at positions 1 and 2 (therefore the elements of columns 2 and 3).

To extract only some elements from a 1-dimensional array, we can specify the indices
of the elements to be recovered:
print("2nd and 4th elements: \n", table_2[[1,3]])

2nd and 4th elements :
[[4 5 6]
[10 11 12]]

158 CHAPTER 9. INTRODUCTION TO NUMPY

9.1.3.1 Extraction Using Boolean

To extract or not elements from a table, you can use Boolean tables as masks. The
idea is to provide a boolean array (a mask) of the same size as the one for which you
want to extract elements under certain conditions. When the value of the Boolean in
the mask is set to True, the corresponding element of the array is returned; otherwise,
it is not.
table = np.array([0, 3, 2, 5, 1, 4])
res = table[[True, False, True, False, True, True]]
print(res)

[0 2 1 4]

Only the elements in positions 1, 3, 5 and 6 were returned.

In practice, the mask is only very rarely created by the user, but rather comes from a
logical instruction applied to the interest table. For example, in our table, we can
first create a mask to identify even elements:
mask = table % 2 == 0
print(mask)

[True False True False False True]

print(type(mask))

<class 'numpy. ndarray '>

Once this mask is created, it can be applied to the array to extract only those elements
for which the corresponding value in the mask is True:
print(table[mask])

[0 2 4]

9.1. ARRAYS 159

9.1.4 Modification

To replace the values in an array, equal sign (=) can be used:
table = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
table[0] = [11, 22, 33]
print(table)

[[11 22 33]
[4 5 6]
[7 8 9]
[10 11 12]]

If a scalar is provided during replacement, the value will be repeated for all elements
of the dimension :
table[0] = 100
print(table)

[[100 100 100]
[4 5 6]
[7 8 9]
[10 11 12]]

Same idea with a slicing:
table[0:2] = 100
print(table)

[[100 100 100]
[100 100 100]
[7 8 9]
[10 11 12]]

In fact, a breakdown with just the two points without specifying the start and end
parameters of the breakdown followed by an equal sign and a number replaces all the
values in the table with this number:

160 CHAPTER 9. INTRODUCTION TO NUMPY

table[:] = 0
print(table)

[[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]]

9.1.4.1 Insterting Elements

To add elements, we use the append() function of NumPy. Note that calling this
function does not change the object to which the values are added. If we want the
changes to be made to this object, we must overwrite it:
t_1 = np.array([1,3,5])
print("t_1 : ", t_1)

t_1 : [1 3 5]

t_1 = np.append(t_1, 1)
print("t_1 after the insertion: ", t_1)

t_1 after the insertion : [1 3 5 1]

To add a column to a two-dimensional table:
t_2 = np.array([[1,2,3], [5,6,7]])
print("t_2 : \n", t_2)

t_2 :
[[1 2 3]
[5 6 7]]

9.1. ARRAYS 161

add_col_t_2 = np.array([[4], [8]])
t_2 = np.append(t_2,add_col_t_2, axis = 1)
print("t_2 after the insertion: \n", t_2)

t_2 after the insertion :
[[1 2 3 4]
[5 6 7 8]]

To add a line, we use the vstack() function of Numpy:
ajout_ligne_t_2 = np.array([10, 11, 12, 13])
t_2 = np.vstack([t_2,ajout_ligne_t_2])
print("t_2 après ajout ligne : \n", t_2)

t_2 après ajout ligne :
[[1 2 3 4]
[5 6 7 8]
[10 11 12 13]]

9.1.4.2 Deleting / Removing Elements

To delete elements, we can use the delete() function of NumPy:
print("t_1 : ", t_1)
Remove the last element

t_1 : [1 3 5 1]

np.delete(t_1, (-1))

array ([1, 3, 5])

Note: for the deletion to be effective, the result of np.delete() is assigned to the
object.

To delete multiple items:

162 CHAPTER 9. INTRODUCTION TO NUMPY

print("t_1 : ", t_1)
Remove the first and second elements:

t_1 : [1 3 5 1]

t_1 = np.delete(t_1, ([0, 2]))
print(t_1)

[3 1]

To delete a column from a two-dimensional table:
print("t_2 : ", t_2)
Remove the last column:

t_2 : [[1 2 3 4]
[5 6 7 8]
[10 11 12 13]]

np.delete(t_2, (0), axis=1)

array ([[2, 3, 4],
[6, 7, 8],
[11, 12, 13]])

Delete multiple columns:
print("t_2 : ", t_2)
Remove the first and third columns:

t_2 : [[1 2 3 4]
[5 6 7 8]
[10 11 12 13]]

9.1. ARRAYS 163

np.delete(t_2, ([0,2]), axis=1)

array ([[2, 4],
[6, 8],
[11, 13]])

And to delete a row:
print("t_2 : ", t_2)
Remove the first line:

t_2 : [[1 2 3 4]
[5 6 7 8]
[10 11 12 13]]

np.delete(t_2, (0), axis=0)

array ([[5, 6, 7, 8],
[10, 11, 12, 13]])

Delete multiple lines:
print("t_2 : ", t_2)
Remove the first and third lines:

t_2 : [[1 2 3 4]
[5 6 7 8]
[10 11 12 13]]

np.delete(t_2, ([0,2]), axis=0)

array ([[5 , 6, 7, 8]])

164 CHAPTER 9. INTRODUCTION TO NUMPY

9.1.5 Copyi of an Array

Copying an array, as with lists (c.f. Section 3.1.4), should not be done with the equal
symbol (=). Let’s see why.
table_1 = np.array([1, 2, 3])
table_2 = table_1

Let’s modify the first element of table_2, and observe the content of table_2 and
table_1:
tableau_2[0] = 0

Error in py_call_impl (callable , dots$args , dots$keywords):
NameError : name 'tableau_2 ' is not defined

##
Detailed traceback :
File "<string >", line 1, in <module >

print("Table 1: \n", table_1)

Table 1:
[1 2 3]

print("Table 2: \n", table_2)

Table 2:
[1 2 3]

As can be seen, using the equal sign simply created a reference and not a copy.

There are several ways to copy an array. Among them, the use of the np.array()
function:
table_1 = np.array([1, 2, 3])
table_2 = np.array(table_1)
table_2[0] = 0
print("table_1 : ", table_1)

9.1. ARRAYS 165

table_1 : [1 2 3]

print("table_2 : ", table_2)

table_2 : [0 2 3]

The copy() method can also be used:
table_1 = np.array([1, 2, 3])
table_2 = table_1.copy()
table_2[0] = 0
print("table_1 : ", table_1)

table_1 : [1 2 3]

print("table_2 : ", table_2)

table_2 : [0 2 3]

It can be noted that when a slicing is made, a new object is created, not a reference:
table_1 = np.array([1, 2, 3, 4])
table_2 = table_1[:2]
table_2[0] = 0
print("table_1 : ", table_1)

table_1 : [0 2 3 4]

print("table_2 : ", table_2)

table_2 : [0 2]

166 CHAPTER 9. INTRODUCTION TO NUMPY

9.1.6 Sorting

The NumPy library provides a function to sort the tables, sort():
table = np.array([3, 2, 5, 1, 6, 5])
print("Sorted Table: ", np.sort(table))

Sorted Table: [1 2 3 5 5 6]

print("Table: ", table)

Table: [3 2 5 1 6 5]

As we can see, the sort() function of NumPy offers a view: the table is not modified,
which is not the case if we use the sort() method:
table = np.array([3, 2, 5, 1, 6, 5])
table.sort()
print("The array was modified: ", table)

The array was modified : [1 2 3 5 5 6]

9.1.7 Transposition

To obtain the transposition of an array, the attribute T can be used. It should be
noted that you get a view of the object: the object is not changed.
table = np.array([3, 2, 5, 1, 6, 5])
table.shape = (3,2)
print("Array: \n", table)

Array:
[[3 2]
[5 1]
[6 5]]

9.1. ARRAYS 167

print("Transposed Array: \n", table.T)

Transposed Array:
[[3 5 6]
[2 1 5]]

The transpose() function of NumPy can also be used:
print(np.transpose(table))

[[3 5 6]
[2 1 5]]

Be careful, if a name is assigned to the transpose, either by using the attribute T or
the method np.transpose(), it creates a reference, not a copy of an element. . .
table_transpose = np.transpose(table)
table_transpose[0,0] = 99
print("Array: \n", table)

Array:
[[99 2]
[5 1]
[6 5]]

print("Transpose of the Array: \n", table_transpose)

Transpose of the Array:
[[99 5 6]
[2 1 5]]

To know if an array is a view or not, we can display the base attribute, which returns
None if it is not the case:
print("table: ", table.base)

168 CHAPTER 9. INTRODUCTION TO NUMPY

table: None

print("table_transpose : ", table_transpose.base)

table_transpose : [[99 2]
[5 1]
[6 5]]

9.1.8 Operations on Arrays

It is possible to use operators on the tables. Their effect requires some explanation.

9.1.8.1 + and - Operators

When the operator + (-) is used between two tables of the same size, an addition
(subtraction) is performed:
t_1 = np.array([1, 2, 3, 4])
t_2 = np.array([5, 6, 7, 8])
t_3 = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
t_4 = np.array([[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]])
t_1 + t_2

array ([6, 8, 10, 12])

t_3 + t_4

array ([[14 , 16, 18, 20],
[22, 24, 26, 28],
[30, 32, 34, 36]])

t_1 - t_2

9.1. ARRAYS 169

array ([-4, -4, -4, -4])

When the operator + (-) is used between a scalar and an array, the scalar is added
(subtracted) to all elements of the array:
print("t_1 + 3 : \n", t_1 + 3)

t_1 + 3 :
[4 5 6 7]

print("t_1 + 3. : \n", t_1 + 3.)

t_1 + 3. :
[4. 5. 6. 7.]

print("t_3 + 3 : \n", t_3 + 3)

t_3 + 3 :
[[4 5 6 7]
[8 9 10 11]
[12 13 14 15]]

print("t_3 - 3 : \n", t_3 - 3)

t_3 - 3 :
[[-2 -1 0 1]
[2 3 4 5]
[6 7 8 9]]

9.1.8.2 * and / Operators

When the operator * (/) is used between two tables of the same size, a multiplication
(division) forward term is performed:

170 CHAPTER 9. INTRODUCTION TO NUMPY

t_1 * t_2

array ([5, 12, 21, 32])

t_3 * t_4

array ([[13, 28, 45, 64],
[85, 108, 133, 160] ,
[189 , 220, 253, 288]])

t_3 / t_4

array ([[0.07692308 , 0.14285714 , 0.2 , 0.25],
[0.29411765 , 0.33333333 , 0.36842105 , 0.4],
[0.42857143 , 0.45454545 , 0.47826087 , 0.5]])

When the operator * (/) is used between a scalar and an array, all the elements of
the array are multiplied (divided) by this scalar :
print("t_1 * 3 : \n", t_1 * 3)

t_1 * 3 :
[3 6 9 12]

print("t_1 / 3 : \n", t_1 / 3)

t_1 / 3 :
[0.33333333 0.66666667 1. 1.33333333]

9.1.8.3 Power

It is also possible to raise each number in a table to a given power:

9.1. ARRAYS 171

print("t_1 ** 3 : \n", t_1 ** 3)

t_1 ** 3 :
[1 8 27 64]

9.1.8.4 Operations on Matrices

In addition to the term-by-term operations/subtraction/multiplication/division (or
on a scalar), it is possible to perform some calculations on two-dimensional tables
(matrices).

We’ve already seen the tranposition of a matrix in Section 9.1.7.

To perform a matrix product, NumPy provides the function dot():
np.dot(t_3, t_4.T)

array ([[150 , 190, 230] ,
[382 , 486, 590] ,
[614 , 782, 950]])

We have to make sure that the matrices are compatible, otherwise, an error will be
returned:
np.dot(t_3, t_4)

Error in py_call_impl (callable , dots$args , dots$keywords):
ValueError : shapes (3 ,4) and (3 ,4) not aligned : 4 (dim 1)
!= 3 (dim 0)

##
Detailed traceback :
File "<string >", line 1, in <module >

The matrix product can also be obtained using the operator @:

172 CHAPTER 9. INTRODUCTION TO NUMPY

t_3 @ t_4.T

array ([[150 , 190, 230] ,
[382 , 486, 590] ,
[614 , 782, 950]])

The product of a vector with a matrix is also possible:
np.dot(t_1, t_3.T)

array ([30, 70, 110])

9.1.9 Logical Operators

To perform logical tests on the elements of a table, NumPy offers functions, listed in
Table 9.1. The result returned by applying these functions is a Boolean array.

Table 9.1: Logical Functions

Code Description
greater() Greater than

greater_equal() Greater than or equal to
less() Lower than

less_equal() Lower than or equal to
equal() Equal to

not_equal() Different from
logical_and() Logical And
logical_or() Logical Or

logical_xor() Logical XOR

For example, to obtain the elements of t between 10 and 20 (included):
t = np.array([[1, 10, 3, 24], [9, 12, 40, 2], [0, 7, 2, 14]])
mask = np.logical_and(t <= 20, t >= 10)
print("mask: \n", mask)

9.1. ARRAYS 173

mask:
[[False True False False]
[False True False False]
[False False False True]]

print("the elements of t between 10 and 20: \n",
t[mask])

the elements of t between 10 and 20:
[10 12 14]

9.1.10 Some Constants

NumPy provides some constants, some of which are shown in Table 9.2.

Table 9.2: Formatting Codes

Code Description
np.inf Infinity (we get −∞ by writing -np.inf or np.NINF)
np.nan Representation as a floating point number of Not a Number

np.e Euler constant (e)
np.euler_gamma Euler-Mascheroni constant (γ)

np.pi Pi (π)

We can note the presence of the value NaN, which is a special value among the floating
point numbers. The behavior of this constant is special.

When we add, subtract, multiply or divide a number by this NaN value, we obtain
NaN:
print("Addition : ", np.nan + 1)

Addition : nan

174 CHAPTER 9. INTRODUCTION TO NUMPY

print("Substraction : ", np.nan - 1)

Substraction : nan

print("Multiplication : ", np.nan + 1)

Multiplication : nan

print("Division : ", np.nan / 1)

Division : nan

9.1.11 Universal functions

Universal functions (ufunc for universal functions) are functions that can be applied
term-by-term to the elements of an array. There are two types of universal functions:
uannic functions, which perform an operation on a single operand, and binary
functions, which perform an operation on two operands.

Among the ufuncs are arithmetic operations (addition, multiplication, power, abso-
lute value, etc.) and common mathematical functions (trigonometric, exponential,
logarithmic functions, etc.). Table 9.3 lists some universal functions, while Table 9.4
lists some universal binary functions.

Table 9.3: Unary Universal Function

Code Description
negative(x) Opposite elements of elements of x
absolute(x) Absolute values of the elements of x

sign(x) Signs of the elements of x (0, 1 or -1)
rint(x) Ronded value of x to the nearest integer

floor(x) Truncated value of x to the next smaller integer
ceil(x) Truncated value of x to the next larger integer
sqrt(x) Square root of x

9.1. ARRAYS 175

Code Description
square(x) Squared value of x

sin(x),
cos(x), tan(x)

Sine (cosine, and tangent) of the elements of x

sinh(x),
cosh(x),
tanh(x)

Hyperbolic sine (cosine, and tangent) of the elements of x

arcsin(x),
arccos(x),
arctan(x)

Arc-sine (arc-cosine, and arc-tangent) de x

arcsinh(x),
arccosh(x),
arctanh(x)

Hyperbolic arc-sinus (arc-cosine, and arc-tangent) of the
elements of x

hypoth(x,y) Hypotenuse
√
x2 + y2

degrees(x) Conversion of the angles values of x from radians to degrees
radians(x) Conversion of the angles values of x from degrees to radians

exp(x) Exponential of the values of x
expm1(x) ex − 1

log(x) Natural logarithm of the elements of x
log10(x) Logatithm of the elements of x in base 10
log2(x) Logarithm of the elements of x in base 2

log1p(x) ln(1 + x
exp2(x) 2x

isnan(x) Boolean table indicating True for the elements NaN
isfinite(x) Boolean table indicating True for non-infinite and non-NaN

elements
isinf(x) Boolean array indicating True for infinite elements

Table 9.4: Binary Universal Functions

Code Description
add(x,y) Term by term addition of the elements of x and y

subtract(x,y) Term by term substraction of the elements of x and y
multiply(x,y) Term by term multiplication of the elements of x and y

divide(x,y) Term by term division of the elements of x and y
floor_divide(x,y)Largest integer smaller or equal to the division of the elements

of x and y

176 CHAPTER 9. INTRODUCTION TO NUMPY

Code Description
power(x,y) Elements of x to the power of the elements of y

mod(x,y) Remainder of Euclidean term by term divisions of the eleemnts
of x by the elements of y

round(x,n) Rounded value of the elements of x up to n digits
arctan2(x,y) Polar angles of x and y

To use these functions, proceed as in the following example:
t_1 = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
t_2 = np.array([[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]])
np.log(t_1) # Natural Logarithm

array ([[0. , 0.69314718 , 1.09861229 , 1.38629436] ,
[1.60943791 , 1.79175947 , 1.94591015 , 2.07944154] ,
[2.19722458 , 2.30258509 , 2.39789527 , 2.48490665]])

np.subtract(t_1, t_2) # Substraction of the elements of `t_1` by those of `t_2`

array ([[-12 , -12, -12, -12],
[-12, -12, -12, -12],
[-12, -12, -12, -12]])

9.1.12 Mathematical and Statistical Methods and Functions

NumPy provides many methods to calculate statistics on all array values, or on one of
the array axes (for example on the equivalent of rows or columns in two-dimensional
arrays). Some of them are reported in Table 9.5.

Table 9.5: Mathematical and Statistical Methods

Code Description
sum() Returns the sum of the elements

prod() Returns the product of the elements

9.1. ARRAYS 177

Code Description
cumsum() Returns the cumulative sum of the elements

cumprod() Returns the cumulative product of the elements
mean() Returns the average
var() Returns the variance
std() Returns the standard error
min() Returns the minnimum value
max() Returns the maximum value

argmin() Returns the index of the first element with the lowest value
argmax() Returns the index of the first element with the largest value

Let’s give an example of the use of these methods:
t_1 = np.array([[1, 2, 3, 4], [-1, 6, 7, 8], [9, -1, 11, 12]])
print("t_1 : \n", t_1)

t_1 :
[[1 2 3 4]
[-1 6 7 8]
[9 -1 11 12]]

print("Sum of the elements: ", t_1.sum())

Sum of the elements : 61

print("Covariance of the elements: ", t_1.var())

Covariance of the elements : 18.07638888888889

To apply these functions to a given axis, we modify the value of the parameter axis:
print("Sum per column: ", t_1.sum(axis=0))

Sum per column : [9 7 21 24]

178 CHAPTER 9. INTRODUCTION TO NUMPY

print("Sum per row: ", t_1.sum(axis=1))

Sum per row: [10 20 31]

NumPy also offers some statistically specific functions, some of which are listed in
Table 9.6.

Table 9.6: Statistical Functions

Code Description
sum(x),

nansum(x)
Sum of the elements of x (nansum(x) does not take into

account NaN values)
mean(x),

nanmean()
Average of x

median(x),
nanmedian()

Median of x

average(x) Average of x (possibility to use weights using the weight
parameter)

min(x), nanmin() Mininum of x
max(x), nanmax() Maximum of x
percentile(x,p),
nanpercentile(n,p)

P-th percentile of x

var(x),
nanvar(x)

Variance of x

std(x), nanstd() Standard-deviation of x
cov(x) Covariance of x

corrcoef(x) Correlation coefficient

To use the statistical functions:
t_1 = np.array([[1, 2, 3, 4], [-1, 6, 7, 8], [9, -1, 11, 12]])
print("t_1 : \n", t_1)

t_1 :
[[1 2 3 4]
[-1 6 7 8]

9.2. GENERATION OF PSEUDO-RANDOM NUMBERS 179

[9 -1 11 12]]

print("Variance: ", np.var(t_1))

Variance : 18.07638888888889

If the array has NaN values, for example, to calculate the sum, if sum() is used,
the result will be NaN. To ignore the values NaN, we use a specific function (here,
nansum()) :
t_1 = np.array([[1, 2, np.NaN, 4], [-1, 6, 7, 8], [9, -1, 11, 12]])
print("Sum: ", np.sum(t_1))

Sum: nan

print("Sum ignoring NaN values: ", np.nansum(t_1))

Sum ignoring NaN values : 58.0

To calculate a weighted average (let’s consider a vector):
v_1 = np.array([1, 1, 4, 2])
w = np.array([1, 1, .5, 1])
print("Weighted average: ", np.average(v_1, weights=w))

Weighted average : 1.7142857142857142

9.2 Generation of Pseudo-random Numbers

The generation of pseudo-random numbers is allowed by the random module of Numpy.
The reader interested in the more statistical aspects will be able to find more concepts
covered in the stats sub-module of SciPy.

180 CHAPTER 9. INTRODUCTION TO NUMPY

from numpy import random

Table 9.7 lists some functions that allow to draw numbers in a pseudo-random way
with the random module of Numpy (by evaluating random, we get an exhaustive list).

Table 9.7: Some Functions for Pseudo-random Number Generation

Code Description
rand(size) Drawing size obs. from a Uniform distribution [0, 1]

uniform(a,b,size) TDrawing size obs. from a Uniform distribution [a; b]
randint(a,b,size) Drawing size obs. from a Uniform distribution [a; b[

randn(size) Drawing size obs. from a Normal distribution N (0, 1)
normal(mu,
std, size)

Drawing size obs. from a Normal distribution with mu mean
and standard error std

binomial(size,
n, p)

Drawing size obs. from a Binomial distribution Bin(n, p)

beta(alpha,
beta, size)

Drawing size obs. from a Beta distribution Beta(α, β)

poisson(lambda,
size)

Drawing size obs. from a Poisson distribution P(λ)

standard_t(df,
size)

Drawing size obs. from a Student distribution St(df)

Here is an example of generating pseudo random numbers according to a Gaussian
distribution:
x = np.random.normal(size=10)
print(x)

[1.2045678 0.62947989 -1.11421506 1.48626408
-1.15608001 -1.07159849

0.77041608 -0.21934874 -0.5421896 0.68204223]

A multidimensional array can be generated. For example, a two-dimensional array,
in which the first dimension contains 10 elements, each containing 4 random draws
according to a N (0.1):

9.2. GENERATION OF PSEUDO-RANDOM NUMBERS 181

x = np.random.randn(10, 4)
print(x)

[[0.60530527 -0.86279092 0.31726444 -1.25625927]
[0.63417263 1.84491222 2.0506628 -0.722184]
[-0.98217855 0.48028984 1.78485585 -0.37294828]
[0.05824012 -0.4965277 -0.09092745 0.89620369]
[-0.85446036 -1.06870108 0.85759164 -1.28842648]
[0.28288546 -0.43186816 0.93785772 0.54925557]
[1.52594688 0.69341129 -0.06140043 1.15137295]
[-0.11861859 -1.19806045 -0.77662476 1.42544774]
[0.67120661 0.48387841 -0.45160398 -0.25340085]
[-2.01401797 1.71397631 0.52017544 1.72642461]]

The generation of numbers is based on a seed, i.e. a number that initiates the generator
of pseudo random numbers. It is possible to fix this seed, so that reproducible results
can be obtained, for example. To do this, we can use the seed() method, to which
we indicate a value as a parameter :
np.random.seed(1234)
x = np.random.normal(size=10)
print(x)

[0.47143516 -1.19097569 1.43270697 -0.3126519
-0.72058873 0.88716294

0.85958841 -0.6365235 0.01569637 -2.24268495]

By fixing the seed again, one will obtain exactly the same draft:
np.random.seed(1234)
x = np.random.normal(size=10)
print(x)

[0.47143516 -1.19097569 1.43270697 -0.3126519
-0.72058873 0.88716294

0.85958841 -0.6365235 0.01569637 -2.24268495]

182 CHAPTER 9. INTRODUCTION TO NUMPY

To avoid affecting the global environment by the random seed, the RandomState
method of the random sub-module of NumPy can be used:
from numpy.random import RandomState
rs = RandomState(123)
x = rs.normal(10)
print(x)

8.914369396699438

In addition, the switching() function of the random sub-module allows a random
switch:
x = np.arange(10)
y = np.random.permutation(x)
print("x : ", x)

x : [0 1 2 3 4 5 6 7 8 9]

print("y : ", y)

y : [9 7 4 3 8 2 6 1 0 5]

The shuffle() function of the random submodule allows to perform a random
permutation of the elements :
x = np.arange(10)
print("x avant permutation : ", x)

x avant permutation : [0 1 2 3 4 5 6 7 8 9]

np.random.permutation(x)

array ([7, 5, 4, 1, 0, 8, 3, 9, 6, 2])

9.3. EXERCISE 183

print("x après permutation : ", x)

x après permutation : [0 1 2 3 4 5 6 7 8 9]

9.3 Exercise

First exercise

Consider the following vector: x =
[
1 2 3 4 5

]
1. Create this vector using an array called x.
2. Display the type of x and its length.
3. Extract the first element, then do the same with the last one.
4. Extract the first three elements and store them in a vector called a.
5. Extract the 1st, 2nd and 5th elements of the vector (be careful with the

positions); store them in a vector called b.
6. Add the number 10 to the vector x, then multiply the result by 2.
7. Add a and b, comment on the result.
8. Make the following addition: x+a; comment on the result, then look at the

result of a+x.
9. Multiply the vector by the scalar ‘c’ which will be set to 2.
10. Multiply a and b; comment on the result.
11. Perform the following multiplication: x*a; comment on the results.
12. Retrieve the positions of the multiples of 2 and store them in a vector called

ind, then store only the multiples of 2 of x in a vector called mult_2.
13. Display the elements of x that are multiples of 3 and multiples of 2.
14. Display the elements of x that are multiples of 3 or multiples of 2.
15. Calculate the sum of the elements of x.
16. Replace the first element of x with a 4.
17. Replace the first element of x with the value NaN, then calculate the sum of the

elements of x. 18 Delete the vector x.

Second exercise

1. Create the following matrix: A =

−3 5 6
−1 2 2
1 −1 −1

.

184 CHAPTER 9. INTRODUCTION TO NUMPY

2. Display the size of A, its number of columns, its number of rows and its length.
3. Extract the second column from A, then the first row.
4. Extract the element in the third position in the first line.
5. Extract the submatrix of dimension 2 × 2 from the lower corner of A, i. e.,[

2 2 − 1 −1
]
.

6. Calculate the sum of the columns and then the rows of A.
7. Display the diagonal of A.
8. Add the vector

[
1 2 3

]>
$ to the right of the matrix A and store the result in

an object called B.
9. Remove the fourth vector from B.
10. Remove the first and third lines from B.
11. Add scalar 10 to A.
12. Add the vector

[
1 2 3

]>
to A.

13. Add the identity matrix I3 to A.
14. Divide all the elements of the matrix A by 2.
15. Multiply the matrix A by the line vector

[
1 2 3

]>
.

16. Display the transposition of A.
17. Perform the product with transposition A>A.

–>

Chapter 10

References

Briggs, Jason R. 2013. Python for Kids: A Playful Introduction to Programming. no
starch press.

Grus, Joel. 2015. Data Science from Scratch: First Principles with Python. " O’Reilly
Media, Inc.".

McKinney, Wes. 2017. Python for Data Analysis: Data Wrangling with Pandas,
Numpy, and Ipython (2nd Edition). " O’Reilly Media, Inc.".

Navaro, Pierre. 2018. “Python Notebooks.” https://github.com/pnavaro/
python-notebooks.

VanderPlas, Jake. 2016. Python Data Science Handbook: Essential Tools for Working
with Data. " O’Reilly Media, Inc.".

185

https://github.com/pnavaro/python-notebooks
https://github.com/pnavaro/python-notebooks

	List of Tables
	List of Figures
	Opening remarks
	Objectives
	Who are these notes for?

	Introduction
	Background information
	Versions
	Working space
	Python in a terminal
	IPython
	Spyder
	Jupyter Notebook
	Evaluation of an instruction
	Text cells
	Deleting a cell

	Variables
	Assignment and deletion
	Naming Conventions

	Comments
	Modules and packages
	The Help System

	Types of Data
	Strings
	Concatenation of Strings
	Indexing and Extraction
	Available Methods with Strings
	Conversion to upper or lower case
	Seach Pattern for Strings
	Splitting Strings
	Cleaning, completion
	Replacements

	Conversion to character strings
	Exercise

	Numerical values
	Integers
	Floating Point Numbers
	Complex numbers
	Conversions
	Conversion to Integer
	Conversion to Floating Point Number
	Conversion to Complex

	Booleans
	Empty Object
	Dates and Times
	Module Datetime
	Date
	Time
	Datetime
	Timedelta

	pytz Module
	Exercices

	Structures
	Lists
	Extraction of the Elements
	Modification
	Replacement
	Adding Elements
	Deleting Elements
	Multiple assignments

	Verifying if a Value is Present
	Copy of List
	Sorting

	Tuples
	Extraction of the Elements
	Modification

	Sets
	Modifications
	Adding Elements
	Deletion

	Belonging test
	Copying a Set
	Conversion to a List

	Dictionaries
	Extraction of the Elements
	Keys and values
	Search for Belonging
	Modification
	Replacement
	Adding Elements
	Deleting elements

	Copy of a Dictionary
	Exercise

	Operators
	Arithmetic Operators
	Addition
	Subtraction
	Multiplication
	Division
	Modulo
	Power
	Order
	Mathematical Operators on Strings
	Mathematical Operators on Lists or tuples

	Comparison Operators
	Equality, Inequality
	Inferiority and Superiority, Strict or Broad
	Inclusion and exclusion

	Logical operators
	And logical
	Logical OR
	Logical Not

	Some Functions
	Some Constants
	Exercise

	Loading and Saving Data
	Load Data
	Fichiers textes
	Import from the Internet

	CSV Files
	Import From the Internet

	JSON Files
	Import from the Internet

	Excel Files

	Exporting data
	Text Files
	CSV Files
	JSON Files
	Exercise

	Conditions
	Conditional if Instructions
	if-else Conditional Instructions
	if-elif Conditional Instructions
	Exercise

	Loops
	Loops with while()
	Loops with for()
	Exercise

	Functions
	Definition
	Adding a Description
	Parameters of a Function
	Call Without Parameter Names
	Positional Arguments, Arguments by Keywords
	Function as an Argument to Another Function

	Scope of a Function
	Lambda Functions
	Returning Several Values
	Exercise

	Introduction to Numpy
	Arrays
	Creation
	Some Functions Generating array Objects

	Dimensions
	Extracting Elements from an Array
	Extraction Using Boolean

	Modification
	Insterting Elements
	Deleting / Removing Elements

	Copyi of an Array
	Sorting
	Transposition
	Operations on Arrays
	+ and - Operators
	* and / Operators
	Power
	Operations on Matrices

	Logical Operators
	Some Constants
	Universal functions
	Mathematical and Statistical Methods and Functions

	Generation of Pseudo-random Numbers
	Exercise

	References

