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This chapter discusses a second category of supervised learning methods: classification.

In the regresison case, the response variable y was real-valued.

We consider now the case in which it is qualitative (or categorical).

We will cover three classifiers in this chapter:

• the logistic regression
• the k-nearest neighbors
• the linear discriminant analysis

Note that trees, random forests, bagging and boosting will be covered in Pierre Michel’s course.
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1. Introduction

Introduction

In classification problems, we want to assign a class to a quantitative response.

We saw in the introduction of the course that it may be a good idea to estimate a probability
for each of the categories and then to assign the class, based on the mode, for example.
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1. Introduction

Why not fitting a linear regression

In the case in which the response variable is categorical, the linear regression may not be appro-
priate.

Let us consider a simple case in which we are trying to predict the occupation of individuals,
based on their characteristics. Let us suppose there are three classes for the response variable:

The response variable could be:

y =


1 blue-collar jobs
2 white-collar jobs
3 professional jobs
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1. Introduction

Why not fitting a linear regression

Technically, it is possible to fit a linear model using this response variable. But this implies :

• an ordering on the outcome, putting white-collar jobs between blue-collar and professional
jobs

• the difference between blue-collar and white-collar is the same as the difference
between white-collar and professional.

We could code the response variable differently, and the resutls would be completely differents.
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1. Introduction

Why not fitting a linear regression
However, if the response variable is categorical, but the variables can be ordered, and if we
think that the gap between each category is similar, a linear regression can be envisaged.
For example, if the response variable is some age class:

• [18-25]
• [26-35]
• [36-45]
• [46-55]

If the response variable is binary, fitting a linear regression is less problematic. If our response
variable is coded using 0 and 1 values:

• as we saw in the previous chapter, flipping the coding of the variable does not change the
prediction

• but the prediction may lie outside the [0, 1] interval, making them hard to interpret as
probabilities.
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1. Introduction

Why not fitting a linear regression
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2. Logistic regression

2. Logistic regression

Ewen Gallic Machine learning and statistical learning 10/135



2. Logistic regression

Dataset

Let us consider some data on which we will build some examples: Bank Marketing Data Set

Source : Moro et al. (2014) A Data-Driven Approach to Predict the Success of Bank Telemar-
keting. Decision Support Systems, Elsevier, 62:22-31.

To download the data: https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
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2. Logistic regression

Dataset

The data concerns results from direct marketing campaigns (phone calls) of a Portuguese banking
institution.

The aim is to predict whether the client will subscribe from a term deposit (variable y).

The original dataset has 45, 211 training observations. We will use the provided random subset
using only only 10% of observations here.
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2. Logistic regression

Dataset

• bank client data:
I age (numeric)
I job : type of job (categorical: ’admin.’, ’blue-collar’, ’entrepreneur’, ’housemaid’, ’management’, ’retired’, ’self-

employed’, ’services’, ’student’, ’technician’, ’unemployed’, ’unknown’)
I marital : marital status (categorical: ’divorced’,’married’,’single’,’unknown’; note: ’divorced’ means divorced or

widowed)
I education (categorical: ’basic.4y’,’basic.6y’,’basic.9y’,’high.school’,’illiterate’,’professional.course’, ’univer-

sity.degree’,’unknown’)
I default: has credit in default? (categorical: ’no’,’yes’,’unknown’)
I balance: average yearly balance, in euros (numeric)
I housing: has housing loan? (categorical: ’no’,’yes’,’unknown’)
I loan: has personal loan? (categorical: ’no’,’yes’,’unknown’)
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2. Logistic regression

Dataset

• related with the last contact of the current campaign:
I contact: contact communication type (categorical: ’cellular’,’telephone’)
I day: last contact day of the month (numeric: 1 to 31)
I month: last contact month of year (categorical: ’jan’, ’feb’, ’mar’, ..., ’nov’, ’dec’)
I duration: last contact duration, in seconds (numeric). Important note: this attribute highly affects the output target

(e.g., if duration=0 then y=’no’). Yet, the duration is not known before a call is performed. Also, after the end
of the call y is obviously known. Thus, this input should only be included for benchmark purposes and should be
discarded if the intention is to have a realistic predictive model.

• other attributes:
I campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact)
I pdays: number of days that passed by after the client was last contacted from a previous campaign (numeric; 999

means client was not previously contacted)
I previous: number of contacts performed before this campaign and for this client (numeric)
I poutcome: outcome of the previous marketing campaign (categorical: ’failure’, ’nonexistent’, ’success’)
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2. Logistic regression

Dataset

The response variable is coded as follows:

y =
{

1 if the client has subscribed to a term deposit
0 if the client has not subscribed to a term deposit

4000 (88.48%) clients have not subscribed while 521 (11.52%) have.
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2. Logistic regression

Logistic regression

Let us consider a simple example in which we try to model the class of the response variable
y using the variable balance as the sole predictor (which corresponds to the average yearly
balance, in euros).

The logistic regression models the probability that the client will subscribe to a long term deposit
or not. The probability of subscribing given balance writes:

P(y = yes | balance)

We can rely on this probability to assign a class (yes or no) to the observation.

• For example, we can assign the class yes for all observations where
P(y = yes | balance) > 0.

• But we can also select a different threshold.
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2. Logistic regression
2.1. Model

2.1 Model
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2. Logistic regression
2.1. Model
2.1.1. The Linear Probability Model

2.1.1 The Linear Probability Model
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2. Logistic regression
2.1. Model
2.1.1. The Linear Probability Model

A little detour
Before turning to the logistic model, let us a little detour to see what happens when we fit a
linear model to the relationship between our predictor x and our response variable y.

The structural model writes, for in ∈ 1, . . . , n:

yi = xiβ + εi,

where εi is an error term with zero mean and variance σ2.

If the predictor is a binary outcome, the model becomes:

yi = β0 + β1xi + εi.

The conditional expectation of y given x is:

E(y | x) = β0 + β1x.

Ewen Gallic Machine learning and statistical learning 19/135



2. Logistic regression
2.1. Model
2.1.1. The Linear Probability Model

Linear regression model for binary outcome

As we consider the case in which y is a binary variable, the unconditional expectation of y is
the probability that the event occurs:

E(yi) = [1× P(yi = 1)] + [0× P(yi = 0)] = P(yi = 1).

For the regression model:

E(yi | xi) = [1× P(yi = 1 | xi)] + [0× P(yi = 0 | xi)] = P(yi = 1 | xi).

The expected value of y given x is the probability that y = 1 given x. We therefore have:

P(yi = 1 | xi) = xiβ
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2. Logistic regression
2.1. Model
2.1.1. The Linear Probability Model

Problems with the linear regression model and binary outcomes

Multiple problems arise when fitting a linear regression model to a binary outcome response.

First, let us consider the issue regarding heteroscedasticity.

If y is a binary outcome random variable, with mean µ, then:

E(Y ) = 0 · P(Y = 0) + 1 · P(Y = 1)⇒ P(Y = 1) = µ.

As E(Y 2) = 02 · P(Y = 0) + 12 · P(Y = 1) = P(Y = 1), the variance of Y writes:

Var(Y ) = E(Y 2)− E(Y )2 = µ(1− µ).
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2. Logistic regression
2.1. Model
2.1.1. The Linear Probability Model

Problems with the linear regression model and binary outcomes

We know that E(y | x) = xβ, hence the conditional variance of y depends on x:

Var(y | x) = P(y = 1 | x) [1− P(y = 1 | x)] = xβ(1− xβ).

Hence, the variance of the errors depends on the values of x and is not constant.

As a consequence, the least squares estimate of β is inneficient and the standard errors are
biased.
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2. Logistic regression
2.1. Model
2.1.1. The Linear Probability Model

Problems with the linear regression model and binary outcomes

Let us now turn to the normality assumption.

As the response variable only takes values between 0 and 1, the error at point x0 must be equal
to:

{
1− E(y | x0) if y = 1
0− E(y | x0) if y = 0

Hence, the errors cannot be normally distributed, which leads to biased estimates.

Another problem arises, as we saw previously, that of nonsensical predictions: some predictions
may be negative or greater than one.

This is problematic, as we are predicting a probability.
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2. Logistic regression
2.1. Model
2.1.2. A latent model for binary variables

2.1.2 A latent model for binary variables
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2. Logistic regression
2.1. Model
2.1.2. A latent model for binary variables

A latent model for binary variables

To overcome the mentioned issues, P(y | x) must be modeled using a function that gives outputs
between 0 and 1 for all values of x.

Let us suppose there is an unobserved (or latent) variable y? ranging from −∞ to +∞ that
generates the observed values of y:

• the large values of y? are observed as 1
• the small values of y? are observed as 0.
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2. Logistic regression
2.1. Model
2.1.2. A latent model for binary variables

The latent variable
For example, let us consider the clients who subscribe to a term deposit (the observed response
variable y). This variable can be observed in two states:

• the client has subscribed
• the client has not subscribed.

Some clients may be closed to the decision of subscribing, other may be very far from it. In both
cases, we observe y = 0.

The idead behind the latent y? is that there exists an underlying propensity to subscribe that
generates the observed state.

We cannot observe y?, but at some point, a change in y? results in a change in what we
observe:

• for example, as the balance increases, the propensity to subscribe to a term deposit
increases too.
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2. Logistic regression
2.1. Model
2.1.2. A latent model for binary variables

The latent variable

The latent y? is assumed to be linearly related to the observed predictors:

y?i = xiβ + εi.

The observed variable y writes:

yi =
{

1 if y?i > τ

0 if y?i ≤ τ
(1)

where τ is called the threshold (or cutpoint), assumed to be equal to zero for now.
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2. Logistic regression
2.1. Model
2.1.2. A latent model for binary variables

Estimating the model: intuition

The dependant variable is not observed. The model cannot be estimated using least squares.

We will see in a next section how to estimate the model using maximum likelihood (ML).

The ML estimation requires some assumptions about the distribution of the errors ε.

For the logit model, we assume that the distribution of the errors is logistic.

We also assume that:

• E(ε | x) = 0
• Var(ε | x) = π2/3

Note: if we assume the errors are N (0, 1), it results in the probit model.
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2. Logistic regression
2.1. Model
2.1.2. A latent model for binary variables

Standard logistic distribution

The probability distribution function of the standard logistic distribution writes:

λ(ε) = exp(ε)
[1 + exp(ε)]2

.

The cumulative distribution function writes:

Λ(ε) = exp(ε)
1 + exp(ε)
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2. Logistic regression
2.1. Model
2.1.2. A latent model for binary variables

Standard logistic distribution

The logistic distribution can be rescaled to have a unit variance, resulting in the standardized
logistic distribution.

The probability distribution becomes:

λS(ε) = γ exp(γε)
[1 + exp(γε)]2

.

The cumulative distribution function writes:

ΛS(ε) = exp(γε)
1 + exp(γε) ,

where γ = π/
√

3
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2. Logistic regression
2.1. Model
2.1.2. A latent model for binary variables

Standard logistic distribution
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2. Logistic regression
2.1. Model
2.1.2. A latent model for binary variables

Estimating the model: intuition

Assuming the distribution of the errors is useful to compute the probability of y = 1 for a given
x.

Indeed:

P(y = 1 | x) = P(y? > 0 | x)
= P(xβ + ε > 0 | x)
= P(ε > −xβ | x)
P(ε ≤ xβ | x) (symmetric cdf)
= F (xβ) = Λ(xβ).

Hence the probability of observing an event given x is the cummulative density evaluated at xβ.
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2. Logistic regression
2.1. Model
2.1.2. A latent model for binary variables

Deriving the model without appealing to a latent variable

Another way of deriving the logit model without appealing to a latent variable is to specify a
nonlinear model relating the predictors to the probability of an event.

In a first step, the probability of an event is transformed into the odds:

P(y = 1 | x)
P(y = 0 | x) = P(y = 1 | x)

1− P(y = 1 | x)

The odds are used to evaluate how often an event happens relative to how often is does not.

The odds range from 0 (when P(y = 1 | x) = 0) to ∞ (when P(y = 1 | x) = 1).
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2. Logistic regression
2.1. Model
2.1.2. A latent model for binary variables

Deriving the model without appealing to a latent variable

The log of the odds, as known as the logit ranges from −∞ to ∞.

This suggests a model that is linear in the logit:

ln
[

P(y = 1 | x)
1− P(y = 1 | x)

]
= xβ (2)

Hence, a marginal change in x changes the log odds by the coefficient β associated with x.

We can easily show that Eq. 2 equivalent to the logistic function:

P(y = 1 | x) = exp(xβ)
1 + exp(xβ) . (3)
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2. Logistic regression
2.1. Model
2.1.2. A latent model for binary variables

Deriving the model without appealing to a latent variable

From Eq. 3, it can easily be shown that:

P(y = 1 | x)
1− P(y = 1 | x) = exp(xβ) (4)

Hence, we see that a marginal increase in x can be equivalently interpreted as follows: it multiplies
the odds by the coefficient β associated with x
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2. Logistic regression
2.2. Estimation

2.2 Estimation
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2. Logistic regression
2.2. Estimation

Estimation
In the case of a binary response variable and the logit model, we wan to estimate the coefficients
β0 and β1 from the logistic function:

P(y = 1 | x) = exp(β0 + β1x)
1 + exp(β0 + β1x) .

First, let us define p as the probability of observing the value of y:

pi =
{
P(yi = 1 | xi) if yi = 1 is observed
1− P(yi = 1 | xi) if yi = 0 is observed

(5)

Assuming the observations are independant, the likelihood equation writes:

L(β | y,x) =
n∏
i=1

pi (6)
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2. Logistic regression
2.2. Estimation

Estimation

Hence, combining Eq. 5 and Eq. 6:

L(β | y,x) =
∏
y=1

P(yi = 1 | xi)
∏
y=0

[1− P(yi = 1 | xi)] (7)

We have seen that P(yi = 1 | xi) = F (xiβ), i.e., P(yi = 1 | xi) = Λ(xiβ) in the case of the
logit model.

Hence, the likelihood equations also writes:

L(β | y,x) =
∏
y=1

Λ(xiβ)
∏
y=0

[1− Λ(xiβ)] (8)
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2. Logistic regression
2.2. Estimation

Estimation

The log likelihood thus writes:

`(β | y,x) := lnL(β | y,x) =
∑
y=1

ln Λ(xiβ) +
∑
y=0

ln [1− Λ(xiβ)] (9)

=
n∑
i=1

1(yi=1) ln Λ(xiβ) + (1− 1yi=1) ln [1− Λ(xiβ)] (10)

The estimates of β are chosen to maximize the likelihood function.
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2. Logistic regression
2.2. Estimation

Effect of a variable on the odds

Let us get back to our clients data.
Model 1

(Intercept) −3.25593456∗∗∗
(0.08457673)

duration 0.00354955∗∗∗
(0.00017136)

AIC 2705.75264185
BIC 2718.58561882
Log Likelihood −1350.87632092
Deviance 2701.75264185
Num. obs. 4521
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 1: Statistical models

We see that β1 = 0.00354955:
• a unit increase in the duration of the last call is
associated with an increase in the probability of
subscribing to a term deposit
• a unit increase in the duration of the last call is
associated with an increase in the log odds of the
response by 0.00354955.
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2. Logistic regression
2.2. Estimation
2.2.1. Numerical methods

2.2.1 Numerical methods
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2. Logistic regression
2.2. Estimation
2.2.1. Numerical methods

Numerical methods

Let us look at how to use numerical methods to estimate the coefficients.

We will look at different ways of doing so, using iterative solutions.

First, we need to begin with an initial guess that we will denote β0: the start values.

At each iteration, we will try to improve the previous guess by adding a vector ζn of adjustments:

βn+1 = βn + ζn.

The iterations stops as soon as a convergence criterion is met:

• roughly, when the gradient of the log likelihood gets close to 0
• or when the estimates do not change from one step to the next.

Sometimes, there is no convergence, and we do not get the ML estimates.
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2. Logistic regression
2.2. Estimation
2.2.1. Numerical methods

Numerical methods

ζn can be expressed as:
ζn = Dnγn,

• γn: gradient vector:
I γn = ∂ lnL

∂βn
I it indicates the direction of the change in the log likelihood for a change in the parameters

• Dn: direction matrix
I it reflects the curvature of the likelihood function (how rapidly the gradient is changing)
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2. Logistic regression
2.2. Estimation
2.2.1. Numerical methods

The Newton-Raphson Method

The rate of change in the slope of lnL is indicated by the second derivatives, contained in the
Hessian matrix.

In the case of a single predictor, we have two parameters to estimate, β0 and β1. The Hessian
matrix is thus:

∂2 lnL
∂β∂β>

=
(
∂2 lnL
∂β0∂β0

∂2 lnL
∂β0∂β1

∂2 lnL
∂β1∂β0

∂2 lnL
∂β1∂β1

)

If ∂2 lnL
∂β0∂β0

is large relative to ∂2 lnL
∂β1∂β1

:

• the gradient is changing more rapidly as β0 changes than β1 changes.

In that case, smaller adjustments to the estimates of β0 would be indicated.
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2. Logistic regression
2.2. Estimation
2.2.1. Numerical methods

The Newton-Raphson Method
Recall that:

`(β | y,x) =
n∑
i=1

1(yi=1) ln Λ(xiβ) + (1− 1yi=1) ln [1− Λ(xiβ)]

Hence, it can easily be shown that, for all j = 0, 1, . . . , p:

∂`(β | y,x)
∂βj

=
n∑
i=1

xij
[
1(yi=1) − Λ(xiβ)

]
In matrix form:

∂`(β | y,x)
∂β

=
n∑
i=1

xi
[
1(yi=1) − Λ(xiβ)

]
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2. Logistic regression
2.2. Estimation
2.2.1. Numerical methods

The Newton-Raphson Method

The Newton-Raphson algorithm requires the Hessian matrix:

∂2`(β | y,x)
∂β∂β>

= −
n∑
i=1

xix>i [Λ(xiβ)(1− Λ(xiβ))]

The following equation is used by the Newton-Raphson algorithm at each iteration:

βn+1 = βn −
(
∂2 lnL
∂βn∂β

>
n

)−1
∂ lnL
∂βn
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2. Logistic regression
2.2. Estimation
2.2.1. Numerical methods

The Newton-Raphson Method

To illutsrate the iterative process of the Newton-Raphson algorithm, let us go through an exam-
ple, using matrix notations.

• y: column vector of the response variable, of dimenstion n× 1
• X: matrix of predictors, including the constant, of dimension n× (p+ 1)
• pn: vector of fitted probabilities at iteration n, of dimension n× 1
• Ω: diagonal matrix of weights, of dimension n× n

I the ith element of the diagonal is: Λ(Xiβn−1)(1− Λ(Xiβn−1))
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2. Logistic regression
2.2. Estimation
2.2.1. Numerical methods

The Newton-Raphson Method

Using these notations, we can write the gradient and the Hessian as follows:

∂`(β | y,x)
∂β

= X>(y − pn−1)

∂2`(β | y,x)
∂β∂β>

= −X>Ωn−1X
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2. Logistic regression
2.2. Estimation
2.2.1. Numerical methods

The Newton-Raphson Method

At each step:

βn = βn−1 +
(
X>ΩX

)−1
X>(y − pn−1)

=
(
X>ΩX

)−1 (
X>ΩX

)︸ ︷︷ ︸
In

βn−1 +
(
X>ΩX

)−1
X>(y − pn−1)

=
(
X>ΩX

)−1
X>Ω

[
Xβn−1 + Ω−1X>(y − pn−1)

]
=
(
X>ΩX

)−1
X>Ωz

where z =
[
Xβn−1 + Ω−1X>(y − pn−1)

]
.

Written this way, z can be viewed as the response of the model, X the predictors and βn the coefficients
of a weighted least squares regression.
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2. Logistic regression
2.2. Estimation
2.2.1. Numerical methods

The Newton-Raphson Method

See Lab exercise.
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2. Logistic regression
2.3. Predictions

2.3 Predictions
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2. Logistic regression
2.3. Predictions

Predictions
Is is easy to use the estimates to perform some predictions.
For example, in our example of clients subscribing to term deposit:

yi = β0 + β1durationi + εi

We estimated that β̂0 = −3.25593456 and β̂1 = 0.00354955.
Hence, the probability of subscribing to a term deposit for an individual whose last call duration
was 250 seconds is given by:

P̂(y = 1 | duration = 250) =
exp

(
β̂0 + β̂1 × 250

)
1 + exp

(
β̂0 + β̂1 × 250

)
= exp (−3.25593456 + 0.00354955× 250)

1 + exp (−3.25593456 + 0.00354955× 250)
= 0.0856028
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2. Logistic regression
2.4. Interpretation

2.4 Interpretation
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2. Logistic regression
2.4. Interpretation
2.4.1. The effect of the Parameters

2.4.1 The effect of the Parameters
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2. Logistic regression
2.4. Interpretation
2.4.1. The effect of the Parameters

Binary Regression Model

Let us consider the binary response model with a single predictor x. The model writes:

P(y = 1 | x) = F (α+ βx),

i.e., for a logit model:
P(y = 1 | x) = exp (α+ βx)

1 + exp (α+ βx)

Let us vary α and β to observe how it affects the probability.
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2. Logistic regression
2.4. Interpretation
2.4.1. The effect of the Parameters

Varying β
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Effect of changing alpha (intercept) on the Binary Response Model.
with beta = 1
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2. Logistic regression
2.4. Interpretation
2.4.1. The effect of the Parameters

Varying α
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3. Binary Response Model with Multiple Predictors
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3. Binary Response Model with Multiple Predictors

Binary Response Model with Multiple Predictors
Let us now consider multiple regressors (only two, for illustrative purposes):

P(y = 1 | x) = F (α+ β1x1 + β2x2),

i.e., for a logit model:

P(y = 1 | x) = exp (α+ β1x1 + β2x2)
1 + exp (α+ β1x1 + β2x2)

Let us consider the following values:

• α = 1
• β1 = 1
• β2 = .75

Let us vary α and β1 and β2 to observe how it affects the probability.
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3. Binary Response Model with Multiple Predictors

Varying α

Figure 1: Effects of changing α on the Logit Model P(y = 1 | x1, x2), with β1 = 1 and β2 = .75
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3. Binary Response Model with Multiple Predictors

Varying β1

Figure 2: Effects of changing α on the Logit Model P(y = 1 | x1, x2), with α = 1 and β2 = .75
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3. Binary Response Model with Multiple Predictors

Varying β2

Figure 3: Effects of changing α on the Logit Model P(y = 1 | x1, x2), with α = 1 and β1 = 1
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3. Binary Response Model with Multiple Predictors

Using Predicted Probabilities

To know the effect of a covariate on the probability of the event, we can look at how this
probability changes when varying a covariate.

However, where there are more than two predictors, the surface response cannot be plotted as
it was done previously when facing a single covariate.

In such cases, the interpretation depends on whether or not the relationship between the
response and the predictors can be considered as linear. To that end, we need to compute
the range of probabilities.
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3. Binary Response Model with Multiple Predictors

Using Predicted Probabilities
The predicted probability of an event given some values for the predictors x for the ith individual
writes:

P̂(y = 1 | xi) = F (xiβ̂)

The minimum and maximum probabilities in the sample write, respectively:

min P̂(y = 1 | xi) = min
i
F (xiβ̂)

max P̂(y = 1 | xi) = max
i
F (xiβ̂)

• If the range of probabilities (max P̂(y = 1 | xi)−min P̂(y = 1 | xi)) is between 0.2 and
0.8, the relationship between xi and y can be considered as linear:
I thus, the marginal effect of xi can be obtained using simple measures

• Otherwise, other methods need to be used.
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3. Binary Response Model with Multiple Predictors

The effect of Each Variable on the Predicted Probability
To assess the effect of a (numerical) variable on the predicted probability, we can look at how
the predicted probability changes as the variables varies from its minimum to its maximum
value.
To do so, for the kth variable:
• the other variables are set to their average value (x(−k))
• we compute the predicted probability when xk is at its maximum value
(P̂(y = 1 | x(−k),min xk))

• we compute the predicted probability when xk is at its minimum value
(P̂(y = 1 | x(−k),max xk))

The predicted change in the probability as xk varies from its min to its max is then computed
as:

P̂(y = 1 | x(−k),min xk)− P̂(y = 1 | x(−k),max xk)
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3. Binary Response Model with Multiple Predictors

The effect of Each Variable on the Predicted Probability

If, among the (−k) covariates, some are non numerical:

• it is possible to set these variables to the mode of the distribution
• or different combinations of the levels can be envisaged.
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3. Binary Response Model with Multiple Predictors

Discrete Change

Let us now consider the partial change in y.

Let P(y = 1 | x(−k),xk) be the probability of an event given some values for x(−k) and a specific
value for xk.

Let P(y = 1 | x(−k),xk+δ) be the probability of an event after a variation of δ in xk, keeping
all other variables unchanged.

The discrete change in the probability for a change of δ in xk is:

P(y = 1 | x(−k),xk+δ)− P(y = 1 | x(−k),xk)
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3. Binary Response Model with Multiple Predictors

Discrete Change

P(y = 1 | x(−k),xk+δ)− P(y = 1 | x(−k),xk)

Following a variation of δ in xk, keeping all the other variables unchanged, the predicted proba-
bility of an event is changed by P(y = 1 | x(−k),xk+δ)− P(y = 1 | x(−k),xk).

Some usual values are picked for δ:

• a (centered) unit change: increasing xk to xk + 1
• a standard deviation change:

I

P
(
y = 1 | x(−k),xk + std(xk)

2

)
− P

(
y = 1 | x(−k),xk −

std(xk)
2

)
• a change from 0 to 1 for dummy variables
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4. K-nearest neighbors
4.1. The Bayes classifier

4.1 The Bayes classifier
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4. K-nearest neighbors
4.1. The Bayes classifier

The Bayes classifier

In a two-class problem where the response variable Y can take only two distinct values (e.g.,
class 1 and class 2), the Bayes classifier corresponds to

• predicting class 1 if P(Y = 1 | X = x0) ≥ 0.5 for a given observation X = x0
• predicting class 2 otherwise

Formally, this corresponds to assign an observation x0 the class k for which P(Y = k | X = x0)
is the highest.
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4. K-nearest neighbors
4.1. The Bayes classifier

Example
To illustrate this, let us consider an example of a response variable y that takes two values : blue
and orange, depending on the values of two predictors x1 and x2, such that:

y =
{
blue if x2

1 + x2
2 > 602

orange if x2
1 + x2

2 ≤ 602

We randomly generate n = 100 observations for x1 and x2 from a U [0, 100], and assign the true
class to y. From these observations, we fit a given classifier.

Then, we randomly generate n = 100 new observations for x1 and x2 from the same uniform
distribution and use the classifier to predict the probability of belonging to each of the two
classes.

ŷ =
{
blue if P̂(Y = 1 | X = x0) ≥ 0.5
orange if P̂(Y = 1 | X = x0) < 0.5
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4. K-nearest neighbors
4.1. The Bayes classifier

Example
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Figure 4: Bayes’ decision boundary (dashed line).
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4. K-nearest neighbors
4.1. The Bayes classifier

Error rate

The error rate of the Bayes classifier at pointX = x0 will always be 1−maxk P(Y = k | X = x0).

The overall Bayes error rate is given by:

1− E(max
k

P(Y = k | X)), (11)

where the expectation averages the probability over all possible values of X.
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4. K-nearest neighbors
4.2. K-Nearest Neighbors

4.2 K-Nearest Neighbors
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4. K-nearest neighbors
4.2. K-Nearest Neighbors

K-Nearest Neighbors

When facing real data, we do not know the conditional distribution of Y given X. Hence,
computing the Bayes classifier is not possible.

In this section, we look at a classifier that estimates the conditional distribution of Y given X,
namely the K-nearest neighbors (KNN) classifier.
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4. K-nearest neighbors
4.2. K-Nearest Neighbors

K-Nearest Neighbors

The basic idea of the KNN classifier is, as follows:

• from a given positive integer K and a test observation x0, identify the K points in the
training data that are closest to x0, represented by N0

• estimate the conditional probability for class k as the fraction of points in N0 whose
response values equal k:

P(Y = k | X = x0) = 1
K

∑
i∈N0

1(yi=k). (12)

• once the conditional probababilities for each of the K classes are estimated, apply Bayes
rule and assign x0 to the class with the highest probability.
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4. K-nearest neighbors
4.2. K-Nearest Neighbors

Example

Let us consider again a response variable that can take two values: either “blue” or “orange”.

For the example, we draw 100 points in a unit square and randomly assign them a class.

Then, we consider a point at coordinates (0.75, 0.5) and try to predict the class for this point
using a KNN classifier.

We vary the number of nearest neighbors to consider: K = {3, 5, 10}.
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4. K-nearest neighbors
4.2. K-Nearest Neighbors

Example

Figure 5: KNN approach, varying K.
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4. K-nearest neighbors
4.2. K-Nearest Neighbors

Exercise

Lab exercise.
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5. Linear Discriminant Analysis

Linear Discriminant Analysis

In the first part of this chapter, we have looked at a way of fitting P(y = k | x) using the logistic
function, with k = {0, 1}.

In this section, we will consider a categorical response variable that can take more than two
classes.

In a nutshell:

• we will model the distribution of the predictors X given y
• rely on Bayes’ theorem to derive P(y = k | x)
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5. Linear Discriminant Analysis

Bayes’ theorem for classification

Let Y be a qualitative variable that can take K possible unordered values.

Let πk be the overall prior probability that a randomly chosen observation comes from the kth
class, k = 1, . . . ,K.

The density function of x for an observation from the kth class writes:

fk(x) ≡ P(x = x | Y = k)

Baye’s theorem states that:

P(Y = k | x = x) = πkfk(x)∑K
l=1 πlfl(x)

. (13)
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5. Linear Discriminant Analysis

Bayes’ theorem for classification

Getting an estimation of the prior πk is easy: we can simply compute the fraction of Y in the
training sample that belong to the kth class.

To estimate fk(X) is harder, unless we assume simple forms for the densities.

Let pk(x) = P(Y = k | X = x) be the posterior probability that an observation X = x
belongs to the kth class (given the predictor value for that observation).
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5. Linear Discriminant Analysis
5.1. Liminar discriminant analysis for p=1

5.1 Liminar discriminant analysis for p=1
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5. Linear Discriminant Analysis
5.1. Liminar discriminant analysis for p=1

Liminar discriminant analysis for p=1

Let us assume first that we only have only p = 1 predictor.

We want to obtain an estimate of fk(x) to be able to predict P(Y = k | x = x) using Eq. 13.

Based on that prediction, we will classify an observation to the class for which P(Y = k | x = x)
is the highest.
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5. Linear Discriminant Analysis
5.1. Liminar discriminant analysis for p=1

Gaussian density

Let us assume that the density fk(x) is Gaussian:

fk(x) = 1√
2πσ2

k

exp
(
− (x− µk)2

2σ2
k

)
, (14)

where µk and σ2
k are the mean and variance parameters, respectively, for the kth class.

Let us assume that the variance is equal accross all K classes: σ2
1 = . . . = σ2

K
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5. Linear Discriminant Analysis
5.1. Liminar discriminant analysis for p=1

Gaussian density
Under the Gaussian hypothesis regarding the density fk(x), Eq. 13 becomes:

P(Y = k | x = x) =
πk

1√
2πσ2 exp

(
− (x−µk)2

2σ2

)
∑K
l=1 πl

1√
2πσ2 exp

(
− (x−µl)2

2σ2

) . (15)

Using Bayes’ classifier, the class assigned to the observation X = x is the one for which P(Y =
k | x = x) is the highest.

Let us show that this is equivalent to assign the observation X = x the class for which the
following value is the largest:

δk(x) = x× µk
σ2 −

µ2
k

2σ2 + log(πk).
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5. Linear Discriminant Analysis
5.1. Liminar discriminant analysis for p=1

Gaussian density

Indeed, as the denominator of Eq. 15 does not depend on k, we can write:

P(Y = k | x = x) = Cπk
1√

2πσ2
exp

(
− (x− µk)2

2σ2

)
,

where C =
∑K
l=1 πl

1√
2πσ2 exp

(
− (x−µl)2

2σ2

)
We can further write:

P(Y = k | x = x) = C2πk exp
(
− (x− µk)2

2σ2

)
(16)

where C2 = C · 1√
2πσ2
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5. Linear Discriminant Analysis
5.1. Liminar discriminant analysis for p=1

Gaussian density

Taking the log of Eq. 16 leads to:

log (P(Y = k | x = x)) = log(C2) + log(πk)− (x− µk)2

2σ2︸ ︷︷ ︸
depends on k

(17)

We therefore want to maximize over k the following expression:

log(πk)− (x− µk)2

2σ2 (18)
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5. Linear Discriminant Analysis
5.1. Liminar discriminant analysis for p=1

Gaussian density
That is, we wan to maximize over k the following expression:

log(πk)− (x− µk)2

2σ2

= log(πk)− x2 − 2µkx+ µ2
k

2σ2

=C3 + log(πk)−+µkx

σ2 −
µ2
k

2σ2 . (19)

where C3 = x2

2σ2 . The objective is thus to find the maximum value of:

δk(x) = x× µk

σ2 −
µ2

k

2σ2 + log(πk).

Hence, for a point X = x, the predicted class is the one with the highest δk(x).
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5. Linear Discriminant Analysis
5.1. Liminar discriminant analysis for p=1

Gaussian density

Let us take an example, with K = 2, and π1 = π2.

The Bayes’ classifier assigns an observation:

• to class 1 if δ1(x) > δ2(x), i.e., if 2x(µ1 − µ2) > µ2
1 − µ2

2
• to class 2 otherwise.

The Bayes decision boundary corresponds to the point where δ1(x) = δ2(x), i.e., where:

x = µ2
1 − µ2

2
2(µ1 − µ2) = µ1 + µ2

2 . (20)
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5. Linear Discriminant Analysis
5.1. Liminar discriminant analysis for p=1

Example

Let us take an example to illustrate these concepts.

Let us suppose that we randomly pick n1 = 25 observations from a N (−1, 1) with distribution
function f1(x): the drawn observations are assigned the class 1.

Let us randomly pick n2 = 25 more observations from a N (1, 1) with distribution function f2(x):
the drawn observations are assigned the class 2.

As the two distributions overlap, there is uncertainty regarding which class an observation be-
longs.

Let us assume that an observation is equally likely to come from either class (so π1 = π2):

• according to Eq. 20, the Bayes’ classifier assigns x to class 1 if x < 0.
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5. Linear Discriminant Analysis
5.1. Liminar discriminant analysis for p=1

Example
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Figure 6: Example of LDA with 2 classes defined by the draw of 2 Normal distributions.
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5. Linear Discriminant Analysis
5.1. Liminar discriminant analysis for p=1

When the mean and variances are not known

In the previous example, not only we know that the classes are drawn from Normal distributions,
but we also know the parameters of the distributions.

In such a situation, it is possible to compute the Bayes decision boundary.

In practice, assuming that the classes are drawn from Normal distributions, we still need
to estimate the parameters µ1, . . . , µk and σ1, . . . , σk.

The linear discriminant analysis (LDA) method approximates the Bayes classifier by estimating
first these parameters.
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5. Linear Discriminant Analysis
5.1. Liminar discriminant analysis for p=1

When the mean and variances are not known

To estimate the mean of the distribution of class k, the sample mean is used:

µ̂k = 1
nk

∑
i:yi=k

xi (21)

And to estimate the variance, a weighted average of sample variances is used:

σ̂2
k = 1

n−K

K∑
k=1

∑
i:yi=k

(xi − µ̂k)2 (22)
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5. Linear Discriminant Analysis
5.1. Liminar discriminant analysis for p=1

When the probability πk is unknown

We may not have information regarding πk, the probability of class membership.

In that case, the LDA estimates it as the proportion of observations that belong the the kth
class:

π̂k = nk
n
. (23)
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5. Linear Discriminant Analysis
5.1. Liminar discriminant analysis for p=1

The LDA classifier

Using the estimate of µk given in Eq. 21, the estimate of σ2 given in Eq. 22 and the estimate
of πk given in Eq. 23, the predicted class is the one with the highest estimate of δk(x), i.e., the
one with the highest:

δ̂k(x) = x× µ̂k
σ̂2 −

µ̂2
k

2σ̂2 + log(π̂k). (24)
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5. Linear Discriminant Analysis
5.1. Liminar discriminant analysis for p=1

Example
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Figure 7: Example of LDA with 2 classes defined by the draw of 2 Normal distributions.
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5. Linear Discriminant Analysis
5.2. Linear discriminant analysis for p>1

5.2 Linear discriminant analysis for p>1
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5. Linear Discriminant Analysis
5.2. Linear discriminant analysis for p>1

Linear discriminant analysis for p>1

Now let us turn to the case in which p > 1, i.e., when there are multiple predictors.

Let us assume that X = (X1, . . . , Xp) is drawn from a multivariate Normal distribution, with
a class-specific mean vector and a common covariance matrix:

X ∼ N (µ,Σ),

where µ is a vector with p comenents and Σ is the p× p covariance matrix of X.

The probability density function of X writes:

f(x) = 1
(2π)p/2 | Σ |1/2

exp
(
−1

2(x− µ)>Σ−1(x− µ)
)
. (25)
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5. Linear Discriminant Analysis
5.2. Linear discriminant analysis for p>1

Linear discriminant analysis for p>1

Recall that:
P(Y = k | x = x) = πkfk(x)∑K

l=1 πlfl(x)
.

Pluging the density function for the kth class; i.e., fk(X = x) into this equation writes:

P(Y = k | x = x) =
πk

1
(2π)p/2|Σ|1/2 exp

(
− 1

2 (x− µk)>Σ−1(x− µk)
)

∑K
l=1 πl

1
(2π)p/2|Σ|1/2 exp

(
− 1

2 (x− µl)>Σ−1(x− µl)
) . (26)
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5. Linear Discriminant Analysis
5.2. Linear discriminant analysis for p>1

Linear discriminant analysis for p>1

Using Bayes’ classifier, the class assigned to the observation X = x is the one for which P(Y =
k | x = x) is the highest.

Let us show that this is equivalent to assign the observation X = x the class for which the
following value is the largest:

δk(x) = δk(x) = −1
2µ
>
k Σ−1µk + x>Σ−1µk + log(πk).
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5. Linear Discriminant Analysis
5.2. Linear discriminant analysis for p>1

Linear discriminant analysis for p>1
As in the case where p = 1, the denominator of Eq. 26 does not depend on k. Eq. 26 writes:

P(Y = k | x = x) = Cπk
(2π)p/2 | Σ |1/2

exp
(
−1

2(x− µk)>Σ−1(x− µk)
)
. (27)

where C = 1∑K

l=1
πl

1
(2π)p/2|Σ|1/2 exp(− 1

2 (x−µl)>Σ−1(x−µl)) .

We can also write:

P(Y = k | x = x) = C2πk exp
(
−1

2(x− µk)>Σ−1(x− µk)
)
. (28)

where C2 = Cπk
(2π)p/2|Σ|1/2 .
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5. Linear Discriminant Analysis
5.2. Linear discriminant analysis for p>1

Linear discriminant analysis for p>1
Taking the logarithm of Eq. 28 results in:

log P(Y = k | x = x) = log(C2) + log(πk)− 1
2(x− µk)>Σ−1(x− µk). (29)

We therefore aim at maximizing over k the following expression:

log(πk)− 1
2(x− µk)>Σ−1(x− µk) (30)

= log(πk)− 1
2
[
x>Σ−1x− x>Σ−1µk − µ>k Σ−1x+ µ>k Σ−1µk

]
(31)

= log(πk)− 1
2
[
x>Σ−1x+ µ>k Σ−1µk

]
+ x>Σ−1µk (32)

=C3 + log(πk)− 1
2
[
µ>k Σ−1µk

]
+ x>Σ−1µk (33)

where C3 = − 1
2

[
x>Σ−1x

]
Ewen Gallic Machine learning and statistical learning 105/135



5. Linear Discriminant Analysis
5.2. Linear discriminant analysis for p>1

Linear discriminant analysis for p>1

The objectif is to find the maximum value of:

δk(x) = −1
2µ
>
k Σ−1µk + x>Σ−1µk + log(πk).

Hence, for a point X = x, the predicted class is the one with the highest δk(x).
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5. Linear Discriminant Analysis
5.2. Linear discriminant analysis for p>1

Example

Let us take an example to illustrate this. Let us consider three equally-sized Gaussian classes
drawn from normal bivariate distributions with identical covariance matrix but with class-specific
mean vectors.

In that case, the Baye’s decision boundaries are set according to:

−1
2µ
>
k Σ−1µk + x>Σ−1µk + log(πk) = −1

2µ
>
l Σ−1µl + x>Σ−1µl + log(πl)

⇔ −1
2µ
>
k Σ−1µk + x>Σ−1µk = −1

2µ
>
l Σ−1µl + x>Σ−1µl

as log(πk) = log(πl) in our example as the classes are equally-sized.
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5. Linear Discriminant Analysis
5.2. Linear discriminant analysis for p>1

Example
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Figure 8: Classes drawn from three bivariate Normal distributions with identical covariance matrix but with class-specific mean
vectors.
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5. Linear Discriminant Analysis
5.2. Linear discriminant analysis for p>1

Example when the parameters are unknown

Now, let us consider that we only know that the classes are drawn from three bivariate Normal
distributions, with the same covariance matrix but that we do not know:

• the mean vector for each Gaussian: µ1, µ2, µ3
• the values of the covariance matrix: Σ
• the probabilities that an observation belongs to a given class: π1, π2, π3.

As in the univariate case, we can estimate these parameters from the observations.
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5. Linear Discriminant Analysis
5.2. Linear discriminant analysis for p>1

Example when the parameters are unknown
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Figure 9: Classes drawn from three bivariate Normal distributions with identical covariance matrix but with class-specific mean
vectors.
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6. Assessing the quality of classification

6. Assessing the quality of classification
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6. Assessing the quality of classification

Assessing the quality of classification

When fitting a classifier on sample data and testing it on a test sample, we can compare the
predictions with the observed values and compute some metrics to assess goodness of fit.
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6. Assessing the quality of classification
6.1. Confusion tables

6.1 Confusion tables
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6. Assessing the quality of classification
6.1. Confusion tables

Confusion tables
It is possible to use confusion tables to compare the predictions of the fitted model to the actual classes.
These tables cross-tabulate the observed classes against the classes that the classifier assigns.

Let us consider that we trained a model on a train dataset to be able to predict a categorical response
variable with two classes: “yes” and “no”.

Predicted class

no predicted yes predicted Model error

Tr
ue

cl
as

s no a b b/(a+ b)

yes c d c/(c+ d)

Use error c/(a+ c) b/(b+ d) Overall error
= (b+c)

(a+b+c+d)

Table 2: A confusion table.
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6. Assessing the quality of classification
6.1. Confusion tables

Confusion tables

We can create these tables for both predictions made on the training and the testing samples.

Four kinds of performance assessment can be made from confusion tables.

1. Looking at the overall proportion of cases incorrectly classified

Predicted class

no predicted yes predicted Model error

Tr
ue

cl
as

s no a b b/(a+ b)

yes c d c/(c+ d)

Use error c/(a+ c) b/(b+ d) Overall error
= (b+c)

(a+b+c+d)
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6. Assessing the quality of classification
6.1. Confusion tables

Confusion tables

2. Sometimes, we may want to be more accurate for one class than for another (e.g., if
we are trying to detect a cancer). Looking at false positive and false negative.

Predicted class

no predicted yes predicted Model error

Tr
ue

cl
as

s no a b b/(a+ b)

yes c d c/(c+ d)

Use error c/(a+ c) b/(b+ d) Overall error
= (b+c)

(a+b+c+d)
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6. Assessing the quality of classification
6.1. Confusion tables

Confusion tables

3. The column proportions help evaluate how useful the classifier results are likely to be if
put to work: what happens when forecasting.

Predicted class

no predicted yes predicted Model error

Tr
ue

cl
as

s no a b b/(a+ b)

yes c d c/(c+ d)

Use error c/(a+ c) b/(b+ d) Overall error
= (b+c)

(a+b+c+d)

Here the number of false positive is b.
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6. Assessing the quality of classification
6.1. Confusion tables

Confusion tables

4. The ratio of the number of false negative to the number of false positives shows
how the results are trading one kind of error for the other:
I here c/b : if b is 5 times larger than c, there are 5 false positives for every false negative: the

classifier produces results in which false negatives are five times more important than false
positives.
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6. Assessing the quality of classification
6.1. Confusion tables

Example

Let us go back to our logistic regression classification, on the data of client who subscribe or not
to a term deposit. We model the probability of subscribing using the information on duration,
education, campaign.

We obtain the following confusion matrix:

Table 3: Confusion matrix for the logistic regression.

y No Yes
No 3940 60
Yes 434 87

The overall error (we only consider a training sample here) is 434+60
4,521 = 0.1092679.
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6. Assessing the quality of classification
6.1. Confusion tables

Example
Table 4: Confusion matrix for the logistic regression.

y No Yes
No 3940 60
Yes 434 87

• false positive: the classifier predicted that the client would subscribe but he actually did
not
I 60

3,940+60 = 0.015
• false negative: the classifier predicted that the client would not subscribe but he actually
did
I 434

434+87 = 0.8330134

We notice that the classifier is more accurate to classify the class “No” (when clients do not
subscribe).
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6. Assessing the quality of classification
6.1. Confusion tables

Example

Table 5: Confusion matrix for the logistic regression.

y No Yes
No 3940 60
Yes 434 87

Let us look at the ratio of the number of false negative to the number of false positives: 434
60 =

7.233333.

Hence, for every false positive (predicting that the client will subscribe), there are 7.23 false
negative (predicting that the client will not subscribe when in fact he would).
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6. Assessing the quality of classification
6.2. The ROC curve

6.2 The ROC curve
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6. Assessing the quality of classification
6.2. The ROC curve

Costs

In the point mentioned in the previous slide, there is an underlying idea of the existence of some
costs.

Recall that c is the number of false negative in our table, and b is the number of false positives.

The off-diagonal cells of the confusion table give us the number of false positive and false
negatives.

The ratio of the cells c/b tells us that for every false positive, there are c/b false negatives:

• one false positive is “worth” c/b false negatives
• the cost is c/b times greater: it is c/b times more costly to missclassify a false
positive than to misclassify a false negative.
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6. Assessing the quality of classification
6.2. The ROC curve

Costs

So here, in the example of the clients who subscribe or not to a term deposit, for every false
positive (predicting that the client will subscribe), there are 7.23 false negative (predicting that
the client will not subscribe when in fact he would):

• this may not be acceptable for a business industry. . .
• we may want to be able to sacrifice some accuracy in predicting false positive in favor of

better predict false negative.
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6. Assessing the quality of classification
6.2. The ROC curve

Threshold of 0.5

So far, to assign a class to an observation x0 in the case of a binary categorical response variable,
we have used a threshold of 0.5 (either in the logistic regression, the Bayes classifier, or LDA):

• predicting default class if P(Y = 1 | X = x0) ≥ 0.5 for a given observation X = x0
• predicting alternative class otherwise

I.e., this corresponds to assign an observation x0 the class k for which P(Y = k | X = x0) is
the highest.
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6. Assessing the quality of classification
6.2. The ROC curve

Back to the example

We may want to change the value for the threshold.

Let us go back to the example of the two-class response variable y that takes two values: blue
and orange, depending on the values of two predictors x1 and x2, such that:

y =
{
blue if x2

1 + x2
2 > 602

orange if x2
1 + x2

2 ≤ 602

We randomly generate n = 100 observations for x1 and x2 from a U [0, 100], and assign the true
class to y. From these observations, we fit a given classifier.

Then, we randomly generate n = 100 new observations for x1 and x2 from the same uniform
distribution and use the classifier (k-nearest neihgbors with K = 25) to predict the probability
of belonging to each of the two classes.
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6. Assessing the quality of classification
6.2. The ROC curve

Changing the threshold value

What we previously did was to assign the class to each observed value according to:

ŷ =
{
blue if P̂(Y = 1 | X = x0) ≥ 0.5
orange if P̂(Y = 1 | X = x0) < 0.5

Let us look at how we can change the threshold τ :

ŷ =
{
blue if P̂(Y = 1 | X = x0) ≥ τ
orange if P̂(Y = 1 | X = x0) < τ
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6. Assessing the quality of classification
6.2. The ROC curve

Changing the threshold value

Figure 10: Decision boundary when varying the threshold.
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6. Assessing the quality of classification
6.2. The ROC curve

Reminder

Predicted class

− + Model error

Tr
ue

cl
as

s − TN FP
FPR =

FP/(TN + FP )

+ FN TP
FNR =

FN/(FN +TP )

Use error FOR =
FN/(TN+FN)

FDR =
FP/(FP + TP )

Overall error
ACC =

(FP+FN)
(TN+FP+FN+TP )

Table 6: A confusion table.
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6. Assessing the quality of classification
6.2. The ROC curve

Changing the threshold value
Now, let us consider the bank data again and our logistic regression.
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Overall error FNR FPR

Figure 11: Varying the threshold on the logistic regression of the bank example. The red line represents the overall error. The
blue line represents the fraction of misclassified clients among the non-subscribers. The green line represents the fraction of
misclassified clients among the subscribers.Ewen Gallic Machine learning and statistical learning 130/135



6. Assessing the quality of classification
6.2. The ROC curve

Changing the threshold value

In the previous graph, we can note that:

• a threshold of 0.5 minimizes the overall error rate
• reducing the value of the threshold:

I diminishes the error rate among the individuals who subscribed (FNR = FN/(FN + TP ))
I but increases the error rate among the individuals who did not (FPR = FP/(FP + TN).
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6. Assessing the quality of classification
6.2. The ROC curve

The ROC curve

For a binary categorical response variable, it is possible to draw a ROC curve which allows us
to display the two types of error for different thresholds.

ROC means receiver operating characteristics.

The ROC curve is obtained by plotting the true positive rate agains false positive rate, at different
values of the threshold.

The area under the ROC curve (AUC) allows us to assess the overall performance of a
classifier:

• a value of 0.5 corresponds the the AUC for a random classifier
• the closer the AUC is to 1, the better

This is therefore a metric that can be used to select between different classifiers. . .
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6. Assessing the quality of classification
6.2. The ROC curve

The ROC curve
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Figure 12: ROC curve for the logistic regression on the bank data.

In this example, the AUC is 0.8221.Ewen Gallic Machine learning and statistical learning 133/135



6. Assessing the quality of classification
6.2. The ROC curve

Exercise

Lab exercise.
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7. Assessing the quality of classification
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