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1. Support Vector Machines

Support Vector Machines

This section presents another type of classifiers known as support vector machines (SVM). It
corresponds to the 9th chapter of James et al. (2013).

Berk (2008) states that “SVM can be seen as a worthy competitor to random forests and
boosting”.

SVM can be seen as a generalization of a classifier called the maximal margin classifier (which
will be introduced in the following subsection).

The maximal margin classifier requires the classes of the response variable to be separable by a
linear boundary.

In contrast, the support vector classifier does not need this requirement and allows non-linear
boundaries.
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1. Support Vector Machines
1.1. Maximal margin classifier

Hyperplane
We will use the notion of a separating hyperplane in what follows. Hence, a little detour on
recalling what a hyperplane is seems fairly reasonable.

In a p-dimensional space, a hyperplane is a flat affine subspace of dimension p− 1 (a subspace
whose dimension is one less than that of its ambiant space).

Let us consider an example.

In two dimensions (p = 2), a hyperplane is a one-dimensional subspace: a line.
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1. Support Vector Machines
1.1. Maximal margin classifier

Hyperplane
In three dimensions (p = 3), a hyperplane is a flat two-dimensional subspace (p = 2): a plane.
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1. Support Vector Machines
1.1. Maximal margin classifier

Hyperplane
In two dimensions, for parameters β0, β1 and β2, the following equation defines the hyperplane:

β0 + β1x1 + β2x2 = 0 (1)

Any point whose coordinates for which Eq. 1 holds is a point on the hyperplane.

In a p-dimension ambiant space, an hyperplace is defined for parameters β0, β1, . . . , βp by the
following equation:

β0 + β1x1 + . . .+ βpxp = 0 (2)

Any point whose coordinates are given in a vector of length p, i.e., X =
[
x1 . . . xp

]> for
which Eq. 2 holds is a point on the hyperplane.
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1. Support Vector Machines
1.1. Maximal margin classifier

Space divided in two halves

If a point does not satisfy Eq. 2, then it lies either in one side or another side of the hyperplane,
i.e.,

β0 + β1x1 + . . .+ βpxp > 0or
β0 + β1x1 + . . .+ βpxp < 0 (3)

Hence, the hyperplane can be viewed as a subspace that divides a p-dimensional space in two
halves.
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1. Support Vector Machines
1.1. Maximal margin classifier

Example
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Figure 1: Hyperplane x1 − 2x2 + 0.1. The blue region corresponds to the set of points for which x1 − 2x2 + 0.1 > 0, the
orange region corresponds to the set of points for which x1 − 2x2 + 0.1 < 0.

Ewen Gallic Machine learning and statistical learning 9/46



1. Support Vector Machines
1.1. Maximal margin classifier

Classification and hyperplane

Let us consider a simplified situation to begin with the classification problem.

Suppose that we have a set of n observations {(x1, y1), . . . , (xn, yn)}, where the response
variable can take two values {class 1, class 2}, depending on the relationship with the p predictors.

In a first simplified example, let us assume that it is possible to construct a separating hyper-
plane that separates perfectly all observations.

In such a case, the hyperplane is such that:

{
β0 + β1x1 + . . .+ βpxp > 0 if yi = class 1
β0 + β1x1 + . . .+ βpxp < 0 if yi = class 2

(4)
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1. Support Vector Machines
1.1. Maximal margin classifier

Classification and hyperplane

For convenience, as it is often the case in classification problem with a binary outcome, the
response variable y can be coded as 1 and −1 (for class 1 and class 2, respectively). In that
case, the hyperplane has the property that, for all observations i = 1, . . . , n:

yi(β0 + β1xi1 + . . .+ βpxip) > 0 (5)
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1. Support Vector Machines
1.1. Maximal margin classifier

Classification and hyperplane

Figure 2: A perfectly separating linear hyperplane for a binary outcome.
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1. Support Vector Machines
1.1. Maximal margin classifier

Margin

In the previous example,there exists an infinity of perfectly separating hyperplanes.

As usual, we would like to decide among the possible set, what is the optimal choice, regarding
some criterion.

A solution consists in computing the distance from each observation to a given separating hy-
perplane. The distance which is the smallest is called the margin. The objective is to select the
separating hyperplane for which the margin is the farthest from the observations, i.e., to select
the maximal margin hyperplane.

This is known as the maximal margin hyperplane.
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1.1. Maximal margin classifier

Margin

Figure 3: Margin given a specific separating hyperplane.
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1. Support Vector Machines
1.1. Maximal margin classifier

Maximum Margin
How do we find the maximum margin? It is an optimization problem:

max
β0,β1,...,βp,M

M (6)

s.t.
p∑
j=1

β2
j = 1 (7)

yi(β0 + β1xi1 + . . .+ βpxip) ≥M,∀i = 1, . . . , n (8)

Constraint 8 ensures that each obs. is on the correct side of the hyperplane.
Constraint 7 ensures that the perpendicular distance from the ith observation to the hyperplane
is given by:

yi(β0 + β1xi1 + . . .+ βpxip)
Constraints 7 and 8: each observation is on the correct side of the hyperplane and at least a
distance M from the hyperplane.
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1. Support Vector Machines
1.1. Maximal margin classifier

Maximum Margin
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Figure 4: Maximum margin classifier for a perfectly separable binary outcome variable.
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1. Support Vector Machines
1.1. Maximal margin classifier

Maximum Margin
In the example shown previously, there are 3 observations from the training set that are equidis-
tant from the maximal margin hyperplane.

These points are known as the support vectors:

• they are vectors in p-dimensional space
• they “support” the maximal margin hyperplane (if they move, the maximal margin

hyperplane also moves)

For any other points, if they move but stay outside the boundary set by the margin, this does
not affect the separating hyperplane.

So the observations that fall in top of the fences are called support vector because they directly
determine where the fences will be located.

In our example, the maximal margin hyperplane only depends on three points, but this is not a
general result. The number of support vectors can vary according to the data.
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1. Support Vector Machines
1.1. Maximal margin classifier

Maximum margin and classification

Once the maximum margin is known, classification follows directly:

• cases that fall on one side of the maximal margin hyperplane are labeled as one class
• cases that fall on the other side of the maximal margin hyperplane are labeled as the other

class

The classsification rule that follows from the decision boundary is known as hard thresholding.
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1. Support Vector Machines
1.1. Maximal margin classifier

Leaving the perfectly separable margin

So far, we were in a simplified situation in which it is possible to find a perfectly separable
hyperplane.

In reality, data are not always that cooperative, in that:

• there is no maximal margin classifier (the set of values are no longer linearly separable)
• the optimization problem gives no solution with M > 0

In such cases, we can allow some number of observations to violate the rules so that they can lie
on the wrong side of the margin boundaries. We can develop a hyperplane that almost separates
the classes.

The generalization of the maximal margin classifier to the non-separable case is known as the
support vector classifier.
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1.2 Support vector classifiers
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1. Support Vector Machines
1.2. Support vector classifiers

Support vector classifiers

In this section, we consider the case in which finding a maximal margin classifier is either not
possible or not desirable.

A maximal margin classifier may not be desired as:

• its margins can be too narrow and therefore lead to relatively higher generalization errors
• the maxmimal margin hyperplane may be too sensitive to a change in a single observation

As it is usually the case in statistical methods, a trade-off thus arises: here it consists in trading
some accuracy in the classification for more robustness in the results.
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Support vector classifiers
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Figure 5: Maximal margin classifier for the initial dataset with linearly separable observationf (panel A) and support vector
classifier for the same dataset where four points were added (Panel B).
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1. Support Vector Machines
1.2. Support vector classifiers

Support vector classifiers
When we allow some points to violate the buffer zone, the optimization problem becomes:

max
β0,β1,...,βp,ε1,...,εn,M

M (9)

s.t.
p∑
j=1

β2
j = 1, (10)

yi(β0 + β1xi1 + . . .+ βpxip) ≥M(1− εt), ∀i = 1, . . . , (11)
n) (12)

εi ≥ 0,
n∑
i=1

εi ≤ C, (13)

where C is a nonnegative tuning parameter, M is the width of the margin.

ε1, . . . , εn allow individual observations to lie on the wrong side of the margin or the hyperplane, they
are called slack variables.
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1. Support Vector Machines
1.2. Support vector classifiers

Classification
Once the optimization problem is solved, the classification follows instantly by looking at which
side of the hyperplane the observation lies:
• hence, for a new observation x0, the classification is based on the sign of
β0 + β1x0 + . . .+ βpx0.
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Figure 6: Support vector classifier for the binary outcome variable.
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1. Support Vector Machines
1.2. Support vector classifiers

More details on the slack variables

The slack variable εi indicates where the ith observation is located relative to both the hyperplane
and the margin:

• εi = 0: the ith observation is on the correct side of the margin
• εi > 0: the ith observation violates the margin
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1. Support Vector Machines
1.2. Support vector classifiers

More details on the tuning parameter

The tuning parameter C from Eq. 13 reflects a measure of how permissive we were when the
margin was maximized, as it bounds the sum of εi.

• Setting a value of C to 0 implies that we do not allow any observations from the training
sample to lie in the wrong side of the hyperplane. The optimization problem then boils
down to that of the maximum margin (if the two classes are perfectly separables).

• If the value of C is greater than 0, then no more than C observations can be on the wrong
side of the hyperplane:
I εi > 0 for each observation that lies on the wrong side of the hyperplane
I
∑n

i=1 εi ≤ C
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1. Support Vector Machines
1.2. Support vector classifiers

More details on the tuning parameter

So, the idea of the support vector classifier can be viewed as maximizing the width of the buffer
zone conditional on the slack variables. But the distance of some slack variables to the boundary
can vary from one observation to another. The sum of these distances can then be viewed as a
measure of how permissive we were when the margin was maximized:

• the more permissive, the larger the sum, the higher the number of support vectors,
and the easier to locate a separating hyperplane within the margin

• but on the other hand, being more permissive can lead to a higher bias as we introduce
more misclassifications.
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1.2. Support vector classifiers

More details on the tuning parameter

Figure 7: Support vector classifier fitted using different values of C (increasing values).
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1.3 Support vector machines
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1. Support Vector Machines
1.3. Support vector machines

Support vector machines

In this section, we will look at a solution to classification problems when the classes are not
linearly separable.

The basic idea is to convert a linear classifier into a classifier that produced non-linear decision
boundaries.
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1. Support Vector Machines
1.3. Support vector machines

Support vector classifier with non-linear boundaries
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Figure 8: Binary outcome variables (panel A), support vector classifier boundaries (panel B).
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1.3. Support vector machines

Support vector classifier with non-linear boundaries

To account for non-linear boundaries, it is possible to add more dimensions to the observation
space:

• by adding polynomial functions of the predictors
• by adding interaction terms between the predictors.

However, as the number of predictors is enlarged, the computations become harder. . .

The support vector machine allows to enlarge the number of predictors while keeping efficient
computations.
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1. Support Vector Machines
1.3. Support vector machines

Support vector machine

The idea of the support vector machine is to fit a separating hyperplane in a space with a
higher dimension than the predictor space.

Instead of using the set of predictor, the idea is to use a kernel.

The solution of the optimization problem given by Eq. 9 to Eq. 13 involves only the inner
products of the observations.

The inner product of two observations x1 and x2 is given by 〈x1, x2〉 =
∑p
j=1 x1jx2j .
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1. Support Vector Machines
1.3. Support vector machines

Support vector machine

The linear support vector classifier can be represented as:

f(x) = β0 +
n∑
i=1

αi〈x, xi〉, (14)

where the n parameters αi need to be estimated, as well as the parameter β0.

This requires to compute all the
(
n
2
)
inner products 〈xi, xi′〉 between all pairs of training obser-

ations.

We can see in Eq. 15 that if we want to evaluate the function f for a new point x0, we need to
compute the inner product between x0 and each of the points xi from the training sample.
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1. Support Vector Machines
1.3. Support vector machines

Support vector machine

If a point xi from the training sample is not from the set S of the support vectors, then it
can be shown that αi is equal to zero.

Hence, Eq. 15 eventually writes:

f(x) = β0 +
∑
i∈S

αi〈x, xi〉, (15)

thus reducing the computational effort to perform when evaluating f .
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Using a Kernel

Now, rather than using the actual inner product 〈xi, xi′〉 =
∑p
j=1 xijxi′j when it needs to be

computed, let us assume that we replace it with a generalization of the inner product, following
some functional form K known as a kernel: K(xi, xi′).

A kernel will compute the similarities of two observations.

For example, if we pick the following functional form:

K(xi, xi′) =
p∑
j=1

xijxi′j , (16)

it leads back to the support vector classifier (or the linear kernel).
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1. Support Vector Machines
1.3. Support vector machines

Using a non-linear kernel
We can use a non-linear kernel, for example a polynomial kernel of degree d:

K(xi, xi′) =

1 +
p∑
j=1

xijxi′j

d

, (17)

If we do so, the decision boundary will be more flexible. The functional form of the classifier
becomes:

f(x) = β0 +
∑
i∈S

αiK(x, xi) (18)

an is such a case, when the support vector classifier is combined with a non-linear kernel, the
resulting classifier is known as a support vector machine.
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Using a polynomial kernel

Figure 9: Support vector machine with a polynomial kernel.
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1.3. Support vector machines

Using a radial kernel

Other kernels are possible, such as the radial kernel:

K(xi, xi′) = exp

−γ p∑
j=1

(xij − xi′j)2

 , (19)

where γ is a positive constant that accounts for the smoothness of the decision boundary (and
also constrols the variance of the model):

• very large values lead to fluctuating decision boundaries that accounts for high variance
(and may lead to overfitting)

• small values lead to smoother boundaries and low variance.

Ewen Gallic Machine learning and statistical learning 39/46



1. Support Vector Machines
1.3. Support vector machines

Using a radial kernel

Figure 10: Support vector machine with a radial kernel.
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1.3. Support vector machines

Using a radial kernel
Recall the form of the radial kernel:

K(xi, xi′) = exp

−γ p∑
j=1

(xij − xi′j)2

 ,

If a test observation x0 is far (considering the Euclidian distance) from a training observation
xi:

• ∑p
j=1(x0j − xij)2 will be large

• hence K(x0, xi) = exp
(
−γ
∑p
j=1 (x0j − xij)2

)
will be really small

• hence xi will play no role in f(x0)

So, observations far from x0 will play no role in its predicted class: the radial kernel therefore
has a local behavior.
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1.4 Support vector machines with more than two classes
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1. Support Vector Machines
1.4. Support vector machines with more than two classes

Support vector machines with more than two classes

The classification of binary response variables using SVM can be extended to multi-classes
response variables.

We will briefly look at two popular solutions:

1. the one-versus-one approach
2. the one-versus-all approach.
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1.4. Support vector machines with more than two classes

One-versus-one classification

If we face a response variable with K > 2 different levels, an approach to perform classification
using SVM, known as one-versus-one classification, consists in constructing

(
K
2
)
SVM:

• each SVM compares a pair of classes

For example, one of these
(
K
2
)
SVM may compare the k-th class coded as +1 to another class

k′ coded as −1.

To assign a final classification to a test observation x0:

• the class to which it was most frequently assigned in the
(
K
2
)
pairwise classifications is

selected.
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One-versus-all classification

If we face a response variable with K > 2 different levels, another approach to perform classifi-
cation using SVM, known as one-versus-all classification, consists in constructing K SVM:

• each SVM compares a one class to the other classes.

For example, one of these K SVM may compare the kth class coded +1 to the remaining classes
coded as −1.

To assign a final classification to a test observation x0:

• the class for which β0k + β1kx01 + . . .+ βpkx0p is the largest is selected
I it amounts to a high level of confidence that the test observation belongs to the kth class

rather than to any of the other classes.
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