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This chapter presents some concepts of statistical learning, through the
prism of regression.
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1. Some context

Model specification

In a regression problem, the aim is to understand how a response variable
y varies, conditionally on the available information on some predictors x.

Let us take an example, that of the salaries for Professors in the US in
2008-09.

The salary of a professor may be linked, among other things, to the number
of years since he or she obtained their Ph.D.
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1. Some context

Salary as a function of years since Ph.D

50000

100000

150000

200000

0 20 40

Years since Ph.D

S
al

ar
y 

in
 2

00
8−

09
 (

ni
ne

−
m

on
th

 s
al

ar
y,

 in
 d

ol
la

rs
)

linear regression

loess

conditional mean

linear regression

loess

observation

Ewen Gallic Machine learning and statistical learning 5/160



1. Some context

Salary as a function of years since Ph.D

Here, the linear regression suggests that on the average, the salary increases
with the number of years since Ph.D:

• the slope of 985.3 indicates that each additional year since Ph.D leads
to an increase of 985 dollars of 9-month salary.

But the relationship does not seem to be linear. . .
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1. Some context

Salary as a function of years since Ph.D

It should be noted here that:

• the regression analysis does not depend on a generative model here
(a model explaining how the are generated)
• there is no causal claims regarding the way mean salary would

change if the number of years since Ph.D is altered
• there is no statistical inference

We could add some predictors to the model to get a better story on what
is going on with salary :

• some ommitted variables may play an important role in explaining the
variations.
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1. Some context

Salary as a function of years since Ph.D

We can also perform some regression analysis if the response variable is
categorical.

Let us look at the salary in a different way: let us split it into two categories,
either < $100k or ≥ $100k.

For each decile of years since Ph.D, we can plot the conditional propor-
tions.
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1. Some context

Salary as a function of years since Ph.D
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1. Some context

Levels of regression analysis
Berk (2008) mentions three levels of regression analysis:

• Level I regression analysis:
I aiming at describing the data
I assumption free
I should not be neglected

• Level II regression analysis:
I based on statistical inference
I uses results from level I regression analysis
I use with real data may be challenging
I allows to make predictions

• Level III regression analysis:
I based on causal inference
I uses level I analysis, sometimes coupled with level II
I rely more on algorithmic methods rather than model-based methods.
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2. The linear regression
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2. The linear regression

Some references

• Berk (2008). Statistical learning from a regression perspective, volume
14. Springer.
• Cornillon and Matzner-Løber (2007). Régression: théorie et applica-

tions. Springer.
• James et al. (2013). An introduction to statistical learning, volume
112. Springer.
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2. The linear regression

The linear regression

Linear regression combines level I and level II perspectives.

It is useful when one wants to predict a quantitative response.

A lot of newer statistical learning approaches can be seen as generalizations
or extensions of linear regression, as reminded in James et al. (2013).

Ewen Gallic Machine learning and statistical learning 13/160



2. The linear regression
2.1. Simple linear regression

2.1 Simple linear regression
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2. The linear regression
2.1. Simple linear regression

Principle

Let us consider first the case of simple linear regression.

We aim at predicting a quantitative response variable y using a single
predictor x (or regressor).

• y is a n× 1 numerical response variable, where n represents the
numbr of observations

• x is a n× 1 predictor.

We assume there exists a linear relationship between y and x such that:

yi = β0 + β1xi + εi, i = 1, . . . , n, (1)

where εi is an error term normally distributed with 0 mean and variance
σ2, i.e, εi ∼ N (0, σ2).
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2. The linear regression
2.1. Simple linear regression

Principle

In Eq. 1, the coefficients (or parameters) β0 (i.e., the constant) and β1
(i.e., the slope) are unknown parameters to be estimated.

These coefficients are estimated using a training sample.

The estimates of β0 and β1 are, respectively, β̂0 and β̂1.

Once they are estimated using a learning procedure (in this case using linear
regression), they can used to predict values for y for some value x0:

ŷ0 = β̂0 + β̂1x0 (2)
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2. The linear regression
2.1. Simple linear regression

2.1.1. Estimating the coefficients

2.1.1 Estimating the coefficients
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2. The linear regression
2.1. Simple linear regression

2.1.1. Estimating the coefficients

Estimating the coefficients

To estimate β0 and β1, we rely on a set of training examples
{(x1, y1), . . . , (xn, yn)}.

For example, let us go back to our data describing the 9 month salary of
professors (the response variable) and look at the relationship between the
salary and years since Ph.D (x).
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2. The linear regression
2.1. Simple linear regression

2.1.1. Estimating the coefficients

Estimating the coefficients

Figure 1: Varying the intercept. Figure 2: Varying the slope.

There is an infinity of possibles values that one can pick for β̂0 and β̂1.

However, we want to find an estimation that leads to a line being as close
as possible to the points: but what does “close” mean?
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2. The linear regression
2.1. Simple linear regression

2.1.1. Estimating the coefficients

Estimating the coefficients

The most common metric we want to minimize is known as the least
square criterion.

The predictions ŷi for each of the xi, i = 1, . . . , n are given by ŷi =
β̂0 + β̂1xi.

Let ei = yi − ŷi the ith residual, i.e., the difference between the osberves
value and its prediction by the linear model.

The residual sum of square is defined as:

RSS =
n∑
i=1

ε2
i =

n∑
i=1

(yi − β̂1xi − β̂0)2. (3)

We aim at minimizing this metric.
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2. The linear regression
2.1. Simple linear regression

2.1.1. Estimating the coefficients

Least squares coefficient estimates

It can easily be shown that the minimization of the RSS leads to:

β̂1 =
∑n

i=1
xiyi−nx̄ȳ∑n

i=1
x2
i
−nx̄2

β̂0 = ȳ − β̂1x̄
(4)

where x̄ = 1
n

∑n
i=1 xi, ȳ = 1

n

∑n
i=1 yi.
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2. The linear regression
2.1. Simple linear regression

2.1.1. Estimating the coefficients

Least squares coefficient estimates
In our example, the least squares coefficient estimates ˆbeta0 and β1 are,
respectively, 9.1719 and 0.0985.
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Figure 3: Fit of the Least Square for the regression of years since Ph.D onto the 9 months salaryof
Professors.
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2. The linear regression
2.1. Simple linear regression

2.1.1. Estimating the coefficients

Residual sum of squares
We can have a look at the RSS when we vary the values of β̂0 and β̂1:

Figure 4: Surface plot of the RSS depending
on the values of β̂0 and β̂1.
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Figure 5: Contour plot of the RSS depending
on the values of β̂0 and β̂1.
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2. The linear regression
2.1. Simple linear regression

2.1.2. Accuracy of the coefficient estimates

2.1.2 Accuracy of the coefficient estimates
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2. The linear regression
2.1. Simple linear regression

2.1.2. Accuracy of the coefficient estimates

Accuracy of the coefficient estimates

The estimates β̂0 and β̂1 are point estimates.

When they are estimated by least squares, they are:

• unbiased
I E(β̂0) = β0 and E(β̂1) = β1

• efficient
I V(β̂0) and V(β̂1) are minimal

• convergent
I limn→+∞ V(β̂0) = 0 and limn→+∞ V(β̂1) = 0

They are called BLUE (Best Linear Unbiased Estimator).
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2. The linear regression
2.1. Simple linear regression

2.1.2. Accuracy of the coefficient estimates

Accuracy of the coefficient estimates

It is easy to show that:


V(β̂0) = σ2

[
1
n + x∑n

i=1
(xi−x)2

]
V(β̂1) = σ2∑n

i=1
(xi−x)2

(5)

where σ2 can be estimated:

σ̂2 =
∑n
i=1(yi − ŷi)2

n− 2 =
∑n
i=1 e

2
i

n− 2 .
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2. The linear regression
2.1. Simple linear regression

2.1.2. Accuracy of the coefficient estimates

Accuracy of the coefficient estimates

Figure 6: A: True relationship (in red), Observed values of y (points) and Least Squares line (in
blue). B: True relationship (in red), Current Least Squares line (in blue), Previous Least Squares
lines (in gray).
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2. The linear regression
2.1. Simple linear regression

2.1.2. Accuracy of the coefficient estimates

Accuracy of the coefficient estimates
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Figure 7: Mean of estimates of β0 and β1 depending on the number of resampling.
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2. The linear regression
2.1. Simple linear regression

2.1.2. Accuracy of the coefficient estimates

Hypothesis tests

We wish to test if a coefficient θ, θ ∈ {β0, β1} is equal to a specific value
θ0:

{
H0 : θ = θ0

H1 : θ 6= θ0

We know that θ̂ ∼ N
(
θ, σ2∑n

i=1
(xi−x̄)2

)
, so:

θ̂ − θ
σ/
√∑n

i=1(xi − x̄)2
∼ N (0, 1).
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2. The linear regression
2.1. Simple linear regression

2.1.2. Accuracy of the coefficient estimates

Hypothesis tests

As
∑n

i=1
ε2
i

σ2 ∼ χ2
n−2, we can define a variable T as:

T =

θ̂−θ
σ/
√∑n

i=1
(xi−x̄)2√∑n

i=1
ε2
i

σ2
u

/
√
n− 2

∼ St(n− 2)

We can show that the expression of T can be simplified to:

T = θ̂ − θ
σ̂θ̂
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2. The linear regression
2.1. Simple linear regression

2.1.2. Accuracy of the coefficient estimates

Hypothesis tests

It is thus possible to perform the following test:

{
H0 : θ = θ0

H1 : θ 6= θ0

knowing that θ̂−θ
σ̂θ̂ ∼ St(n− 2)
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2. The linear regression
2.1. Simple linear regression

2.1.2. Accuracy of the coefficient estimates

Hypothesis tests
And we need to find the following probability:

P

(
−tα/2 <

θ̂ − θ
σ̂θ̂

< tα/2

)
We therefore need to compute a t-statistic, that measures the number of
standard deviations that θ̂ is away from θ0:

tobs. = θ̂ − θ0

σ̂θ̂

• if tobs. ∈
[
−tα/2, tα/2

]
:

I we do not reject the null hypothesis (H0) with a first-order risk of
α%

• if tobs. /∈
[
−tα/2, tα/2

]
:

I we reject the null hypothesis (H0) with a first-order risk of α%
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2. The linear regression
2.1. Simple linear regression

2.1.2. Accuracy of the coefficient estimates

Hypothesis tests

Most of the time, we are interested in a specific case:

{
H0 : α = 0
H1 : α 6= 0,

In such a case, the t-statistic becomes:

T = θ̂ − 0
σ̂θ

= θ̂

σ̂θ̂

The observed value is tobs. = α̂
σ̂α̂
.
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2. The linear regression
2.1. Simple linear regression

2.1.2. Accuracy of the coefficient estimates

Hypothesis tests: confidence interval

We can also use the standard error of the coefficient estimates to construct
a confidence interval:

̂I.C.θ(1− α) =
[
θ̂ ± tα/2 × σ̂θ̂

]
. (6)

If the intervals contain 0, then we can conclude that the coefficient θ is
not statistically different from zero (at the α% level of significance).

We can also compute the probability of observing any number equal to | t |
or larger while assuming θ = 0 (this probability is known as the p-value).
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2. The linear regression
2.1. Simple linear regression

2.1.2. Accuracy of the coefficient estimates

Hypothesis tests

Least squares
(Intercept) 9.17∗∗∗

(0.28)
yrs.since.phd 0.10∗∗∗

(0.01)
R2 0.18
Adj. R2 0.17
Num. obs. 397
RMSE 2.75
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 1: Statistical models
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2. The linear regression
2.1. Simple linear regression

2.1.3. Accuracy of the model

2.1.3 Accuracy of the model
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2. The linear regression
2.1. Simple linear regression

2.1.3. Accuracy of the model

Accuracy of the model

Recall that the linear regression is a supervised learning method. Hence,
we can compare the predictions we obtain with the observed values of the
output variable.

We want to have an idea of the quality of the estimation, to know how
well the model fits the data.

To that end, we usually use several metrics, among which:

• the root mean squared error (RMSE)
• the residual standard error (RSE)
• the R2 statistic.
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2. The linear regression
2.1. Simple linear regression

2.1.3. Accuracy of the model

Accuracy of the model: RMSE

The mean squared error (MSE) is an estimate of the average of the
squares of the errors:

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (7)

The root mean squared error is the square root of the MSE:

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2 =
√

RSS
n
, (8)

where RSS =
∑n
i=1(yi − ŷi)2
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2. The linear regression
2.1. Simple linear regression

2.1.3. Accuracy of the model

Accuracy of the model: RMSE

The value of the RMSE is always non-negative.

A value of 0 indicates a perfect fit to the data.
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2. The linear regression
2.1. Simple linear regression

2.1.3. Accuracy of the model

Accuracy of the model: RSE

Recall that the linear model contains an error term (ε). Hence, we will not
be able to perfectly predict the response variable.

The Residual Standard Error is the average amount that the response
will deviate from the true regression line. It is an estimate of the
standard deviation of ε:

RSE =
√

1
n− 2RSS =

√√√√ 1
n− 2

n∑
i=1

(yi − ŷi)2. (9)
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2. The linear regression
2.1. Simple linear regression

2.1.3. Accuracy of the model

Accuracy of the model: RSE

In our example of the regression of salaries onto years since Ph.D, the value
of the RSE is 2.7534.

This means that the actual salary can deviate from the true regression line
by approximately 2.7534 thousand dollars, on average.

The mean salary in the data is $11.37065 thousand dollars. Hence,
the percentage error for any prediction, using our estimation would be
2.7534/11.37065 ≈ 25%.
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2. The linear regression
2.1. Simple linear regression

2.1.3. Accuracy of the model

Accuracy of the model: R2

Now, let us turn to the R2 statistic, which provides another method to
assess the quality of fit.

The R2 measures the proportion of variance explained. It takes a value
between 0 and 1.

Let us illustrate this.
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2. The linear regression
2.1. Simple linear regression

2.1.3. Accuracy of the model

Accuracy of the model: R2

The variations of y are only partially explained by those of x

x

y

x1

y1

x2

y2

Figure 8: Variation from y2 to y1
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2. The linear regression
2.1. Simple linear regression

2.1.3. Accuracy of the model

Accuracy of the model: R2

As shown in Figure 8, the variation from y1 to y2 is partially explained by
the variation from x1 to x2.

The quality of fit at each point, as measured by the total variation, can
therefore be broken down into two parts:

• the explained variation
• the residual variation

using the average point (x, y) as reference, i.e.:

yi − ȳ︸ ︷︷ ︸
total variation

= ŷi − ȳ︸ ︷︷ ︸
explained variation

+ yi − ŷi︸ ︷︷ ︸
residual variation

.
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2. The linear regression
2.1. Simple linear regression

2.1.3. Accuracy of the model

Accuracy of the model: R2

The closer Â is to A, the stronger the explained variation is, relatively.

x

y

x̄

ȳ

xi

yi
A

ŷi
ÂExplained variance

Residual variance

Figure 9: Decomposition of the variation.
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2. The linear regression
2.1. Simple linear regression

2.1.3. Accuracy of the model

Accuracy of the model: R2

Thus, one way to assess the quality of the adjustment is to measure the
following ratio:

explained variance
total variance

Or, for all observations:

R2 =
∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2 = ESS

TSS = explained sum of squares
total sum of squares (10)
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2. The linear regression
2.1. Simple linear regression

2.1.3. Accuracy of the model

Accuracy of the model: R2

We can write the R2 differently, as we know that:

n∑
i=1

(yi−ŷi)2 =
n∑
i=1

(yi−ȳ)2−β̂2
1

n∑
i=1

(xi−x̄)2 =
n∑
i=1

(yi−ȳ)2−
n∑
i=1

(ŷi−ȳ)2

Thus:

R2 =
∑n
i=1(yi − ȳ)2 −

∑n
i=1(yi − ŷi)2∑n

i=1(yi − ȳ)2

= 1−
∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2 = 1− RSS

TSS (11)
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2. The linear regression
2.1. Simple linear regression

2.1.3. Accuracy of the model

Accuracy of the model: R2

The value of the R2 lies between 0 and 1:

R2 = 1− RSS
TSS ⇒ 0 ≤ R2 ≤ 1.

• When the economic theory suggests that the relationship between
the response and its predictor should be linear, we expect the value
of the R2 to be really close to zero, otherwise, it suggests there might
be something wrong with the generation of the data.

• In other situations, when the linear relationship can be at best a
rough approximation of the real form, we expect to find low values of
the R2.
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2. The linear regression
2.1. Simple linear regression

2.1.3. Accuracy of the model

R2 and correlation
It can be noted that in the case of simple linear regression, the R2 is equal
to the squared correlation coefficient.

Indeed:

yi − ŷi = yi − ȳ + ȳ − ŷi
= (yi − ȳ)− (ŷi − ȳ)

= (yi − ȳ)−
(
β̂1xi + β̂0 − β̂1x̄− β̂0

)
= (yi − ȳ)− β̂1(xi − x̄).

Taking the squared value:

(yi − ŷi)2 = (yi − ȳ)2 + β̂1
2
(xi − x̄)2 − 2β̂1(yi − ȳ)(xi − x̄)

Ewen Gallic Machine learning and statistical learning 49/160



2. The linear regression
2.1. Simple linear regression

2.1.3. Accuracy of the model

R2 and correlation

Which leads to:

(yi − ŷi)2 = (yi − ȳ)2 + β̂1
2
(xi − x̄)2 − 2β̂1(yi − ȳ)(xi − x̄)

Summing on all individuals:

n∑
i=1

(yi − ŷi)2 =
n∑
i=1

(yi − ȳ)2 + β̂1
2

n∑
i=1

(xi − x̄)2 − 2β̂1

n∑
i=1

(yi − ȳ)(xi − x̄)

=
n∑
i=1

(yi − ȳ)2 + β̂1
2

n∑
i=1

(xi − x̄)2 − 2β̂1

n∑
i=1

(xi − x̄)2

=
n∑
i=1

(yi − ȳ)2 − β̂1
2

n∑
i=1

(xi − x̄)2
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2. The linear regression
2.1. Simple linear regression

2.1.3. Accuracy of the model

R2 and correlation
In can indeed be shown that

2β̂1
2

n∑
i=1

(xi − x̄)2 = 2β̂1

n∑
i=1

(xi − x̄)2
∑n
i=1(xi − x̄)(yi − x̄)∑n

i=1(xi − x̄)2

= 2β̂1

n∑
i=1

(yi − ȳ)(xi − x̄).

We also have:
(ŷi − ȳ) = β̂1xi + β̂0 − β̂1x̄− β̂0 = β̂1(xi − x̄).

By taking the squared value and summing for all individuals:

n∑
i=1

(ŷi − ȳ)2 = β̂1
2

n∑
i=1

(xi − x̄)2. (12)
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2. The linear regression
2.1. Simple linear regression

2.1.3. Accuracy of the model

R2 and correlation

Then, introducing (12) in (10), we get:

R2 =
α̂2∑n

i=1(xi − x̄)2∑n
i=1(yi − ȳ)2

=
(∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

)2

︸ ︷︷ ︸
α̂2

×
∑n
i=1(xi − x̄)2∑n
i=1(yi − ȳ)2

R2 =
(
∑n
i=1(xi − x̄)(yi − ȳ))2

(
∑n
i=1(xi − x̄)2) (

∑n
i=1(yi − ȳ)2)

(13)

= (Cov(x, y))2

V(x)× V(y) (14)

Ewen Gallic Machine learning and statistical learning 52/160



2. The linear regression
2.2. Multiple linear regression

2.2 Multiple linear regression
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2. The linear regression
2.2. Multiple linear regression

Principle

We have considered so far only one predictor in the design matrix x. Let
us now look at the case where we want to use multiple predictors: x
becomes a n× p matrix, with n observations and p predictors.

We assume there exists a relationship between the response y and the
predictors x such that:

yi = β0 + β1x1i + . . .+ βpxpi + εi, i = 1, . . . , n, (15)

where εi is an error term normally distributed with 0 mean and variance
σ2, i.e, εi ∼ N (0, σ2), and where xji represents the ith observation for
the jth predictor, j = 1, . . . , p.
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2. The linear regression
2.2. Multiple linear regression

Principle

In Eq. 22 the coefficients β0 (i.e., the constant) and βj are unknown
parameters to be estimated.

We interpret the coefficients βj as the average effect on y of a one unit
increase in xj , ceteris paribus (i.e., holding all other predictors fixed).
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2. The linear regression
2.2. Multiple linear regression

2.2.1. Estimating the coefficients

2.2.1 Estimating the coefficients
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2. The linear regression
2.2. Multiple linear regression

2.2.1. Estimating the coefficients

Estimating the coefficients

The coefficients of the multiple linear regression, can once again be esti-
mated so that they minimize the sum of squared residuals:

RSS =
n∑
i=1

(yi − ŷi)2 (16)

=
n∑
i=1

(yi − β̂0 − β̂1xi1 − . . .− β̂pxip), (17)

where ŷi = β̂0 + β̂1xi1 + . . .+ β̂pxip
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2. The linear regression
2.2. Multiple linear regression

2.2.1. Estimating the coefficients

Estimating the coefficients

Using matrix algebra, it is easy to estimate the coefficients.

First, we can write:

ŷ = Xβ̂, (18)

where ŷ =


ŷ1
ŷ2
...
ŷn

 , X =


x11 x12 · · · x1p 1
x21 x22 · · · x2p 1
...

...
. . .

... 1
xn1 xn2 · · · xnp 1

 , and β̂ =


β̂1
β̂2
...
β̂p
β̂0

 .

Ewen Gallic Machine learning and statistical learning 58/160



2. The linear regression
2.2. Multiple linear regression

2.2.1. Estimating the coefficients

Estimating the coefficients

Lety − ŷ denote the column vector y − ŷ =


y1 − ŷ1
y2 − ŷ2

...
yn − ŷn

 ,

and y − ŷ> the vector column y − ŷ> =
[
y1 − ŷ1 y2 − ŷ2 · · · yn − ŷn

]>
.

By definition:

(y − ŷ)>(y − ŷ) =
n∑
i=1

(yi − ŷi)2 =
n∑
i=1

e2
i = RSS,
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2. The linear regression
2.2. Multiple linear regression

2.2.1. Estimating the coefficients

Estimating the coefficients

By replacing y by its expression given in Eq. 18:

n∑
i=1

e2
i = (y −Xβ̂)>(y −Xβ̂)

= (y> − β̂
>
X>)(y −Xβ̂)

= y>y − y>Xβ̂ − β̂
>
X>y + β̂

>
X>Xβ̂
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2. The linear regression
2.2. Multiple linear regression

2.2.1. Estimating the coefficients

Estimating the coefficients

Figure 10: Regression of salaries on years since Ph.D and years of service. The red dots represent
the observed values. The plane minimizes the sum of squared distances represented by the red
(overstimated values) and blue segments (underestimted values).
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2. The linear regression
2.2. Multiple linear regression

2.2.1. Estimating the coefficients

Estimating the coefficients

Model 1 Model 2
(Intercept) 9.17∗∗∗ 8.99∗∗∗

(0.28) (0.28)
yrs.since.phd 0.10∗∗∗ 0.16∗∗∗

(0.01) (0.03)
yrs.service −0.06∗

(0.03)
R2 0.18 0.19
Adj. R2 0.17 0.18
Num. obs. 397 397
RMSE 2.75 2.74
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 2: Statistical models
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2. The linear regression
2.2. Multiple linear regression

2.2.1. Estimating the coefficients

Bias of the coefficients

Let us look at the bias of the coefficients. First, we can write the
estimated vector of coefficients β̂ as:

β̂ = (X>X)−1X>y

= (X>X)−1X>(Xβ + ε)
= (X>X)−1(X>X)β + (X>X)−1X>ε

= β + (X>X)−1X>ε
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2. The linear regression
2.2. Multiple linear regression

2.2.1. Estimating the coefficients

Bias of the coefficients

Hence the expected value of β̂ is given by:

E(β̂) = E(β) + E
[
(X>X)−1X>ε

]
= β + (X>X)−1X>E(ε)
= β (19)

since we assumed E(ε) = 0.

As a consequence, β̂ is an unbiased estimator of β, i.e.:

B
(
β̂;β

)
= E

(
β̂
)
− β = 0
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2. The linear regression
2.2. Multiple linear regression

2.2.1. Estimating the coefficients

Variance of the coefficients
The variance of the coefficients writes:

V(β̂) = E
[
β̂ − E(β̂)

]2
= E

[
(β̂ − E(β))(β̂ − E(β))>

]
= E

[
(β̂ − β)(β̂ − β)>

]
.

Since:
β̂ − β = (X>X)−1X>ε

(β̂ − β)> = ε>X(X>X)−1.

Hence:

(β̂ − β)(β̂ − β)> = (X>X)−1X>εε>X(X>X)−1.
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2. The linear regression
2.2. Multiple linear regression

2.2.1. Estimating the coefficients

Variance of the coefficients

So in the end:

V(β̂) = (X>X)−1X>E(ee>)X(X>X)−1

= (X>X)−1X>σ2
uX(X>X)−1

= (X>X)−1(X>X)(X>X)−1σ2
ε

= (X>X)−1σ2
ε . (20)

So the variance of β̂ is equal to the variance ε multiplied by the ith term
of the diagonal of (X>X)−1.
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2. The linear regression
2.2. Multiple linear regression

2.2.2. Accuracy of the estimation

2.2.2 Accuracy of the estimation
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2. The linear regression
2.2. Multiple linear regression

2.2.2. Accuracy of the estimation

Accuracy of the estimation

As in the simple linear regression case, we are interested in measuring the
accuracy of the estimation.

In particular, we will look at the following aspects:

• is there a significant relationship between the response and the
predictors?

• which predictors should be kept in the model, and which should be
discarded?

• how well does the model fit to the data?
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2. The linear regression
2.2. Multiple linear regression

2.2.2. Accuracy of the estimation

Relationship between y and x

To infer whether there is a relationship between the response y and the
predictors x, a statitiscal test can be performes. The null hypothesis of
this test writes:

H0 : β1 = β2 = . . . = βp = 0

The alternative writes:

H1 : at least one βj is non-zero, j = 1, . . . , p

This test is based on the following F-statistic:

F = (TSS− RSS)/p
RSS/(n− p− 1) ∼ F(p, n− p− 1). (21)
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2. The linear regression
2.2. Multiple linear regression

2.2.2. Accuracy of the estimation

Relationship between y and x

• If the linear model assumptions are correct:
I E(RSS/(n− p− 1)) = σ2

• and if H0 is true:
I E [(TSS − RSS)/p] = σ2

As a consequence:

• when there is no relationship between the response and its
predictors:
I the value of the F-statistic should be close to zero

• when H1 is true:
I E [(TSS − RSS)/p] > σ2, hence F should be greater than one.
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2. The linear regression
2.2. Multiple linear regression

2.2.2. Accuracy of the estimation

Relationship between y and x

In the example of the salary regressed on years since Ph.D and years of
services, the value of the F statistic is 45.71 (2 and 394 degrees of freedom).
The p-value associated to the test is lower than 2.2× 10−16.

Hence, we reject the null hypothesis in favor of the alternative at the 1%
level: at least β1 or β2 is different from zero.
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2. The linear regression
2.2. Multiple linear regression

2.2.2. Accuracy of the estimation

Variable selection
It is a thing to test whether at least one of the variables is related to the
repsonse variable, it is another to find which of these is.
A first idea would be to test for each variable if its associated coefficient
is statistically different from zero:

{
H0 : β = 0
H1 : βj 6= 0

, j = 1, 2, . . . , p.

The T statistic associated with this test writes:

T = β̂j − βj,H0

σ̂β̂j
∼ St(n− p− 1, )

where βj,H0 is the value of βj under the null hypothesis.
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2. The linear regression
2.2. Multiple linear regression

2.2.2. Accuracy of the estimation

Tests on the coefficients

To perform this bilateral test at an α level, we can get the quantiles −tα/2
and tα/2 from a Student distribution such as:

P

(
−tα/2 <

β̂j − βj,H0

σ̂β̂j
< tα/2

)
= 1− α.

From the estimates, we can compute the observed value of the T statistic
as:

tj,obs. = β̂j
σ̂β̂j

.
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2. The linear regression
2.2. Multiple linear regression

2.2.2. Accuracy of the estimation

Tests on the coefficients

The decision rule is:

• if tj,obs. ∈ [−tα/2, tα/2]:
I non-rejection region: we do not reject H0 at the α level
I βj is not statistically different from zero

• if tj,obs. /∈ [−tα/2, tα/2]:
I rejection region: we reject H0 at the α level
I βj is statistically different from zero
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2. The linear regression
2.2. Multiple linear regression

2.2.2. Accuracy of the estimation

Tests on the coefficients

When the number p of predictors is larger than the number of ob-
served values n, it is not even possible to fit the multiple linear regression
model using least squares:

• testing the coefficients one by one is therefore not possible
• performing the F-test is not possible either.

In that case, choosing which variables to keep in the model requires a
different approach, such as:

• forward/backward/bi-directional selection
• reducing the dimension.
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2. The linear regression
2.2. Multiple linear regression

2.2.2. Accuracy of the estimation

Selecting variables
Most of the time, not all predictors are associated with the response.

It is then possible to select a model with a subset of predictors. But then,
which one should we choose?

The basic idea is to use a metric to compare models with each other, e.g.:

• the Akaike Information Criterion (AIC)
• the Bayesian Information Criterion (BIC)
• the adjusted R2

• Mallow’s Cp
• . . .

But, with p variables, there is a total of 2p different models that can be
estimated using a subset of p :

• fitting all the possible subset is not to be considered.
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2. The linear regression
2.2. Multiple linear regression

2.2.2. Accuracy of the estimation

Selecting variables
Some recursive algorithms can be used to perform variable selection,
without screening all the possible models:
• forward selection:

I starting with a model with an intercept but not predictor
I choosing the first variable to be included by fitting p regressions and

selecting the one with the lowest RSS
I finding another variable to be added by fitting p− 1 regressions and

selecting the one with the lowest RSS
I and so on, util a stopping rule is satisfied

• backward selection:
I starting with a model with an intercept and all predictors
I removing the variable with the largest p-value
I estimating the new model without that variable and remove the

variable with the largest value
I and so on, until a stoppig rule is satisfied

• bidirectional elimination:
I a combination of the forward and backward selection methods.
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2. The linear regression
2.2. Multiple linear regression

2.2.2. Accuracy of the estimation

Measuring the quality of fit

The quality of fit can be assessed using some metrics (RSE, R2, . . . ), as in
the simple linear case.

• While in the simple linear regression case, the R2 is equal to the
squared value of the correlation of the response and the variable..

• In the multiple linear regression, it can be shown that it is equal to
the square of the correlation between the response and the
fitted linear model

In the multiple linear regression case, the value of the R2 increases with
the number of predictor introduced in the model:

• adding another variable allows fitting better the training data
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2. The linear regression
2.2. Multiple linear regression

2.2.2. Accuracy of the estimation

Prediction error

The prediction given by the linear model carries multiple sources of errors.

One is related to the reducible error.

Recall that the least squares plane is given by

ŷ = Xβ̂,

which is an estimation for the true population regression plane:

f(X) = Xβ

Providing a confidence interval to the prediction allows us to determine
how close the prediction is to the true value.
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2. The linear regression
2.2. Multiple linear regression

2.2.2. Accuracy of the estimation

Prediction error

The model itself carries a reducible error: we assume a linear model, which
is usually an approximation for the true form of the relationship between
the response and the predictors.

Finally, the prediction contains an irreductible error coming from the error
term ε of the model. By using prediction intervals, we can account for this
error term.
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2. The linear regression
2.3. Qualitative Predictors

2.3 Qualitative Predictors
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2. The linear regression
2.3. Qualitative Predictors

Qualitative predictors

We have so far used two predictors in our example: years since Ph.D and
years of service. These two variabls were considered as real-valued.

Now, we will consider another type of predictor: the qualitative predictors.

In the example of the salaries, some information regarding the gender of
the professor is provided (Female/Male), the rank (Professor, Associate
Professor, Assistant Professor), and the discipline (Theoretical/Applied
departmens).
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2. The linear regression
2.3. Qualitative Predictors

2.3.1. Two levels

2.3.1 Two levels
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2. The linear regression
2.3. Qualitative Predictors

2.3.1. Two levels

Two levels

Let us first focus on qualitative predictors with only two levels. This is the
case of the gender variable in the data.

It is a factor variable, created as a dummy variable:

xi =
{

1 if the ith person is female
0 if the ith person is male

, i = 1, . . . , n

The model thus writes:

yi = β0 + β1xi + εi =
{
β0 + β1 + εi if the ith person is female
β0 + εi if the ith person is male
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2. The linear regression
2.3. Qualitative Predictors

2.3.1. Two levels

Two levels
The interpretation of the constant β0 therefore changes. It should now be
viewed as the average salary for male professors. The average salary among
female professors is equal to β0 + β1.

Least squares
(Intercept) 11.51∗∗∗

(0.16)
genderFemale −1.41∗∗

(0.51)
R2 0.02
Adj. R2 0.02
Num. obs. 397
RMSE 3.00
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 3: Statistical models
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2. The linear regression
2.3. Qualitative Predictors

2.3.1. Two levels

Two levels
The average salary for male professor is therefore $11.509 thousand dollars
for 9 months, while it is only $11.509 − 1.409 = 10.1 for women. This
difference is significative at the 5% level.

Coding “Female”" as 0 and “Male” as 1 does not change the regression fit,
but it changes the interpretation:

Least squares
(Intercept) 10.10∗∗∗

(0.48)
genderMale 1.41∗∗

(0.51)
R2 0.02
Adj. R2 0.02
Num. obs. 397
RMSE 3.00
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4: Statistical models
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2. The linear regression
2.3. Qualitative Predictors

2.3.2. More than two levels

2.3.2 More than two levels
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2. The linear regression
2.3. Qualitative Predictors

2.3.2. More than two levels

More than two levels

Now, let us consider an example with a qualitative predictor with more than
two levels: the rank (Professor, Assistant Professor, Associate Professor).

In this situation, we can create an additional dummy variable:

The first one would be, let us say:

x1i =
{

1 if the ith person is professor
0 if the ith person is not professor

, i = 1, . . . , n

And the second:

x2i =
{

1 if the ith person is associate professor
0 if the ith person is not associate professor

, i = 1, . . . , n
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2. The linear regression
2.3. Qualitative Predictors

2.3.2. More than two levels

More than two levels

The model then writes:

yi = β0 + β1x1i + β2x2i + εi

=


β0 + β1 + εi if the ith person is professor
β0 + β2 + εi if the ith person is associate professor
β0 + εi if the ith person is assistant professor

• β0 is the average 9 months salary for assistant professor
• β1 is the difference in the average 0 months salary between the assistant

professor and professor categories
• β0 + β1 is the average 9 months salary for professor
• β2 is the difference in the average 0 months salary between the assistant

professor and associate professor categories
• β0 + β2 is the average 9 months salary for associate professor
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2. The linear regression
2.3. Qualitative Predictors

2.3.2. More than two levels

More than two levels

Least squares
(Intercept) 8.08∗∗∗

(0.29)
rankProf 4.60∗∗∗

(0.32)
rankAssocProf 1.31∗∗

(0.41)
R2 0.39
Adj. R2 0.39
Num. obs. 397
RMSE 2.36
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 5: Statistical models
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2. The linear regression
2.4. Interaction terms

2.4 Interaction terms
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2. The linear regression
2.4. Interaction terms

Interaction terms

Let us consider adding some interaction terms to the model. In previous
estimations, we have assumed that the effect on the response of changing
the value of one predictor is independant of the values of the other predictors.
This assumption is known as the additive assumption.

Let us suppose that the salary of professors depends on the number of years
since Ph.D and on the gender of the individual. The model writes:

salaryi = β0 + β1Years since Ph.Di + β2Genderi + εi

=
{

(β0 + β2) + β1Years since Ph.Di + εi if the ith person is female
β0 + β1Years since Ph.Di + εi if the ith person is male
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2. The linear regression
2.4. Interaction terms

Interaction terms
This corresponds to fitting two slopes: one for the females and another for
males.
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2. The linear regression
2.4. Interaction terms

Interaction terms

Now, let us consider that the the effect of a unit increase in the number of
years since Ph.D may be different depending on the gender of the professor.
The model now writes:

salaryi = β0 + β1Years since Ph.Di + β2Genderi + β3Years since Ph.Di × Genderi + εi

=
{

(β0 + β2) + (β1 + β3)Years since Ph.Di + εi (female)
β0 + β1Years since Ph.Di + εi (male)
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2. The linear regression
2.4. Interaction terms

Interaction terms
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2. The linear regression
2.4. Interaction terms

Interaction terms

As the slope of the line for women is larger than that of men, this suggests
that the effect on salary of an additional year since Ph.D is larger for women
than it is for men.

This result may sound odd, as we would have (unfortunately) expected the
contrary.

Why do we observe such a result?
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2. The linear regression
2.4. Interaction terms

Interaction terms

Two reasons may explain that:

1. we can look at the coefficient of the interaction term between the
number of years since Ph.D and gender (next slide): it is not
significant ;

2. contrary to men, there is no observations for women who got their
Ph.D more than 39 years ago. We saw that the relationship between
salary and the number of years since Ph.D does not seem linear and
shows a hill-shaped effect. Hence, the non-linearity not well
accounted for in the estimation lowers the slope for men due to values
corresponding to large number of years since Ph.D. This is not
observed for women, since such values are not in the data.
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2. The linear regression
2.4. Interaction terms

Interaction terms
Without interaction With interaction

(Intercept) 9.31∗∗∗ 9.41∗∗∗
(0.29) (0.29)

yrs.since.phd 0.10∗∗∗ 0.09∗∗∗
(0.01) (0.01)

genderFemale −0.79 −2.02∗
(0.47) (0.92)

yrs.since.phd:genderFemale 0.07
(0.05)

R2 0.18 0.19
Adj. R2 0.18 0.18
Num. obs. 397 397
RMSE 2.75 2.74
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 6: Statistical models
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2. The linear regression
2.4. Interaction terms

Accounting for non-linear effects
The relationship between salary and years since Ph.D. does not seem to be
linear. It may be a good idead to try to look at a quadratic effect instead,
by introducing the squared value of number of years since Ph.D:

salaryi = β0 + β1Years since Ph.Di + β2Years since Ph.D2
i + εi

Polynomial regression
(Intercept) 6.51∗∗∗

(0.39)
yrs.since.phd 0.41∗∗∗

(0.04)
yrs.since.phd_squared −0.01∗∗∗

(0.00)
R2 0.31
Adj. R2 0.31
Num. obs. 397
RMSE 2.52
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 7: Statistical models
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2. The linear regression
2.5. Working with wrong models

Working with wrong models
Among the problems that may occur when we fit a linear regression model
(James et al., 2013):

• non-linearity of the relationship between y and x
• correlation of error terms
• non-constant variance of error terms
• outliers
• high-leverage points
• collinearity

When facing models that are wrong, Berk (2008) recalls that two approaches
can be used:

1. Patching up models that are mispecified
2. Working with misspecified models

Let us begin by talking about the last point, using some illustration.
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2. The linear regression
2.5. Working with wrong models

Illustration: linear regression

• red lines: true conditional
means (nature’s response sur-
face)

• vertical black dotted lines: dis-
tribution of y values around
each conditional mean (also
from nature), assuming the
same variance for each condi-
tional distribution

• The relationship between y
and x seems approximatively
quadratic

• Red circle: an observed value,
realization of y

Figure 11: Estimation of a nonlinear response
surface under the true linear model perspective.
(Source: Berk 2008).
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2. The linear regression
2.5. Working with wrong models

Illustration: linear regression

• Let us assume a linear model:
yi = β0 + β1xi + εi for which
we obtain the estimates β̂0, β̂1
and σ̂2

• Dashed blue line: estimated
mean function

• Solid blue line: expectation of
the mean function

Figure 12: Estimation of a nonlinear response
surface under the true linear model perspective.
(Source: Berk 2008).
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2. The linear regression
2.5. Working with wrong models

Illustration: linear regression

• Blue arrow: bias at a value xi
(Bias

(
f̂(x0)

)
)

• Magenta arrow: random varia-
tion (Var

(
f̂(x0)

)
)

• Green arrow: irreducible error
(Var(ε))

Figure 13: Estimation of a nonlinear response
surface under the true linear model perspective.
(Source: Berk 2008).
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2. The linear regression
2.5. Working with wrong models

Illustration: non-linear function

• The three sources of error re-
mains when using a nonlinear
function

• Still not possible to know the
bias...

Figure 14: Estimation a nonlinear response
surface under the true nonlinear model
perspective. (Source: Berk 2008).
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2. The linear regression
2.5. Working with wrong models

2.5.1. Correlation of the error terms

2.5.1 Correlation of the error terms
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2. The linear regression
2.5. Working with wrong models

2.5.1. Correlation of the error terms

Correlation of the error terms

Recall the linear model:

yi = β0 + β1x1i + . . .+ βpxpi + εi, i = 1, . . . , n, (22)

where εi is an error term normally distributed with 0 mean and variance
σ2, i.e, εi ∼ N (0, σ2), and where xji represents the ith observation for
the jth predictor, j = 1, . . . , p.

We assume that the error terms are uncorrelated, i.e., ε ∼ N
(
0, σ2In

)
.
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2. The linear regression
2.5. Working with wrong models

2.5.1. Correlation of the error terms

Correlation of the error terms

If there is correlation between the εi :

• the estimation of the standard errors underestimate the true
standard errors

• confidence/prediction intervals are therefore narrower than they
should be

• p-values associated with the model will be lower than they should be
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2. The linear regression
2.5. Working with wrong models

2.5.2. Non-constant variance of error terms

2.5.2 Non-constant variance of error terms
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2. The linear regression
2.5. Working with wrong models

2.5.2. Non-constant variance of error terms

Non-constant variance of error terms

In the linear model, we also assume that the variance of the error term is
constant: Var(εi) = σ2 for all i = 1, . . . , n.

Once again, if it is not the case (if there is heteroscedasticity), this has
consequences on the estimation of the standard errors, on the confidence
and prediction intervals and also on the p-values associated with the model.

In presence of heteroscedasticity, a way to tackle the issue is to transform
the data using a concave function (such as the log function).

Another way of getting around the problem is to estimate the model by
weighted least squares, where the weights are proportional to the inverse
variance.
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2. The linear regression
2.5. Working with wrong models

2.5.3. Outliers

Outliers
The prediction of some points may be relatively far from the observed value.
These points are called outliers.
They can be the result of an incorrect recording, or the observation can
come from a sub-population.
To detect such points, Cornillon and Matzner-Løber (2007) suggests using
standardized residuals.
Normalized residuals are given by:

ri = ei

σ
√

1− hii
, (23)

where hij is the (i, j)th element of the matrix X
(
X>X

)−1
X>

Replacing σ by its estimate σ̂ gives the standardized residuals:

ti = ei

σ̂
√

1− hii
, (24)
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2. The linear regression
2.5. Working with wrong models

2.5.3. Outliers

Outliers
The standardized residuals are not independant by construction (the residual
variance σ̂2 was estimated with all data):

• they cannot be representative of an absence or a presence of
autocorrelation

• but they have the same variance unit and can therefore be used to
detect residuals with high variance.

However, Cornillon and Matzner-Løber (2007) suggest that we should
use studentized residual (obtained by cross validation) instead of the
standardized residuals:

t?i = ei

σ̂(i)
√

1− hii
, (25)

where σ̂(i) is the estimation of σ by least squares based on all observed
valued except for the ith.
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2. The linear regression
2.5. Working with wrong models

2.5.3. Outliers

Outliers

It can be shown, assuming the residuals are normally distributed, that
t?i ∼ St(n− p− 1).

Using these studentized residual, we can define an outlier as a point (xi, yi)
for which the value associated with t?i is high, compared to the threshold
given by a Student distribution, i.e.:

| t?i |> tn−p−1 (1− α/2)
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2. The linear regression
2.5. Working with wrong models

2.5.3. Outliers

Outliers

As an illustration, let us consider the cas in which we regress the salary of
professors on the number of years since their Ph.D, the same value squared,
the gender and the discipline (i.e., a total of 5 regressors).
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2.5. Working with wrong models

2.5.4. High-leverage points

2.5.4 High-leverage points
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2. The linear regression
2.5. Working with wrong models

2.5.4. High-leverage points

High-leverage points
While outliers are observations for which the response yi is unusual given
the predictors, high leverage points are observations which have unusual
value for xi.

Let us recall that:
ŷ = X

(
X>X

)−1
X>y

For the ith observation:

ŷi =
n∑
j=1

hijyj = hiiyi +
∑
j 6=i

hijyj ,

where hij is the (i, j)th element of the matrix X
(
X>X

)−1
X>.

This allows us to know the weight of the observation on its prediction,
through hii.
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2. The linear regression
2.5. Working with wrong models

2.5.4. High-leverage points

High-leverage points

This leads to the definition of a leverage point, provided by Cornillon and
Matzner-Løber (2007):

• A point is a leverage point if the values hii of the projection matrix
X
(
X>X

)−1
X> are greater than:

I hii > 2p/n according to Hoaglin and Welsch (1978)
I hii > 3p/n for p > 6 and n− p > 12 according to Velleman and

Welsch (1981)
I hii > 0.5 according to Huber (1981)
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2.5. Working with wrong models

2.5.5. Collinearity

2.5.5 Collinearity
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2. The linear regression
2.5. Working with wrong models

2.5.5. Collinearity

Collinearity
When two or more predictors are closely related, we face a phenomenon
known as collinearity.

This is the case of the predictors “Years since Ph.D” and “Years of service”:
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2. The linear regression
2.5. Working with wrong models

2.5.5. Collinearity

Collinearity

The presence of collinearity may be the source of problems when estimating
a linear model:

• it can then become difficult to disentangle the individual effects of
collinear variables on the response

• the variance of at leat one of the estimated coefficients β̂j tends to
be inflated

As a consequence, since the t-statistic for each predictor uses the estimated
variance of the coefficient, it can lead to a p-value lower tan it should be.

Looking at the correlation matrix of the predictors may help identifying
possible problems of collinearity.

But collinearity can exist between three or more variables. In that case,
known as multicollinearity, looking at the correlation matrix does not
help.
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2. The linear regression
2.5. Working with wrong models

2.5.5. Collinearity

Multicollinearity

There are multiple ways of detecting the presence of multicollinearity. One
of those consists in computing the variance inflation factor (VIF):

VIF
(
β̂j

)
= 1

1−R2
xj |x−j

, (26)

where R2
xj |x−j

is the R2 obtained from a regression of xj onto all the other
predictors x−j .

• The smallest value for VIF is 1: complete absence of collinearity
• When the value is high (> 5 or > 10): we can suspect the presence

of multicollinearity, due to the predictor xj

When facing multicollinearity, a simple solution consists in dropping one of
the problematic variables.
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3. Quantile Regression

Some references

• Arellano, M (2009). Quantile methods, Class notes
• Charpentier, A. (2018). Big Data for Economics, Lecture 3
• Givord, P., D’Haultfoeuillle, X. (2013). La régression quantile en
pratique, INSEE

• He, X., Wang, H. J. (2015). A Short Course on Quantile Regression.
• Koenker and Bassett Jr (1978). Regression quantiles. Econometrica:
journal of the Econometric Society (46), 33–50

• Koenker (2005). Quantile regression. 38. Cambridge university press.

Ewen Gallic Machine learning and statistical learning 124/160

https://www.cemfi.es/~arellano/quantile-methods-notes.pdf
https://github.com/freakonometrics/ub
https://www.insee.fr/fr/statistiques/fichier/1377930/ECO471D.pdf
https://www.insee.fr/fr/statistiques/fichier/1377930/ECO471D.pdf
http://wise.xmu.edu.cn/UploadFiles/SS2011/Uploadfiles/2013714144421348.pdf


3. Quantile Regression
3.1. Introduction

3.1 Introduction

Ewen Gallic Machine learning and statistical learning 125/160



3. Quantile Regression
3.1. Introduction

Introduction

In the linear regression context, we have focused on the conditional distri-
bution of y, but only paid attention to the mean effect.

In many situations, we only look at the effects of a predictor on the
conditional mean of the response variable. But there might be some
asymetry in the effects across the quantiles of the response variable:

• the effect of a variable could not be the same for all observations
(e.g., if we increase the minimum wage, the effect on wages may
affect low wages differently than high wages).

Quantile regression offers a way to account for these possible asymmetries.
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3. Quantile Regression
3.1. Introduction

Quantiles

Let us consider a random variable Y , with cumulative distribution
function F :

FY (y) = P(Y ≤ y).

For any 0 < τ < 1, the τth quantile of Y is defined as:

Qτ(Y ) = F−1(τ) = inf {x ∈ R : FY (x) ≥ τ}

The most used quantiles are:

• τ = 0.5: the median
• τ = {0.1, 0.9}: the first and last deciles
• τ = {0.25, 0.75}: the first and last quartiles
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3. Quantile Regression
3.1. Introduction

Quantiles

Figure 15: Quantiles of the N (0, 1) distribution.
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3. Quantile Regression
3.2. Principles

Principles

Let Y be the response variable we want to predict using p+ 1 predictors
X (including the constant).

In the linear model, using least squares, we write:

Y = X>β + ε,

with ε a zero mean error term with variance σ2In.

Thus, the conditional distribution writes:

E (Y | X = x) = x>β

Here, β represents the marginal change in the mean of the response Y
to a marginal change in x.
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3. Quantile Regression
3.2. Principles

Principles of quantile regression
Instead of looking at the mean effect, we can look at the effect at a given
quantile τ . The conditional quantile is defined as:

Qτ (Y | X = x) = inf{y : F (y | x) ≥ τ}

The linear quantile regression model assumes:

Qτ (Y | X = x) = x>βτ (27)

where βτ =
[
β0,τ β1,τ β2,τ . . . βp,τ

]> is the quantile coefficient:

• it corresponds to the marginal change in the τ th quantile folowing a
marginal change in x.

If we assume that Qτ (ε | X) = 0, then Eq. (27) is equivalent to:

Y = X>βτ + ετ (28)
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3. Quantile Regression
3.2. Principles

Location shift model
Let us now consider a simple model:

Y = X>γ + ε (29)

We have:
Qτ (Y | X = x) = X>γ +Qτ (ε)

Hence, in this model known as the location model, the only coefficient
that varies accordingly with τ is the coefficient associated with the constant:
β0, τ = γ1 +Qτ (ε)

• The conditional distribution FY |X=x are parallel when x varies.
• As a consequence, the conditional quantiles are linearly dependant on
X, and the only coefficient that varies with the quantile is β0,τ , i.e.,
the coefficient associated with the constant :
I β0,τ = γ1 +Qτ (ε)
I βj,τ = γj for all the coefficients except the constant.
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3. Quantile Regression
3.2. Principles

Location shif model: exemple
Consider the following true process: Y = β1 + β2x2 + ε, with β0 = 3 and
β1 = −.1, and where ε ∼ N (0, 4).
Let us generate 500 observations from this process.
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3. Quantile Regression
3.2. Principles

Location-scale model

Now, let us consider a location-scale model. In this model, we assume
that the predictors have an impact both on the mean and on the variance
of the response:

Y = X>β + (X>γ)ε,

where ε is independant of X.

As Qτ (aY + b) = aQτ (Y ) + b, we can write:

Qτ (Y | X = x) = x>(β + γQτ (ε))

• By posing βτ = β + γQτ (ε), the assumption (27) still holds.
• The impact of the predictors will vary accross quantiles
• The slopes of the lines corresponding to the quantile regressions are

not parallel
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3. Quantile Regression
3.2. Principles

Location-scale model: example
Consider the following true process: Y = β1 + β2x2 + ε, with β0 = 3 and
β1 = −.1, and where ε is a normally distributed error with zero mean and
non-constant variance.
Let us generate 500 observations from this process, and then estimate a
quantile regression on different quantiles.
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3. Quantile Regression
3.3. Estimation

3.3.1. Definitions

Asymetric absolute loss

Let us define the asymetric absolute
loss function, also called the check
function, as follows:

ρτ (u) = (τ − 1(u < 0))× u,
(30)

for 0 < τ < 1.
This loss function is
• a continuous piecewise linear

function
• non differentiable at u = 0

Figure 16: Quantile regression loss function ρτ .
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3. Quantile Regression
3.3. Estimation

3.3.1. Definitions

Asymetric absolute loss

With ρτ (u) used as a loss function, it can be shown that Qτ minimizes
the expected loss, i.e.:

Qτ (Y ) ∈ arg min
m

{E [ρτ (Y −m)]} (31)

We can note that in the case in which τ = 1/2, this corresponds to the
median.

Quantiles may not be unique:

• any element of {x ∈ R : FY (x) = τ} minimizes the expected loss
• if the solution is not unique, we have an interval of τ th quantiles

I the smalest element is chosen (this way, the quantile function remains
left-continuous).

Ewen Gallic Machine learning and statistical learning 139/160



3. Quantile Regression
3.3. Estimation

3.3.1. Definitions

Empirically

Now, let us turn to the estimation. Let us consider a random sample
{(x1, y1), . . . , (xn, yn)}.

In the case of the least square estimation, the expectation E minimizes the
risk that corresponds to the quadratic loss function, i.e.:

E(Y ) = arg min
m

{
E
[
(Y −m)2]}

• The sample mean solves minm
∑n
i=1(yi −m)2

• The least squares estimates of the parameters are obtained by
minimizing

∑n
i=1(yi − x>i β)2
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3. Quantile Regression
3.3. Estimation

3.3.1. Definitions

Empirically
We have seen that the τ th quantile minimizes the risk associated with the
asymetric absolute loss function, i.e.:

Qτ (Y ) ∈ arg min
m

{E [ρτ (Y −m)]}

The τ th sample quantile of Y solves:

min
m

n∑
i=1

ρτ (yi −m)

If we assume that Qτ (Y | X) = X>βτ , then, the quantile estimator of
the parameters is given by

β̂τ ∈ arg min
β

{
1
n

n∑
i=1

ρτ (yi − x>i β)
}

(32)
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3.3.2 Computation
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3. Quantile Regression
3.3. Estimation

3.3.2. Computation

Computation

The Eq. (32) does not admit an explicit solution, which leads us to use
numerical optimization.

Recall the expression of the loss function: it is non differentiable at u = 0,
thus making standard optimization algorithms useless here.

However, we will see that the minimization program given by Eq. (32) can
be rewritten as a linear optimization problem.
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3. Quantile Regression
3.3. Estimation

3.3.2. Computation

Linear programming

Some reminders about linear programming.

Let us consider the following minimization problem:

min
y∈Rn

{
y>b

}
s.t. y>A ≥ c>,

where y1 ≥ 0, . . . , yn ≥ 0, A is an n× p matrix, b ∈ Rn and c ∈ Rp

The dual maximization problem writes:

max
x∈Rn

{
c>x

}
s.t. Ax ≤ x ≥ 0.
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3. Quantile Regression
3.3. Estimation

3.3.2. Computation

Computation
The linear quantile regression model can be rewritten as:

yi = x>i βτ + εi = x>i βτ + (ui − vi), (33)

where ui = εi1(εi > 0) and vi =| εi | 1(εi < 0).

In that case, we have:

ρτ (ui − vi) = (τ − 1(ui > vi)) · (ui − vi)
= τui − τvi − 1(ui > vi) · ui + 1(ui > vi) · vi

=
{
τui − 1 if ui > vi

vi − τvi if ui ≤ vi

Indeed, if ui > v1, then vi = 0 and if ui ≤ vi then ui = 0.
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3. Quantile Regression
3.3. Estimation

3.3.2. Computation

Computation

Hence, the minimization program given by Eq. (32) can be rewritten as:

min
β,u,v

{
τ1>u+ (1− τ)1>v

}
(34)

s.t. y = Xβ + u− v,

where u,v ∈ Rn+
The dual version of this program is:

max
d

{
y>d

}
(35)

s.t. y>d = (1− τ)X>1,

where d ∈ [0, 1]n
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3. Quantile Regression
3.3. Estimation

3.3.2. Computation

Computation

Several methods exist to estimate this linear optimization problem.

• ? suggest using the simplex method
• ? suggest using the Frisch-Newton interior point method, which is

more efficient when n become larger
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3. Quantile Regression
3.4. Inference

Asymptotic distribution

As there is no explicit form for the estimate β̂τ , achieving its consistency
is not as easy as it is with the least squares estimate.

First, we need some assumptions to achieve consistency:

• the observations {(x1, y1), . . . , (xn, yn)} must be conditionnaly i.i.d.
• the predictors must have a bounded second moment, i.e.,
E
[
||Xi ||2

]
<∞

• the error terms εi must be continuously distributed given Xi, and
centered, i.e.,

∫ 0
−∞ fε(ε)dε = 0.5

•
[
fε(0)XX>

]
must be positive definite (local identification

property).
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3. Quantile Regression
3.4. Inference

Asymptotic distribution
Under those weak conditions, β̂τ is asymptotically normal:

√
n
(
β̂τ − βτ

)
d−→ N

(
0, τ(1− τ)D−1

τ ΩxD−1
τ

)
(36)

where
Dτ = E

[
fε(0)XX>

]
and Ωx = E

[
XX>

]
The asymptotic variance of β̂ writes, for the location shift model (Eq. 29):

V̂ar
[
β̂τ

]
= τ(1− τ)[

f̂ε(0)
]2
(

1
n

n∑
i=1

x>i xi

)−1

(37)

where f̂ε(0) can be estimated using an histogram (see ?).
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3. Quantile Regression
3.4. Inference

Confidence intervals
If we have obtained an estimator of Var

[
β̂τ

]
, the confidence interval of

level 1− α is given by:[
β̂τ ± z1−α/2

√
V̂ar

[
β̂τ

]]
(38)

Otherwise, we can rely on bootstrap or resampling methods (see Emmanuel
Flachaire’s course):

• Generate a sample {(x(b)
1 , y

(b)
1 ), . . . , (x(b)

n , y
(b)
n )} from

{(x1, y1, . . . , (xn, yn)}
• Then estimate β(b)

τ using β̂
(b)
τ = arg min

{
ρτ

(
y

(b)
i − x(b)>

i β
)}

• Do the two previous staps B times
• The bootstrap estimate of the variance of β̂τ is then computed as:

V̂ar?
(
β̂τ

)
= 1
B

B∑
b=1

(
β̂τ

(b)
− β̂τ

)2
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3. Quantile Regression
3.5. Example

Example

Let us consider an example provided in Koenker (2005), about the impact
of demographic characteristics and maternal behaviour on the birth weight
of infants botn in the US.

The data concerns 198,377 babies born in 1997 from american mothers
aged bewteen 18 and 45.
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The predictors used are:

• education (less than high school (ref), high school, some college,
college graduate)

• prenatal medical care (no prenatal visit, first prenatal visit in the first
trimester of pregnancy (ref), first visit in the second trimester, first
visit in the last trimester)
• the sex of the infant
• the marital status of the mother
• the ethnicity of the mother
• the age of the mother (quadratic effect)
• whether the mother smokes
• the number of cigarette per day
• the gain of weight for the mother (quadratic effect)
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Figure 17: Quantile regression for birth weight (Source: Koenker 2005).
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Figure 18: Quantile regression for birth weight (Source: Koenker 2005).
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• Intercept: the estimated conditional quantile function of the
birth-weight distribution of a girl born to an unmarried, white mother
with less than a high school education who is 27 years (sample mean)
old and had a weight gain of 30 pounds (sample mean), did not smoke
and had her first prenatal visit in the first trimester of the pregnancy.

• Boy:
I OLS: boys are about 100 grams bigger than girls according to the

OLS estimates of the mean effect
I Quantile: the disparity is much smaller in the lower quantiles of the

distribution and larger than 100 grams in the upper tail of the
distribution
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Ethnicity: the difference in birth weight between a baby born to a black
mother and a white mother at the 5th percentile of the conditional distri-
bution is roughly 330 grams

Smoking: smoking during pregnancy is associated with a decrease of roughly
175 grams in birth weight
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In the lower tail of the conditional
distribution, mothers who are
roughly 30 years of age have the
largest children, but in the upper
tail it is mothers who are 35–40
who have the largest children.

Figure 19: Mother’s age effect on Birth weight
(Source: Koenker 2005).
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