
Machine Learning and Statistical Learning
Gradient descent

Ewen Gallic
ewen.gallic@gmail.com

MASTER in Economics - Track EBDS - 2nd Year

Ewen Gallic Machine Learning and Statistical Learning 1/183

Objectives

A machine learning algorithm can be viewed as an optimisation programme. During this lecture, we will
have a look at a very common algorithm used to find the parameters that minimise a known function
𝑓(⋅): the gradient descent algorithm.

We will first present the vanilla version of the gradient descent algorithm. Then, we will show some
variants (stochastic gradient descent, batch gradient descent, mini-batch gradient descents). The lecture
ends with two other techniques: Newton’s method and coordinate descent algorithm.

Ewen Gallic Machine Learning and Statistical Learning 2/183

Figure 1: Finding a local minimum.

Ewen Gallic Machine Learning and Statistical Learning 3/183

1. Vanilla Gradient Descent

1. Vanilla Gradient Descent

Ewen Gallic Machine Learning and Statistical Learning 4/183

1. Vanilla Gradient Descent
1.1. Concept

1.1 Concept

Ewen Gallic Machine Learning and Statistical Learning 5/183

1. Vanilla Gradient Descent
1.1. Concept

Concept

Let us consider a very general model:

𝑦 = 𝑚(𝑋) + 𝜀,

where 𝑦 is a variable to predict (or target variable, or response variable), 𝑚(⋅) is an unknown model, 𝑋
is a set of 𝑝 predictors (or features, or inputs, or explanatory variables) and 𝜀 is an error term.

Let us assume that the response variable is linearly dependent on the set of explanatory variables:

𝑦 = 𝑋𝛽 + 𝜀.

Ewen Gallic Machine Learning and Statistical Learning 6/183

1. Vanilla Gradient Descent
1.1. Concept

Concept

We do not know the true generating data process and only observe some realizations of 𝑦 and 𝑋 for 𝑛
examples (or observations, or individuals). We need to make an assumption on the distribution of the
error term to estimate the vector of coefficients𝛽.

With linear least squares, we assume that the error term is normally distributed with zero mean and
standard error 𝜎. The vector of coefficients 𝛽 can be estimated with Ordinary Least Squares (OLS).
The OLS estimates are such that they minimise the the sum of squared residuals, i.e., the squared
difference between the observed values 𝑦𝑖 and the values predicted by the model 𝑓(𝑋𝑖):

𝑅𝑆𝑆 =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑓(𝑋𝑖))
2 ,

where 𝑖 = 1, … , 𝑛 denotes the examples (or individuals, or observations).

Ewen Gallic Machine Learning and Statistical Learning 7/183

1. Vanilla Gradient Descent
1.1. Concept

Concept

The problem boils down to estimating the coefficients of vector 𝛽 which minimise an objective function:

arg min
𝛽

𝑛
∑
𝑖=1

ℒ (𝑦𝑖, 𝑓(𝑋𝑖)) ,

where here:
ℒ (𝑦𝑖, 𝑓(𝑋𝑖)) = (𝑦𝑖 − 𝑓(𝑋𝑖))

2

Here, with OLS, an analytical solution exists:

̂𝛽 = (𝑋𝑡𝑋)−1 𝑋𝑡𝑦.

Ewen Gallic Machine Learning and Statistical Learning 8/183

1. Vanilla Gradient Descent
1.1. Concept

Concept

In a more general case, if we do not assume that the response variable is linearly dependent on the set of
explanatory variables, the aim is to find the solution �̂� to the following optimization problem:

minimise𝑚

𝑛
∑
𝑖=1

ℒ (𝑦𝑖, 𝑚(𝑋𝑖)) .

The Gradient Descent algorithm is a popular technique that performs this kind of optimisation task,
when the function to optimize is convex and differentiable.

Ewen Gallic Machine Learning and Statistical Learning 9/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

1.2 A First Example in Dimension 1

Ewen Gallic Machine Learning and Statistical Learning 10/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

If we know the functional form of the objective function, it is easy to find its minimum. As an
illustration, consider the following function ℒ(𝑥) = 3𝑥2 − 2𝑥 + 5.

10

20

30

−2 0 2
x

y

Figure 2: Minimising a simple loss function with a single input.

Ewen Gallic Machine Learning and Statistical Learning 11/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

The value of 𝑥 that minimises this function is obtained by canceling the first derivative of ℒ(⋅) with
respect to 𝑥, i.e.:

𝜕ℒ
𝜕𝑥

(𝑥) = 6𝑥 − 2 = 0,

which is 𝑥 = 1/3:

0

10

20

30

−2 0 2
x

y

Figure 3: Function with a single input: minimum.

Ewen Gallic Machine Learning and Statistical Learning 12/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

But with more complex functions, finding the minimum is not always feasible. Let us illustrate this with
a simple example.

Let us consider the following function: 𝑓(𝑥) = (𝑥 + 3) × (𝑥 − 2)2 × (𝑥 + 1). The global minimum of that
function is reached in 𝑥 = −1 − √ 3

2 . Let us generate some values from this process, for 𝑥 ∈ [−3, 3].

Ewen Gallic Machine Learning and Statistical Learning 13/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

In R:

x <- seq(-3, 3, by = .1)
f <- function(x) (x+3)*(x-2)^2*(x+1)
y <- f(x)
df <- tibble(x = x, y = y)
head(df)

A tibble: 6 x 2
x y

<dbl> <dbl>
1 -3 0
2 -2.9 -4.56
3 -2.8 -8.29
4 -2.7 -11.3
5 -2.6 -13.5
6 -2.5 -15.2

Ewen Gallic Machine Learning and Statistical Learning 14/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

−10

0

10

20

−2 0 2
x

y

Figure 4: Function with a single input: a more complex function.

Ewen Gallic Machine Learning and Statistical Learning 15/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

If we want to minimise this function using gradient descent, we can proceed as follows.

In a first step, we start at a random point:

starting_value <- -.5
f(starting_value)

[1] 7.8125

Ewen Gallic Machine Learning and Statistical Learning 16/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

ggplot(data = df, aes(x=x, y=y)) +
geom_line() +
geom_point(x=starting_value, y = f(starting_value), colour = "red")

−10

0

10

20

−2 0 2
x

y

Figure 5: Function with a single input: start at a random point.

Ewen Gallic Machine Learning and Statistical Learning 17/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

Then, from that point, we need to decide on two things so as to reduce the objective function:
1. in which direction to go next (left or right)
2. and how far we want to go.

To decide the direction, wan can compute the derivative of the function at this specific point of
interest. The slope of the derivative will guide us:

• if it is positive: we need to shift to the left
• if it is negative: we need to shift to the right.

Ewen Gallic Machine Learning and Statistical Learning 18/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

The first derivative can be obtained by numerical approximation, using the grad() function from
{numDeriv}.

library(numDeriv)
grad <- grad(func = f, x = c(starting_value))
grad

[1] 12.5

The intercept of the derivative can be computed as follows. We need it for the graph only, we could
avoid computing it during the minimisation process.

(intercept <- -grad*starting_value + f(starting_value))

[1] 14.0625

Ewen Gallic Machine Learning and Statistical Learning 19/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

ggplot(data = df, aes(x=x, y=y)) +
geom_line() +
geom_point(x=starting_value, y = f(starting_value), colour = "red") +
geom_abline(slope = grad, intercept = intercept, colour = "yellow")

−10

0

10

20

−2 0 2
x

y

Figure 6: Compute the derivative of the function at that point.

Ewen Gallic Machine Learning and Statistical Learning 20/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

• Here, the slope is positive We thus need to go left.
• We still need to decide how far we want to go, i.e., we must decide the size of the step we

will take.
• This step is called the learning rate:

▶ on the one hand, if this learning rate is too small, we increase the risk of ending up in a local
minimum

▶ on the other hand, if we pick a too large value for the learning rate, we face a risk of
overshooting the minimum and keeping bouncing around a (local) minimum forever.

Ewen Gallic Machine Learning and Statistical Learning 21/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

Let us first pick a small value for the learning rate:

learning_rate <- 10^-2

Once we have both the direction and the magnitude of the step, we can update our parameter:

(x_1 <- starting_value - learning_rate * grad)

[1] -0.625

Ewen Gallic Machine Learning and Statistical Learning 22/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

ggplot(data = df, aes(x=x, y=y)) +
geom_line() +
geom_point(x=starting_value, y = f(starting_value), colour = "red") +
geom_point(x=x_1, y = f(x_1), colour = "green")

−10

0

10

20

−2 0 2
x

y

Figure 7: Second iteration.

Ewen Gallic Machine Learning and Statistical Learning 23/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

Then, we can repeat the procedure multiple times.

Let us do it through a loop.

We will update our parameter from one iteration to the other and will stop either when a maximum
number of iterations is reached or when the improvement (reduction in the objective function from one
step to the next) is too small (below a threshold we will call tolerance).

Ewen Gallic Machine Learning and Statistical Learning 24/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

nb_max_iter <- 100 ; tolerance <- 10^-5

x_1 <- -.5
To keep track of the values through the iterations
x_1_values <- x_1 ; y_1_values <- f(x_1)
gradient_values <- NULL ; intercept_values <- NULL

Ewen Gallic Machine Learning and Statistical Learning 25/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

for(i in 1:nb_max_iter){
Steepest ascent:
grad <- grad(func = f, x = c(x_1))
intercept_value <- -grad*x_1 + f(x_1)
Keeping track
gradient_values <- c(gradient_values, grad)
intercept_values <- c(intercept_values, intercept_value)
Updating the value
x_1 <- x_1 - learning_rate * grad
y_1 <- f(x_1)
Keeping track
x_1_values <- c(x_1_values, x_1)
y_1_values <- c(y_1_values, y_1)
Stopping if no improvement (decrease of the cost function too small)
if(abs(y_1_values[i] - y_1 < tolerance)) break}

Ewen Gallic Machine Learning and Statistical Learning 26/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

If we exit the loop before the maximum number of iterations has been reached, we can suppose we
ended up in a (at least local) minimum. Otherwise, the algorithm did not converge.

i

[1] 22

ifelse(i < nb_max_iter,
"The algorithm converged.",
"The algorithm did not converge.")

[1] "The algorithm converged."

Ewen Gallic Machine Learning and Statistical Learning 27/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

Let us put the computed derivative and intercept at each step in a tibble, to have a look at a graphical
representation of the iterations:

df_plot <-
tibble(x_1 = x_1_values[-length(x_1_values)],

y = f(x_1),
gradient = gradient_values,
intercept = intercept_values

)

Ewen Gallic Machine Learning and Statistical Learning 28/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

−20

−10

0

10

20

−2 0 2
x

y

Figure 8: At the last step of the iteration process.

Ewen Gallic Machine Learning and Statistical Learning 29/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

Now, let us run the same algorithm, but picking a larger value for the learning rate. Let us also
increase the number of maximum iterations.

learning_rate <- 0.05 ; nb_max_iter <- 1000
tolerance <- 10^-5
Starting value
x_1 <- -.5
To keep track of the values through the iterations
x_1_values <- x_1 ; y_1_values <- f(x_1)
gradient_values <- NULL ; intercept_values <- NULL

Ewen Gallic Machine Learning and Statistical Learning 30/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

After evaluating the same loop as before, the algorithm stopped at the following iteration:

i

[1] 1000

ifelse(i < nb_max_iter,
"The algorithm converged.",
"The algorithm did not converge.")

[1] "The algorithm did not converge."

Ewen Gallic Machine Learning and Statistical Learning 31/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

−20
−10

0
10
20

−2 0 2
x

y
Step 1000

Figure 9: At the last step of the iteration process, with another starting value.

We jumped around the minimum and never reached it.

Ewen Gallic Machine Learning and Statistical Learning 32/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

The algorithm is also sensitive to the starting point.

learning_rate <- 0.01 ; nb_max_iter <- 1000 ; tolerance <- 10^-5
Starting value
x_1 <- .5
To keep track of the values through the iterations
x_1_values <- x_1 ; y_1_values <- f(x_1)
gradient_values <- NULL ; intercept_values <- NULL

Ewen Gallic Machine Learning and Statistical Learning 33/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

Let us check whether we converged:

i

[1] 33

ifelse(i < nb_max_iter,
"The algorithm converged.",
"The algorithm did not converge.")

[1] "The algorithm converged."

Yes! But let us look at where….

Ewen Gallic Machine Learning and Statistical Learning 34/183

1. Vanilla Gradient Descent
1.2. A First Example in Dimension 1

−20
−10

0
10
20

−2 0 2
x

y

Step 33

Figure 10: Ending up in a local minimum.

This time, we ended up in a local minimum.

Now let us increase the dimension of our problem, and move on to a function defined with two
parameters. We will consider more afterwards, but then we will not be able to visualize as easily what
happens using graphs.

Ewen Gallic Machine Learning and Statistical Learning 35/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

1.3 Moving to Higher Dimensions Optimisation Problems

Ewen Gallic Machine Learning and Statistical Learning 36/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

Let us consider the following data generating process: 𝑓(𝑥1, 𝑥2) = 𝑥2
1 + 𝑥2

2.

x_1 <- x_2 <- seq(-2, 2, by = 0.3)
z_f <- function(x_1,x_2) x_1^2+x_2^2
z <- outer(x_1, x_2, z_f)

Ewen Gallic Machine Learning and Statistical Learning 37/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

The representative surface of that function can be visualized as follows:

library(plot3D)
par(mar = c(1, 1, 1, 1))
flip <- 1 # 1 or 2
th = c(-300,120)[flip]
pmat <-

persp3D(x = x_1, y = x_2, z = z, colkey=F, contour=T, ticktype = "detailed",
asp = 1, phi = 30, theta = th, border = "grey10", alpha=.4,
d = .8,r = 2.8,expand = .6,shade = .2,axes = T,box = T,cex = .1)

x

−2
−1

0
1 y−2

−1 0 1

z

2
4
6
8

Figure 11: Surface of a function in ℝ2.Ewen Gallic Machine Learning and Statistical Learning 38/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

Once again, we need to initialise the algorithm by picking starting values. Let us pick 𝜃 = (2, 2).

theta <- c(x_1 = 1.5, x_2 = 1.5)

Let us look at this point on the graph:

x

−2
−1

0
1

y
−2

−1
0

1

z

2
4
6
8

Figure 12: Starting point.

Ewen Gallic Machine Learning and Statistical Learning 39/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

From that point, we need to decide:
• the direction to go to
• and the magnitude of the step to take in that direction.

The direction is obtained by computing the first derivative of the objective function 𝑓(⋅) with respect to
each argument 𝑥1 and 𝑥2, at point 𝜃. In other words, we need to evaluate the gradient of the function
at point 𝜃.

∇𝑓(𝜃) = [
𝜕𝑓

𝜕𝑥1
(𝜃)

𝜕𝑓
𝜕𝑥2

(𝜃)
]

The values will give us the steepest ascent.

Ewen Gallic Machine Learning and Statistical Learning 40/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

Once the learning rate is decided, we just need to update each argument by moving in the opposite
direction of the steepest ascent. The updated value of the parameters after the end of the 𝑡th step will
be:

[𝑥(𝑡+1)
1

𝑥(𝑡+1)
2

] = [𝑥(𝑡)
1

𝑥(𝑡)
2

] − 𝜂 [
𝜕𝑓

𝜕𝑥1
(𝑥(𝑡)

1 , 𝑥(𝑡)
2)

𝜕𝑓
𝜕𝑥2

(𝑥(𝑡)
1 , 𝑥(𝑡)

2)
] ,

where [𝑥(𝑡+1)
1

𝑥(𝑡+1)
2

] is the updated vector of parameters, [𝑥(𝑡)
1

𝑥(𝑡)
2

] is the current value of the vector of

parameters, 𝜂 ∈ ℝ+ is the learning rate, and [
𝜕𝑓

𝜕𝑥1
(𝑥(𝑡)

1 , 𝑥(𝑡)
2)

𝜕𝑓
𝜕𝑥2

(𝑥(𝑡)
1 , 𝑥(𝑡)

2)
] is the gradient of the function at point

𝜃 = (𝑥(𝑡)
1 , 𝑥(𝑡)

2).

Ewen Gallic Machine Learning and Statistical Learning 41/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

In a more general context, when at a point ∈ ℝ𝑝, at any step 𝑡 ≤ 0, the gradient descent
algorithm tries to move in a direction 𝛿 such that ℒ ((𝑡) + 𝛿) < ℒ ((𝑡)). The choice of 𝛿 is made
such that 𝛿 = −𝜂 ⋅ ∇ℒ ((𝑡)):

(𝑡+1) = (𝑡) − 𝜂 ⋅ ∇ℒ ((𝑡))

Ewen Gallic Machine Learning and Statistical Learning 42/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

Let us rewrite our function 𝑓(⋅) so that we can calculate its gradient by numerical approximation at a
given point 𝜃 using grad() from {numDeriv}.

z_f_to_optim <- function(theta){
x_1 <- theta[["x_1"]]
x_2 <- theta[["x_2"]]
x_1^2 + x_2^2

}

Ewen Gallic Machine Learning and Statistical Learning 43/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

Let us set a learning rate:

learning_rate <- 10^-2

The steepest ascent can be obtained as follows:

grad <- grad(func = z_f_to_optim, x = theta)
grad

[1] 3 3

Ewen Gallic Machine Learning and Statistical Learning 44/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

The values can then be updated:

updated_x_1 <- theta[["x_1"]] - learning_rate * grad[1]
updated_x_2 <- theta[["x_2"]] - learning_rate * grad[2]
updated_theta <- c(x_1 = updated_x_1, x_2 = updated_x_2)
updated_theta

x_1 x_2
1.47 1.47

Ewen Gallic Machine Learning and Statistical Learning 45/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

On the graph:

x

−2
−1

0

1
y

−2
−1

0
1

z

2
4
6
8

Figure 13: Updated value after the first iteration.

Ewen Gallic Machine Learning and Statistical Learning 46/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

Then, we need to repeat the updating process. The full algorithm can be written this way. First, the
initialization:

learning_rate <- 10^-1
nb_max_iter <- 100
tolerance <- 10^-5
Starting values
theta <- c(x_1 = 1.5, x_2 = 1.5)
To keep track of what happens at each iteration
theta_values <- list(theta)
y_values <- z_f_to_optim(theta)

Ewen Gallic Machine Learning and Statistical Learning 47/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

Then, the loop:

for(i in 1:nb_max_iter){
Steepest ascent
grad <- grad(func = z_f_to_optim, x = theta)
Updating the parameters
updated_x_1 <- theta[["x_1"]] - learning_rate * grad[1]
updated_x_2 <- theta[["x_2"]] - learning_rate * grad[2]
theta <- c(x_1 = updated_x_1, x_2 = updated_x_2)
Keeping track
theta_values <- c(theta_values, list(theta))
Checking for improvement
y_updated <- z_f_to_optim(theta)
y_values <- c(y_values, y_updated)
if(abs(y_values[i] - y_updated) < tolerance) break}

Ewen Gallic Machine Learning and Statistical Learning 48/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

Let us check at which iteration the algorithm stopped:

i

[1] 28

ifelse(i < nb_max_iter,
"The algorithm converged.",
"The algorithm did not converge.")

[1] "The algorithm converged."

Ewen Gallic Machine Learning and Statistical Learning 49/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

x

−2
−1

0

1
y

−2

−1
0

1

z

2
4

6

8

Figure 14: At the end of the iterative process.
Ewen Gallic Machine Learning and Statistical Learning 50/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

With a more complex surface

Let us consider another data generating process, Mishra’s Bird function:

𝑓(𝑥1, 𝑥2) = sin(𝑥2) ∗ exp(1 − cos(𝑥1))2 + cos(𝑥1) ∗ exp(1 − sin(𝑥2))2 + (𝑥1 − 𝑥2)2.

First, let us generate some data:

x_1 <- seq(-6.5, 0, by = 0.3)
x_2 <- seq(-10, 0, by = 0.3)
z_f <- function(x_1,x_2){

sin(x_2)*exp(1-cos(x_1))^2 + cos(x_1)*exp(1-sin(x_2))^2 + (x_1-x_2)^2
}
z <- outer(x_1, x_2, z_f)

Ewen Gallic Machine Learning and Statistical Learning 51/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

x

−6

−4

−2
y

−10
−8

−6
−4

−2

z

−100
−50
0

50
100

Figure 15: A more complex function in ℝ2.
Ewen Gallic Machine Learning and Statistical Learning 52/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

The function that needs to be optimized need to be rewritten so that the first argument is the vector of
parameters over which minimisation is to take place.

z_f_to_optim <- function(theta){
x_1 <- theta[1]
x_2 <- theta[2]
sin(x_2) * exp(1-cos(x_1))^2 + cos(x_1) * exp(1-sin(x_2))^2 +
(x_1-x_2)^2

}

Ewen Gallic Machine Learning and Statistical Learning 53/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

Let us create a function that uses the gradient descent algorithm to try find the minimum.

The arguments are the following:

#' @param par Initial values for the parameters to be optimized over.
#' @param fn A function to be minimized, with first argument the vector
#' of parameters over which minimisation is to take place.
#' It should return a scalar result.
#' @param learning_rate Learning rate.
#' @param nb_max_iter The maximum number of iterations (default to 100).
#' @param tolerance The absolute convergence tolerance (default to 10^-5).

Ewen Gallic Machine Learning and Statistical Learning 54/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

gradient_descent <- function(par, fn, learning_rate,
nb_max_iter = 100, tolerance = 10^-5){

To keep track of what happens at each iteration
par_values <- list(par) ;y_values <- fn(par)
for(i in 1:nb_max_iter){
grad <- grad(func = fn, x = par) # Steepest ascent
Updating the parameters
par <- par - learning_rate * grad
Keeping track
par_values <- c(par_values, list(par))
Checking for improvement
y_updated <- fn(par) ; y_values <- c(y_values, y_updated)
rel_diff <- abs(y_values[i] - y_updated)
if(rel_diff < tolerance) break}

Ewen Gallic Machine Learning and Statistical Learning 55/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

Has the algorithm converged?
convergence <- i < nb_max_iter | (rel_diff < tolerance)

structure(
list(

par = par,
value = y_updated,
pars = do.call("rbind", par_values),
values = y_values,
convergence = convergence,
nb_iter = i,
nb_max_iter = nb_max_iter,
tolerance = tolerance

))
}

Ewen Gallic Machine Learning and Statistical Learning 56/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

Now this optimisation function can be called.

Let us start at 𝜃 = (−6, −2), and try to find the minimum with a learning rate of 10−2 over at most 100
iterations.

res_optim <-
gradient_descent(par = c(-6, -2), fn = z_f_to_optim,

learning_rate = 10^-2,
nb_max_iter = 100,
tolerance = 10^-5)

Ewen Gallic Machine Learning and Statistical Learning 57/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

Let us check whether the algorithm converged:

res_optim$convergence

[1] TRUE

res_optim$nb_iter

[1] 41

Ewen Gallic Machine Learning and Statistical Learning 58/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

The algorithm has converged. Let us look at the point we ended up with:

res_optim$par

[1] -3.122755 -1.589316

res_optim$value

[1] -106.7877

Ewen Gallic Machine Learning and Statistical Learning 59/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

x

−6
−4

−2y
−10−8−6

−4
−2

z

−100
−50
0

50
100

Figure 16: Interative process: we end up in a local minimum.

Ewen Gallic Machine Learning and Statistical Learning 60/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

Another way to look at the gradient descent is through the following contour plot. At each iteration, we
decide in which direction to go:

x_1

x_
2

 −80

 −60

 −60

 −40

 −40 −20

 −20

 0

 0

 20

 20

 20 20

 40

 40

 40

 40

 40

 60

 60

 80
 100

−6 −5 −4 −3 −2 −1 0

−
10

−
6

−
2

0

Figure 17: Another grapghical representation: contour plot.

Ewen Gallic Machine Learning and Statistical Learning 61/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

Let us change the starting point to begin with 𝜃 = (−6, −4) (let us also increase the maximum number
of iterations).

res_optim <-
gradient_descent(par = c(-6, -4), fn = z_f_to_optim,

learning_rate = 10^-2,
nb_max_iter = 1000,
tolerance = 10^-5)

Ewen Gallic Machine Learning and Statistical Learning 62/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

Let us check whether the algorithm converged:

[1] TRUE

[1] 141

The algorithm has also converged.

Ewen Gallic Machine Learning and Statistical Learning 63/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

Let us look at the point we ended up with: we reached a local minimum.

x

−6

−4

−2y

−10
−8

−6
−4

−2

z

−100
−50
0

50
100

Figure 18: Getting stuck in a plateau.

Ewen Gallic Machine Learning and Statistical Learning 64/183

1. Vanilla Gradient Descent
1.3. Moving to Higher Dimensions Optimisation Problems

x_1

x_
2

 −80

 −60

 −60

 −40

 −40
 −20

 −20

 0

 0

 20

 20

 20
 20

 40

 40

 40

 40

 4
0

 60

 60

 80

 100

−6 −5 −4 −3 −2 −1 0

−
10

−
8

−
6

−
4

−
2

0

Figure 19: Contour plot: getting stuck in a plateau.
Ewen Gallic Machine Learning and Statistical Learning 65/183

1. Vanilla Gradient Descent
1.4. Case Study: Linear Regression

1.4 Case Study: Linear Regression

Ewen Gallic Machine Learning and Statistical Learning 66/183

1. Vanilla Gradient Descent
1.4. Case Study: Linear Regression

Let us generate some data.
𝑦𝑖 = 3𝑥𝑖 − 2 + 𝜀𝑖, 𝑖 = 1, … , 𝑛,

where 𝜀 is normally distributed with zero mean and variance 𝜎2 = 4.

set.seed(123)
n <- 50 # Number of observations
x randomly drawn from a continuous uniform distribution with bounds [0,10]
x <- runif(min = 0, max = 10, n = n)
Error term from Normal distribution with zero mean and variance 4
error <- rnorm(n = n, mean = 0, sd = 2)
Response variable
beta_0 <- 3 ; beta_1 <- -2
y <- beta_0*x + beta_1 + error

Ewen Gallic Machine Learning and Statistical Learning 67/183

1. Vanilla Gradient Descent
1.4. Case Study: Linear Regression

Let us put the data in a table:

df <- tibble(x = x, y = y)

0

10

20

30

0.0 2.5 5.0 7.5 10.0
x

y

y = f(x)

Figure 20: Data Generating Process and synthetic data.

Ewen Gallic Machine Learning and Statistical Learning 68/183

1. Vanilla Gradient Descent
1.4. Case Study: Linear Regression

Now, let us suppose that we do not know anymore the parameters 𝛽0 and 𝛽1.

The only things we assume are that there exists a linear relationship between 𝑦 and 𝑥 and that the error
term is normally distributed with zero mean and (unknown) variance 𝜎2.

In other words, we would like to estimate the following model:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖, 𝑖 = 1, … , 𝑛,

where 𝜀 𝒩(0, 𝜎2), and where 𝛽0, 𝛽1 (and 𝜎2) are unknown and need to be estimated.

Ewen Gallic Machine Learning and Statistical Learning 69/183

1. Vanilla Gradient Descent
1.4. Case Study: Linear Regression

We would like to obtain estimates of 𝛽0 and 𝛽1 such that the loss function (our objective function) is
the smallest. The loss function we will use is the mean squared error:

ℒ(𝛽) = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖))
2 ,

where ̂𝑦𝑖 = ̂𝛽0 + ̂𝛽1𝑥𝑖, and where ̂𝛽0 and ̂𝛽1 are the estimates of 𝛽0 and 𝛽1, respectively.

We will use the gradient descent algorithm to estimate these parameters so as to minimise this loss
function.

Ewen Gallic Machine Learning and Statistical Learning 70/183

1. Vanilla Gradient Descent
1.4. Case Study: Linear Regression

The function to optimise:

obj_function <- function(theta, y){
y_pred <- theta[1] + theta[2]*x
mean((y - y_pred)^2)

}

Ewen Gallic Machine Learning and Statistical Learning 71/183

1. Vanilla Gradient Descent
1.4. Case Study: Linear Regression

We need:
• to pick starting values for 𝛽0 and 𝛽1
• to keep track of the updated values throughout the iterations
• to pick a learning rate
• to set a max number of iterations
• to define an absolute tolerance for early stopping

beta <- c(0, 0)
beta_values <- beta ; mse_values <- NULL
learning_rate <- 10^-2
nb_max_iter <- 1000
abstol <- 10^-5

Ewen Gallic Machine Learning and Statistical Learning 72/183

1. Vanilla Gradient Descent
1.4. Case Study: Linear Regression

The loop:

for(i in 1:nb_max_iter){
Predctions with the current values:
y_pred <- beta[1] + beta[2]*x
mse <- mean((y - y_pred)^2) # Just for keeping track
mse_values <- c(mse_values, mse)
gradient <- grad(func = obj_function, x = beta, y=y)
Updating the value
beta <- beta - learning_rate * gradient
Keeping track of the changes
beta_values <- rbind(beta_values, beta)
if(i>1){
rel_diff <- abs(mse_values[i] - mse_values[i-1])
if(rel_diff < abstol) break

}
}

Ewen Gallic Machine Learning and Statistical Learning 73/183

1. Vanilla Gradient Descent
1.4. Case Study: Linear Regression

Has the algorithm converged?

print(str_c("Number of iterations: ", i))

[1] "Number of iterations: 790"

convergence <- i < nb_max_iter | (rel_diff < abstol)
convergence

[1] TRUE

The estimated values:

beta

[1] -2.218623 3.066613

Ewen Gallic Machine Learning and Statistical Learning 74/183

1. Vanilla Gradient Descent
1.4. Case Study: Linear Regression

For comparison, the OLS estimates are as follows:

lm(y~x)

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x

-2.285 3.076

Ewen Gallic Machine Learning and Statistical Learning 75/183

1. Vanilla Gradient Descent
1.4. Case Study: Linear Regression

The MSE quickly converges to the variance of the error:

5

10

15

20

25

0 200 400 600 800
iteration

m
se

Figure 21: Quick convergence of the MSE to the variance of the error.
Ewen Gallic Machine Learning and Statistical Learning 76/183

2. Variants of the Gradient Descent Algorithm

2. Variants of the Gradient Descent Algorithm

Ewen Gallic Machine Learning and Statistical Learning 77/183

2. Variants of the Gradient Descent Algorithm

So far, we have estimated the 𝑝 parameters that minimise an objective function ℒ(𝜃), where 𝜃 is a
vector of the 𝑝 parameters to be estimated.

We have seen that the gradient descent algorithm updates the value of the 𝑖th parameter using the
following rule:

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂 ⋅ ∇ℒ(𝜃(𝑡))

Ewen Gallic Machine Learning and Statistical Learning 78/183

2. Variants of the Gradient Descent Algorithm

In the previous example, to compute the gradient of the objective function ℒ, we have used the whole
dataset.

The learning rate 𝑒𝑡𝑎 was a constant.

Now, we will consider different ways of updating the parameters.
• First, we will focus on the frequency of updates and on the samples used to update the parameters.
• Then, we will have a glance at ways used to make the learning rate vary along the iteration process.

Ewen Gallic Machine Learning and Statistical Learning 79/183

2. Variants of the Gradient Descent Algorithm

Before jumping to those aspects, let us sum up how the gradient descent algorithm works:

Gradient Descent Algorithm
1. Randomly pick starting values for the parameters
2. Compute the gradient of the objective function at the current value of the parameters using

all the observations from the training sample
3. Update the parameters
4. Repeat from step 2 until a fixed number of iteration or until convergence.

Ewen Gallic Machine Learning and Statistical Learning 80/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

2.1 Frequency of Updates & Samples Used

Ewen Gallic Machine Learning and Statistical Learning 81/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

2.1.1 Stochastic Gradient Descent

Ewen Gallic Machine Learning and Statistical Learning 82/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

There are multiple to compute the gradient of the objective function.

Instead of updating the parameters using all the observations, the parameters can be updated using a
single observation from the dataset at each iteration.

• Each sample observation is used in turn to evaluate the objective function and to update the
parameters.

• Once all the observations have been used to update the parameters, we say that we have passed an
epoch.

• The overall procedure in which a single observation (as opposed to the whole dataset) is used to
update the parameters is called Stochastic Gradient Descent (SGD).

Ewen Gallic Machine Learning and Statistical Learning 83/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

Training over the entire dataset: may be slow.

Imagine having a large dataset with a high number of features 𝑝 and a large number of observations 𝑁.

At each iteration:
• with GD, we need to compute 𝑝 first-order derivative for 𝑁 observations
• with Stochastic Gradient Descent, instead of computing the first-order derivative for all 𝑁

observations, a single randomly drawn observation is used –> Faster

Drawbacks:
• The update process becomes noisier and the algorithm converges at a lower rate. But the fact that

the update process becomes noisier may not be a curse: it can allow us to avoid ending up in a
local minimum.

• As the update of the parameters is done for each observation, it is not possible to rely on
vectorized or parallel implementation of this process.

Ewen Gallic Machine Learning and Statistical Learning 84/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

The SGD algorithm works as follows:

Stochastic Gradient Descent Algorithm
1. Randomly pick starting values for the parameters
2. Select an observation
3. Compute the gradient of the objective function using the observation from step 2
4. Update the parameters
5. Repeat from step 2 until all the observations from the training sample have been used: this

constitutes an epoch
6. Repeat the procedure from 2 to 5 to complete multiple epochs.

At iteration 𝑡, the parameters are updated using the 𝑖th observation:

𝜃(𝑡+1) = 𝜃(𝑡)
𝑖 − 𝜂 ⋅ ∇ℒ(𝜃(𝑡); 𝑋𝑖)

Ewen Gallic Machine Learning and Statistical Learning 85/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

Let us apply this algorithm to estimate the parameters of a linear model.

We can generate 1000 observations from the following process:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1,𝑖 + 𝛽2𝑥2,𝑖 + 𝜀𝑖, 𝑖 = 1, … , 𝑁

where 𝑥1 and 𝑥2 are randomly drawn from a 𝒰(0, 10) distribution and 𝜀 ∼ 𝒩(0, 2).

Ewen Gallic Machine Learning and Statistical Learning 86/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

set.seed(123)
Number of observations
n <- 1000
x randomly drawn from a continuous uniform distribution with bounds [0,10]
x_1 <- runif(min = 0, max = 10, n = n)
x_2 <- runif(min = 0, max = 10, n = n)
Error term from Normal distribution with zero mean and variance 4
error <- rnorm(n = n, mean = 0, sd = 2)
beta_0 <- 3 ; beta_1 <- -2 ; beta_2 <- .5
true_beta <- c(beta_0=beta_0, beta_1=beta_1, beta_2=beta_2)
Response variable
y <- beta_0 + beta_1*x_1 + beta_2*x_2 + error

Ewen Gallic Machine Learning and Statistical Learning 87/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

The objective function we use is the Mean Squared Error:

obj_function <- function(theta, y, X){
y_pred <- X%*%theta
mean((y - y_pred)^2)

}

Ewen Gallic Machine Learning and Statistical Learning 88/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

We can construct the matrix of predictors as follows:

X <- cbind(rep(1, n), x_1, x_2)
colnames(X) <- c("Intercept", "x_1", "x_2")
head(X)

Intercept x_1 x_2
[1,] 1 2.875775 2.736227
[2,] 1 7.883051 5.938669
[3,] 1 4.089769 1.601848
[4,] 1 8.830174 8.534302
[5,] 1 9.404673 8.477392
[6,] 1 0.455565 4.778868

Ewen Gallic Machine Learning and Statistical Learning 89/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

We need some initial values for the vector of parameters:

beta <- c(1,1,1)

We can set the learning rate to 10−2. We will only consider 10 epochs here,

learning_rate <- 10^-2
nb_epoch <- 20

To keep track of the process (we will compute the MSE after each epoch, on the whole dataset.)

mse_values <- NULL

Ewen Gallic Machine Learning and Statistical Learning 90/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

for(i_epoch in 1:nb_epoch){
cat("\n----------\nEpoch: ", i_epoch, "\n")
Shuffle the order of observations
index <- sample(1:n, size = n, replace=TRUE)
for(i in 1:n){
The gradient is estimated using a single observation: the ith
gradient <- grad(func = obj_function, x=beta,

y=y[index[i]], X = X[index[i],])
Updating the value
beta <- beta - learning_rate * gradient

}
Just for keeping track (not necessary to run the algorithm)
(Significantly slows down the algorithm)
cost <- obj_function(beta, y, X)
cat("MSE : ", cost, "\n")
mse_values <- c(mse_values, cost)

}

Epoch: 1
MSE : 60.61677

Epoch: 2
MSE : 14.27008

Epoch: 3
MSE : 21.85282

Epoch: 4
MSE : 4.317547

Epoch: 5
MSE : 12.04292

Epoch: 6
MSE : 7.704181

Epoch: 7
MSE : 16.23794

Epoch: 8
MSE : 6.016237

Epoch: 9
MSE : 28.43145

Epoch: 10
MSE : 10.1408

Epoch: 11
MSE : 5.436552

Epoch: 12
MSE : 8.876291

Epoch: 13
MSE : 144.3951

Epoch: 14
MSE : 7.522555

Epoch: 15
MSE : 26.61209

Epoch: 16
MSE : 5.29168

Epoch: 17
MSE : 57.37272

Epoch: 18
MSE : 4.390237

Epoch: 19
MSE : 11.97248

Epoch: 20
MSE : 5.225995

Ewen Gallic Machine Learning and Statistical Learning 91/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

Here are the estimated parameters:

beta_0 beta_1 beta_2
3.0 -2.0 0.5

[1] 2.6187446 -2.1165051 0.8039565

Ewen Gallic Machine Learning and Statistical Learning 92/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

The MSE value at each epoch quickly falls but does not smoothly decreases with the epochs:

0

50

100

150

5 10 15 20
epoch

M
S

E

Figure 22: Singular Gradient Descent.
Ewen Gallic Machine Learning and Statistical Learning 93/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

Let us create, for convenience, a simple function that performs the Stochastic Gradient Descent for a
linear model, with the following arguments:

#' Performs Stochastic Gradient Descent for a Linear Model.
#' @param par Initial values for the parameters.
#' @param fn A function to be minimized, with first argument the vector of
#' parameters over which minimisation is to take place.
#' It should return a scalar result.
#' @param y Target variable.
#' @param X Matrix of predictors.
#' @param learning_rate Learning rate.
#' @param nb_epoch Number of epochs.
#' @param silent If TRUE (default), progress information
#' not printed in the console.

Ewen Gallic Machine Learning and Statistical Learning 94/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

f_sgd <- function(par,fn,y,X,learning_rate=10^-2,nb_epoch=10,silent=TRUE){
mse_values <- NULL
for(i_epoch in 1:nb_epoch){
if(!silent) cat("\n----------\nEpoch: ", i_epoch, "\n")
n <- nrow(X)
index <- sample(1:n, size = n, replace=TRUE)
for(i in 1:n){

gradient <- grad(func = fn, x=par, y=y[index[i]], X = X[index[i],])
par <- par - learning_rate * gradient # Updating the value

}
Just for keeping track (not necessary to run the algorithm)
Significantly slows down the algorithm
cost <- fn(par, y, X)
if(!silent) cat("MSE : ", cost, "\n")
mse_values <- c(mse_values, cost) # End of keeping track

}

Ewen Gallic Machine Learning and Statistical Learning 95/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

structure(list(par = par, mse_values = mse_values,
nb_epoch = nb_epoch,
learning_rate = learning_rate))

}

Ewen Gallic Machine Learning and Statistical Learning 96/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

It can then be applied as follows:

start_time_sgd <- Sys.time()
estim_sgd <- f_sgd(par = c(1,1,1), fn = obj_function, y = y, X = X,

silent=TRUE, nb_epoch = 20)
end_time_sgd <- Sys.time()

The time that elapsed to run through the 20 epochs:

Time elapsed
end_time_sgd-start_time_sgd

Time difference of 17.16238 secs

Ewen Gallic Machine Learning and Statistical Learning 97/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

The results:

$par
[1] 3.3837401 -1.4333884 0.5377486

$mse_values
[1] 26.254430 20.623584 5.261876 14.536654 5.021757 36.114059 15.058143
[8] 7.031129 19.488286 5.029290 21.690363 17.232837 14.928142 9.019636

[15] 17.868784 6.077928 16.709309 16.596630 11.279380 17.557011

$nb_epoch
[1] 20

$learning_rate
[1] 0.01

Ewen Gallic Machine Learning and Statistical Learning 98/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

2.1.2 Batch Gradient Descent

Ewen Gallic Machine Learning and Statistical Learning 99/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

Again, with batch gradient descent, the gradient of the objective function is computed separately for
each observation rather than on the whole dataset.

But:the parameters are not updated after each observation. The average of the gradients computed
for each observation is used to update the parameters only once at each epoch.

Fewer updates –> the update process is less computationally expensive and less subject to noise.

Drawback: while a less noisy learning process can lead to more stable solutions, they also increase the
risk of landing in a local minimum.

Ewen Gallic Machine Learning and Statistical Learning 100/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

Batch Gradient Descent Algorithm
1. Randomly pick starting values for the parameters
2. For each observation, compute the gradient of the objective function
3. Compute the mean of the gradients computed in step 2
4. Update the parameters with the mean gradient from step 3
5. Repeat from step 2 a given number of times.

At iteration 𝑡, the parameters are updated as follows:

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂 ⋅ 1
𝑛

𝑛
∑
𝑖=1

∇ℒ(𝜃(𝑡); 𝑋𝑖),

where 𝑛 is the size of the training sample.

Ewen Gallic Machine Learning and Statistical Learning 101/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

Let us use the same data as previously. We need starting values for the parameters:

beta <- c(1,1,1)

The learning rate and the number of epochs are the same:

learning_rate <- 10^-2
nb_epoch <- 20

And let us keep track of the MSE through the epochs:

mse_values <- NULL

Ewen Gallic Machine Learning and Statistical Learning 102/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

Epoch: 1
MSE : 30.67738

Epoch: 2
MSE : 17.55995

Epoch: 3
MSE : 13.37346

Epoch: 4
MSE : 10.64122

Epoch: 5
MSE : 8.778509

Epoch: 6
MSE : 7.506044

Epoch: 7
MSE : 6.636364

Epoch: 8
MSE : 6.041603

Epoch: 9
MSE : 5.634493

Epoch: 10
MSE : 5.355469

Epoch: 11
MSE : 5.163874

Epoch: 12
MSE : 5.03196

Epoch: 13
MSE : 4.940786

Epoch: 14
MSE : 4.877425

Epoch: 15
MSE : 4.833054

Epoch: 16
MSE : 4.80165

Epoch: 17
MSE : 4.779102

Epoch: 18
MSE : 4.762605

Epoch: 19
MSE : 4.750244

Epoch: 20
MSE : 4.740712

Ewen Gallic Machine Learning and Statistical Learning 103/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

The estimated values:

(beta_batch <- beta)

[1] 0.8526963 -1.7735736 0.6632453

Recall the true values:

true_beta

beta_0 beta_1 beta_2
3.0 -2.0 0.5

Ewen Gallic Machine Learning and Statistical Learning 104/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

These codes can be wrapped up in a simple function:

#' Performs Batch Gradient Descent for a Linear Model
#' @param par Initial values for the parameters.
#' @param fn A function to be minimized, with first argument the vector of
#' parameters over which minimisation is to take place.
#' It should return a scalar result.
#' @param y Target variable.
#' @param X Matrix of predictors.
#' @param learning_rate Learning rate.
#' @param nb_epoch Number of epochs.
#' @param silent If TRUE (default), progress information
#' not printed in the console.

Ewen Gallic Machine Learning and Statistical Learning 105/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

batch_gd <- function(par, fn, y, X, learning_rate=10^-2,
nb_epoch=10, silent=TRUE){

mse_values <- NULL ; n <- nrow(X)
for(i_epoch in 1:nb_epoch){
if(!silent) cat("\n----------\nEpoch: ", i_epoch, "\n----------")
For each observation in the batch, we need to compute the gradient
gradients <- rep(0, ncol(X))
for(i in 1:n){

gradient_current <- grad(func = fn, x=par, y=y[i], X = X[i,])
gradients <- gradients+gradient_current

}
Then we divide by the number of observations to get the average
avg_gradients <- gradients/n

Ewen Gallic Machine Learning and Statistical Learning 106/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

Updating the value
par <- par - learning_rate * avg_gradients
Just for keeping track (not necessary to run the algorithm)
Significantly slows down the algorithm
cost <- fn(par, y, X)
if(!silent) cat("MSE : ", cost, "\n")
mse_values <- c(mse_values, cost)
End of keeping track

}
structure(list(par = par, mse_values = mse_values,

nb_epoch = nb_epoch,
learning_rate = learning_rate))

}

Ewen Gallic Machine Learning and Statistical Learning 107/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

This function can be used as follows:

The time that has elapsed to run through the 20 epochs:

Time difference of 16.70541 secs

Note: the time used is not very different from that used to estimate the parameters on 20 epochs with
the Stochastic Gradient Descent algorithm: the number of predictors is very small in this example.

Ewen Gallic Machine Learning and Statistical Learning 108/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

Looking at the MSE: the decrease in the objective function is smoother with Batch Gradient Descend.

10

20

30

5 10 15 20
Epoch

M
S

E

Figure 23: Batch Gradient Descent.
Ewen Gallic Machine Learning and Statistical Learning 109/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

2.1.3 Mini-Batch Gradient Descent

Ewen Gallic Machine Learning and Statistical Learning 110/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

With Batch Gradient Descent:
• vectorised implementation is possible
• but the whole dataset is usually required to be loaded in memory –> time consuming.

Another approach, called Mini-Batch Gradient Descent, combines the idea of both Stochastic Gradient
Descent and Batch Gradient Descent.

• In its first step, it consists in creating a batch of observations of smaller size than the entire
dataset: a mini-batch (usually with 64, 128, or 256 obs.).

• Then, the gradient of the objective function is calculated for each observation in the mini batch.
• The gradients are then averaged and used to update the parameters. A new iteration can then

begin with a new mini-batch.

Ewen Gallic Machine Learning and Statistical Learning 111/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

For a given mini-batch, the computations can be vectorised and does not require to have the entire
dataset loaded in memory.

Drawback: the size of the mini-batches need to be decided on prior the algorithm is launched.

Ewen Gallic Machine Learning and Statistical Learning 112/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

Mini-Batch Descent Algorithm
1. Randomly pick n observations from the training sample
2. For each observation, compute the gradient of the objective function
3. Compute the mean of the gradients computed in step 2
4. Update the parameters with the mean gradient from step 3
5. Repeat from step 1 a given number of times.

At iteration 𝑡, the parameters are updated as follows:

𝜃(𝑡+1) = 𝜃(𝑡)
𝑖 − 𝜂 ⋅ 1

𝑛

𝑛
∑
𝑖=1

∇ℒ(𝜃(𝑡); 𝑋𝑖),

where 𝑛 is the size of the mini-batch.

Ewen Gallic Machine Learning and Statistical Learning 113/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

Let us implement this algorithm with the linear model from earlier. We need starting values for the
parameters:

beta <- c(1,1,1)

Let us use the same learning rate as that was used with the Stochastic Gradient Descent algorithm and
the same number of epochs, and let us keep track of the MSE values after each epoch:

learning_rate <- 10^-2 ; nb_epoch <- 20
mse_values <- NULL

We can select a number of observations per batch:

batch_size <- 250

Ewen Gallic Machine Learning and Statistical Learning 114/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

for(i_epoch in 1:nb_epoch){
Randomly draw a batch
index <- sample(1:n, size = batch_size, replace=TRUE)
For each observation in the batch, we need to compute the gradient
gradients_batch <- rep(0, ncol(X))
for(i in 1:batch_size){
gradient_current <-

grad(func = obj_function, x=beta, y=y[index[i]], X = X[index[i],])
gradients_batch <- gradients_batch+gradient_current}

Then we divide by the number of observations to get the average
avg_gradients_batch <- gradients_batch/batch_size
Updating the value
beta <- beta - learning_rate * avg_gradients_batch
Just for keeping track (not necessary to run the algorithm)
cost <- obj_function(beta, y, X)
mse_values <- c(mse_values, cost) # End of keeping track

}

Ewen Gallic Machine Learning and Statistical Learning 115/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

The estimated values:

(beta_batch <- beta)

[1] 0.8524989 -1.7747998 0.6444584

Recall the true values:

beta

[1] 0.8524989 -1.7747998 0.6444584

Ewen Gallic Machine Learning and Statistical Learning 116/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

As for the Batch Gradient Descent, let us wrap these codes in a function:

#' Performs Batch Gradient Descent for a Linear Model
#' @param par Initial values for the parameters.
#' @param fn A function to be minimized, with first argument the vector
#' of parameters over which minimisation is to take place.
#' It should return a scalar result.
#' @param y Target variable.
#' @param X Matrix of predictors.
#' @param learning_rate Learning rate.
#' @param nb_epoch Number of epochs.
#' @param batch_size Batch size.
#' @param silent If TRUE (default), progress information
#' not printed in the console.

Ewen Gallic Machine Learning and Statistical Learning 117/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

mini_batch_gd <- function(par, fn, y, X, learning_rate=10^-2, nb_epoch=10,
batch_size = 128, silent=TRUE){

mse_values <- NULL
n <- nrow(X)
for(i_epoch in 1:nb_epoch){
if(!silent) cat("\n----------\nEpoch: ", i_epoch, "\n----------")
Randomly draw a batch
index <- sample(1:n, size = batch_size, replace=TRUE)
For each observation in the batch, we need to compute the gradient
gradients_batch <- rep(0, ncol(X))
for(i in 1:batch_size){

gradient_current <-
grad(func = fn, x=par, y=y[index[i]], X = X[index[i],])

gradients_batch <- gradients_batch+gradient_current
}

Ewen Gallic Machine Learning and Statistical Learning 118/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

Then we divide by the number of observations to get the average
avg_gradients_batch <- gradients_batch/batch_size
Updating the value
par <- par - learning_rate * avg_gradients_batch
Just for keeping track (not necessary to run the algorithm)
cost <- fn(par, y, X)
if(!silent) cat("MSE : ", cost, "\n")
mse_values <- c(mse_values, cost) # End of keeping track

}
structure(list(par = par, mse_values = mse_values,

nb_epoch = nb_epoch,
learning_rate = learning_rate,
batch_size = batch_size))

}

Ewen Gallic Machine Learning and Statistical Learning 119/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

Let us run the Mini-Batch Gradient Descent algorithm multiple times, varying the number of
observations in the mini-batches at each time:

start_time_mini_batch_32 <- Sys.time()
mini_batch_32 <- mini_batch_gd(par = c(1,1,1), fn = obj_function,

y = y, X = X,
silent=TRUE, nb_epoch = 20, batch_size = 32)

end_time_mini_batch_32 <- Sys.time()

start_time_mini_batch_64 <- Sys.time()
mini_batch_64 <- mini_batch_gd(par = c(1,1,1), fn = obj_function,

y = y, X = X, silent=TRUE,
nb_epoch = 20, batch_size = 64)

end_time_mini_batch_64 <- Sys.time()

Ewen Gallic Machine Learning and Statistical Learning 120/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

start_time_mini_batch_128 <- Sys.time()
mini_batch_128 <- mini_batch_gd(par = c(1,1,1), fn = obj_function,

y = y, X = X, silent=TRUE,
nb_epoch = 20, batch_size = 128)

end_time_mini_batch_128 <- Sys.time()

start_time_mini_batch_256 <- Sys.time()
mini_batch_256 <- mini_batch_gd(par = c(1,1,1), fn = obj_function,

y = y, X = X, silent=TRUE,
nb_epoch = 20, batch_size = 256)

end_time_mini_batch_256 <- Sys.time()

Ewen Gallic Machine Learning and Statistical Learning 121/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

Recall the true values:

beta

[1] 0.8524989 -1.7747998 0.6444584

The estimated parameters:

rbind(mini_batch_32$par, mini_batch_64$par,
mini_batch_128$par, mini_batch_256$par)

[,1] [,2] [,3]
[1,] 0.8851996 -1.738241 0.7427221
[2,] 0.8647598 -1.780004 0.6838670
[3,] 0.8689784 -1.754704 0.6840733
[4,] 0.8557173 -1.752974 0.6988836

Ewen Gallic Machine Learning and Statistical Learning 122/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

Let us look at the time used to estimate the parameters in each situation. The greater the number of
observations, the greater the time taken by the algorithm.

[,1]
[1,] 0.600852
[2,] 1.002451
[3,] 2.195496
[4,] 4.340149

Note: if we pick a mini-batch size of 1, the Mini-Batch Gradient Descent algorithm is the same
as the Batch Gradient Descent algorithm.

Ewen Gallic Machine Learning and Statistical Learning 123/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

The MSE along the epochs: process smoother, less noisier as long as we increase the batch size.

10

20

30

40

50

5 10 15 20
Epoch

M
S

E

Mini−Batch Size

32

64

128

256

Figure 24: Mini-Batch Gradient Descent.
Ewen Gallic Machine Learning and Statistical Learning 124/183

2. Variants of the Gradient Descent Algorithm
2.1. Frequency of Updates & Samples Used

The MSE over the epochs for the algorithms we used, on the same graph:

10

20

30

40

50

5 10 15 20
Epoch

M
S

E

Stochastic GD

Batch Gradient Descent

Mini−Batch GD (size=32)

Mini−Batch GD (size=64)

Mini−Batch GD (size=128)

Mini−Batch GD (size=256)

Figure 25: Optimisation with different algorithms.

Ewen Gallic Machine Learning and Statistical Learning 125/183

2. Variants of the Gradient Descent Algorithm
2.2. Varying the Learning Rate

2.2 Varying the Learning Rate

Ewen Gallic Machine Learning and Statistical Learning 126/183

2. Variants of the Gradient Descent Algorithm
2.2. Varying the Learning Rate

So far, we have considered a fixed learning rate 𝜂. The update rule for the 𝑝 parameters of the
objective function we used was the following:

(𝑡+1) = (𝑡) − 𝜂 ⋅ ∇ℒ ((𝑡)) .

The learning rate may change over the iteration process so that the update rule becomes:

(𝑡+1) = (𝑡) − 𝜂𝑡 ⋅ ∇ℒ ((𝑡)) ,

where 𝜂𝑡 can be set in various ways.

Ewen Gallic Machine Learning and Statistical Learning 127/183

2. Variants of the Gradient Descent Algorithm
2.2. Varying the Learning Rate

Linear Decaying Rate

The learning rate can be set so that it decreases linearly with the number of iterations. In such a
case, it is defined as follows:

𝜂𝑡 = 𝜂𝑡
𝑡 + 1

Ewen Gallic Machine Learning and Statistical Learning 128/183

2. Variants of the Gradient Descent Algorithm
2.2. Varying the Learning Rate

Quadratic Decaying Rate

For a quadratically decaying learning rate:

𝜂𝑡 = 𝜂𝑡
(𝑡 + 1)2

Ewen Gallic Machine Learning and Statistical Learning 129/183

2. Variants of the Gradient Descent Algorithm
2.2. Varying the Learning Rate

Exponential Decaying Rate

For an exponential decay:

𝜂𝑡 = 𝜂𝑡 exp(−𝛽𝑡),

where 𝛽 > 0.

Ewen Gallic Machine Learning and Statistical Learning 130/183

3. Other Algorithms

3. Other Algorithms

Ewen Gallic Machine Learning and Statistical Learning 131/183

3. Other Algorithms

There are many other algorithms and variants.

Let us sketch two other algorithms here:
• Newton’s algorithm
• Coordinate Descent algorithm.

Ewen Gallic Machine Learning and Statistical Learning 132/183

3. Other Algorithms
3.1. Newton’s Method

3.1 Newton’s Method

Ewen Gallic Machine Learning and Statistical Learning 133/183

3. Other Algorithms
3.1. Newton’s Method

When the function to be optimised is convex, doubly differentiable and takes its values in ℝ𝑛, it is
possible to use the second-order derivative to redefine the learning rate.

Taylor’s theorem states that if ℒ ∶ ℝ𝑝 → ℝ is twice-differentiable at point , for any small change
𝛿, the best quadratic approximation to ℒ is given by the second-order Taylor series:

ℒ(+ 𝛿) = ℒ() + ∇ℒ()⊤𝛿 + 1
2

𝛿⊤H𝛿 + 𝒪(‖𝛿3‖),

with H = ∇2ℒ() the Hessian matrix.

Ewen Gallic Machine Learning and Statistical Learning 134/183

3. Other Algorithms
3.1. Newton’s Method

In a similar way as in the case of the best linear approximation, we need to take a step 𝛿 such
that :

ℒ(+ 𝛿) < ℒ(),

i.e., for which:
𝛿⊤H𝛿 < 0

With Newton’s method, we will thus take a step along the gradient, and we will use the Hessian
matrix to decide the step to take: by doing to, the rate at which we will go down the gradient will
account for the convexity of the function.

Ewen Gallic Machine Learning and Statistical Learning 135/183

3. Other Algorithms
3.1. Newton’s Method

Newton’s Method
1. Randomly pick starting values for the parameters
2. Compute both the gradient and the Hessian of the objective function at the current value

of the parameters using all the observations from the training sample
3. Update the parameters
4. Repeat from step 2 until a fixed number of iteration or until convergence.

At iteration 𝑡, the parameters are updated as follows:

H(𝑡) = ∇2ℒ(𝜃(𝑡))

(𝑡+1) = (𝑡) − (H(𝑡))−1 ⋅ ∇ℒ((𝑡)),

Ewen Gallic Machine Learning and Statistical Learning 136/183

3. Other Algorithms
3.1. Newton’s Method

• While computing the second-order derivative can be fast if the expression of this function is simple,
it can become computationally very expensive otherwise.

• The computation of the Hessian can also be very challenging when facing a large number of
observations (𝑛2 computations are required for the second-order derivative).

Computing the inverse of the Hessian matrix is computationally expensive. The BFGS (Broyden
Fletcher Goldfard Shanno) method avoids computing H−1 and instead estimates an approximation
of the Hessian matrix.

Ewen Gallic Machine Learning and Statistical Learning 137/183

3. Other Algorithms
3.1. Newton’s Method

Let us illustrate the method. Consider the following function:

𝑓(𝑥1, 𝑥2) = (𝑥1 − 𝑥2)4 + 2𝑥2
1 + 𝑥2

2 − 𝑥1 + 2𝑥2

x_1 <- seq(-10, 10, by = 0.3)
x_2 <- seq(-10, 10, by = 0.3)
z_f <- function(x_1,x_2) (x_1-x_2)^4 + 2*x_1^2 + x_2^2 - x_1 + 2*x_2
z_f_to_optim <- function(theta){

x_1 <- theta[1]
x_2 <- theta[2]
(x_1-x_2)^4 + 2*x_1^2 + x_2^2 - x_1 + 2*x_2

}
z <- outer(x_1, x_2, z_f)

Ewen Gallic Machine Learning and Statistical Learning 138/183

3. Other Algorithms
3.1. Newton’s Method

x

−10
−5

0
5

y

−10

−5

0

5

z

0
50000

100000

150000

Figure 26: Surface of the illustrative function.

Ewen Gallic Machine Learning and Statistical Learning 139/183

3. Other Algorithms
3.1. Newton’s Method

Let us pick some starting values:

theta <- c(-9, 9)

The Newton’s Method quickly converges, let us pick a small maximum number of iteration.

nb_max_iter <- 20

Let us set a value for the absolute tolerance:

abstol <- 10^-5

Ewen Gallic Machine Learning and Statistical Learning 140/183

3. Other Algorithms
3.1. Newton’s Method

At our starting point, the value of the function is:

(current_obj <- z_f_to_optim(theta))

[1] 105246

Let us keep a track on our updated values for the vector of parameters:

theta_values <- NULL

Ewen Gallic Machine Learning and Statistical Learning 141/183

3. Other Algorithms
3.1. Newton’s Method

for(i in 1:nb_max_iter){
gradient <- grad(func = z_f_to_optim, x = theta)
H <- hessian(func = z_f_to_optim, x = theta)
Updating the parameters
theta <- theta - t(solve(H) %*% gradient)
new_obj <- z_f_to_optim(theta)
theta_values <- rbind(theta_values, theta) # Keeping track
if(abs(current_obj - new_obj) < abstol){
break

}else{
current_obj <- new_obj

}
}

Ewen Gallic Machine Learning and Statistical Learning 142/183

3. Other Algorithms
3.1. Newton’s Method

The algorithm stopped after the following number of iterations:

[1] 13

The algorithm tells us that the minimum is reached at the following point:

[,1] [,2]
[1,] 0.03349047 -0.5669809

Ewen Gallic Machine Learning and Statistical Learning 143/183

3. Other Algorithms
3.1. Newton’s Method

Let us have a look at the updates on a first graph:

x

−10
−5

0
5

y

−10

−5

0

5

z

0
50000

100000

150000

Figure 27: Newton’s algorithm: steps of the iterative process.
Ewen Gallic Machine Learning and Statistical Learning 144/183

3. Other Algorithms
3.1. Newton’s Method

Contour plot

x_1

x_
2

 0

 20000

 20000

 40000

 40000

 60000

 60000

 80000

 80000

−10 −5 0 5 10

−
10

−
5

0
5

10

Figure 28: Newton’s algorithm: contour plot of the iterative process.

Ewen Gallic Machine Learning and Statistical Learning 145/183

3. Other Algorithms
3.1. Newton’s Method

Here, we converged quickly to the minimum, and the computation was really fast.

When applying this algorithm to minimise the objective function of a supervised learning task using large
datasets, computing the Hessian become way more costly.

To get more details on Newton’s method, see Tibshirani (2019).

Ewen Gallic Machine Learning and Statistical Learning 146/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

3.2 Coordinate Descent Algorithm

Ewen Gallic Machine Learning and Statistical Learning 147/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

When trying to optimise a high-dimensional multivariate function, the calculation of each first
derivative can quickly become very time consuming.

Intuitively, the 𝑛-dimensional optimisation problem can be seen as several small 1-dimensional
optimisation problems.

The basic idea is to try to minimise over a single dimension at each iteration, keeping all the values
of the parameters constant.

Ewen Gallic Machine Learning and Statistical Learning 148/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

More (technical/mathematical) details can be found in the slides titled “Coordinate Descent and
Ascent Methods” from Nutini (2015) and in the slides “Optimisation et convexité 1, 2 and 3”
from Charpentier (2020) (although the title is in French, the slides are in English, only the videos
are in French).

Ewen Gallic Machine Learning and Statistical Learning 149/183

https://www.cs.ubc.ca/labs/lci/mlrg/slides/mlrg_CD.pdf
https://www.cs.ubc.ca/labs/lci/mlrg/slides/mlrg_CD.pdf
https://github.com/freakonometrics/ACT6100

3. Other Algorithms
3.2. Coordinate Descent Algorithm

If the function 𝑓 is convex and differentiable, we can rely on the following theorem to find the minimum:

If 𝑓 ∶ ℝ𝑛 → ℝ is convex, differentiable, then :

𝑓(x) ≤ 𝑓 (x + 𝛿 ⃗𝕖𝑖) , ∀𝑖 ⇒ 𝑓(x) = min{𝑓},

where ⃗𝕖𝑖 = (0, … , 0, 1, 0, … , 0) ∈ ℝ𝑛.

In other words, if we find a point x such that 𝑓(x) is minimised along each of the 𝑛 coordinate axis, this
point is a global minimiser.

We can thus try to find the minimum in each direction instead of looking directly at the problem in 𝑛
dimensions. We will end up in the global minimum.

Ewen Gallic Machine Learning and Statistical Learning 150/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

Coordinate Descent Algorithm
1. Randomly pick starting values for the parameters
2. Select a dimension among the 𝑝 (cyclic sampling, uniform sampling, …)
3. Compute the first-order derivative of the objective function with respect to the ith parameter
4. Update the ith parameter
5. Repeat from step 2 until a fixed number of iteration or until convergence.

Ewen Gallic Machine Learning and Statistical Learning 151/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

Let us first consider a smooth function to illustrate the method:

𝑓(𝑥1, 𝑥2) = 𝑥2
1 + 𝑥2

2 + 𝑥1𝑥2

Let us now generate some observations from that function:

library(plot3D)
library(numDeriv)
n <- 40
x_1 <- x_2 <- seq(-3, 3, length.out=n)
z_f <- function(x_1, x_2) x_1^2 + x_2^2 + x_1*x_2
z_f_to_optim <- function(theta)

theta[1]^2 + theta[2]^2 + theta[1]*theta[2]
z <- outer(x_1, x_2, z_f)

Ewen Gallic Machine Learning and Statistical Learning 152/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

x_1
−3

−2
−1

0123 x_
2

−3
−2
−1
0

1

2

3

f(x_1, x_2) 5
10

15
20

25

Figure 29: Surface of the illustrative spherical function.
Ewen Gallic Machine Learning and Statistical Learning 153/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

Now, let us consider a starting point: 𝜃 = (2, 2.2)

theta <- c(2, 2.2)

Ewen Gallic Machine Learning and Statistical Learning 154/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

A contour plot can also be used to visualise the process:

x_1

x_
2

 1

 2
 3 4

 5
 6

 7

 7

 7

 7
 7 8

 8

 8

 8 9

 9

 10

 10

 11

 11

 12

 12

 13

 13

 14

 14

 15

 15

 17 19
 20

 20

 21

 21

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

Figure 30: Starting point.

Ewen Gallic Machine Learning and Statistical Learning 155/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

We need to minimise over a single dimension. For example, let us begin with the first dimension.

dim_i <- 1

The value of the parameter of the other dimensions (here only the second dimension) will be held fixed.
We will only update the first dimension of the parameter.

x_1

x_
2

 1

 2
 3 4

 5
 6

 7

 7

 7

 7
 7 8

 8

 8

 8 9

 9

 10

 10

 11

 11

 12

 12

 13

 13

 14

 14

 15

 15

 19
 20

 20

 21

 21

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

Figure 31: Optimisation in a single dimension (dashed blue line).

Ewen Gallic Machine Learning and Statistical Learning 156/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

The first derivative of our function 𝑓 with respect to 𝑥1 writes:

𝜕𝑓
𝜕𝑥1

(𝑥1, 𝑥2) = 2𝑥1 + 𝑥2.

derivative_wrt_x1 <- function(theta){
2*theta[1] + theta[2]

}

Ewen Gallic Machine Learning and Statistical Learning 157/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

Evaluated at 𝜃:

(grad_i <- derivative_wrt_x1(theta))

[1] 6.2

Let us set a learning rate:

learning_rate <- 10^-1

Ewen Gallic Machine Learning and Statistical Learning 158/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

The vector of parameters can then be updated:

theta_update <- theta
theta_update[dim_i] <- theta_update[dim_i] - learning_rate * grad_i
theta_update

[1] 1.38 2.20

Let us keep track of the evolution of the values of 𝜃.

[,1] [,2]
theta 2.00 2.2
theta_update 1.38 2.2

Ewen Gallic Machine Learning and Statistical Learning 159/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

x_1

x_
2

 1

 2
 3 4

 5
 6

 7

 7

 7

 7
 7 8

 8

 8

 8 9

 9

 10

 10

 11

 11

 12

 12

 13

 13

 14

 14

 15

 15

 17 19
 20

 20

 21

 21

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

Figure 32: Updated value after the first step.

Ewen Gallic Machine Learning and Statistical Learning 160/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

A new iteration can then begin. Let us now consider another dimension:

dim_i <- 2

This time, we will try to optimise on this second dimension only, keeping the values of the other
dimension constant.

x_1

x_
2

 1

 2 3 4
 5 6

 7

 7
 7

 7
 7 8

 8

 8

 8 9

 9

 10

 10

 11

 11

 12

 12

 13

 13

 14

 14

 15

 20 21

 23

−3 −2 −1 0 1 2 3

−
3

−
1

1
3

Figure 33: Optimisation in another dimension.Ewen Gallic Machine Learning and Statistical Learning 161/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

The first derivative of our function 𝑓 with respect to 𝑥2 writes:

𝜕𝑓
𝜕𝑥2

(𝑥1, 𝑥2) = 2𝑥2 + 𝑥1.

derivative_wrt_x2 <- function(theta){2*theta[2] + theta[1]}

Evaluated at 𝜃:

(grad_i <- derivative_wrt_x2(theta_update))

[1] 5.78

Ewen Gallic Machine Learning and Statistical Learning 162/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

The vector of parameters can then be updated:

[1] 1.380 1.622

Keeping track of the changes:

[,1] [,2]
theta 2.00 2.200
theta_update 1.38 2.200
theta_update 1.38 1.622

Ewen Gallic Machine Learning and Statistical Learning 163/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

x_1

x_
2

 1

 2 3 4
 5 6

 7

 7
 7

 7
 7 8

 8

 8

 8 9

 9

 10

 10

 11

 11

 12

 12

 13

 13

 14

 14

 15

 20 21

 23

−3 −2 −1 0 1 2 3

−
3

−
1

1
3

Figure 34: Updated value agter the second step.
Ewen Gallic Machine Learning and Statistical Learning 164/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

Then we just need to iterate until a number of iterations is reached or until convergence.

Here is the full code:

theta <- c(2, 2.2) # Starting values
learning_rate <- 10^-1 ; abstol <- 10^-5 ; nb_max_iter <- 100
z_current <- z_f_to_optim(theta)
theta_values <- list(theta) # Keeping track
dims <- NULL

Ewen Gallic Machine Learning and Statistical Learning 165/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

for(i in 1:nb_max_iter){

nb_dim <- length(theta)
Cyclic rule to pick the dimension
dim_i <- (i-1) %% nb_dim + 1

With uniform sampling
dim_i <- sample(x = seq_len(nb_dim), size = 1)
Steepest ascent
if(dim_i == 1){
grad_i <- derivative_wrt_x1(theta)

}else{
grad_i <- derivative_wrt_x2(theta)

}

Ewen Gallic Machine Learning and Statistical Learning 166/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

Updating the parameters
theta_update <- theta
theta_update[dim_i] <- theta_update[dim_i] - learning_rate * grad_i
theta <- theta_update
To keep track of the changes
theta_values <- c(theta_values, list(theta))
dims <- c(dims, dim_i)

Checking for improvement
z_updated <- z_f_to_optim(theta_update)
if(abs(z_updated - z_current) < abstol) break
z_current <- z_updated

}

Ewen Gallic Machine Learning and Statistical Learning 167/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

The optimisation stopped at iteration:

[1] 29

The final value for the parameter theta is:

[1] -0.03832741 0.07418966

Ewen Gallic Machine Learning and Statistical Learning 168/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

Let us have a look at the path of the process:

x_1

x_
2

 1

 2
 3 4

 5
 6

 7

 7

 7

 7
 7 8

 8

 8

 8 9

 9

 10

 10

 11

 11

 12

 12

 13

 13

 14

 14

 15

 15

 17 19
 20

 20

 21

 21

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

Figure 35: Coordinate descent algorithm: iterative process.

Ewen Gallic Machine Learning and Statistical Learning 169/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

3.2.1 When the Function to Optimize is not Differentiable in all Points

Ewen Gallic Machine Learning and Statistical Learning 170/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

The coordinate descent algorithm will not be able to find the minimum of a non-differentiable function.

The theorem we used in the case where 𝑓 is convex AND differentiable cannot be used any more.

It is however possible to find the minimum of some non-differentiable functions using a slightly modified
version of the coordinate descent algorithm, if some conditions on the 𝑓 function are met.

Ewen Gallic Machine Learning and Statistical Learning 171/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

More precisely, if the function 𝑓 ∶ ℝ𝑛 → ℝ is not differentiable at all points but can be written as follows:

𝑓(x) = 𝑔(x) +
𝑛

∑
𝑖=1

ℎ𝑖(x𝑖),

where 𝑔 is convex and differentiable and where ℎ𝑖 is convex and non-differentiable, then:

𝑓(x) ≤ 𝑓 (x + 𝛿e⃗𝑖) , ∀𝑖 ⇒ 𝑓(x) = min{𝑓},

where ⃗e𝑖 = (0, … , 0, 1, 0, … , 0) ∈ ℝ𝑛.

Ewen Gallic Machine Learning and Statistical Learning 172/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

Let us consider the following function:

𝑓(𝑥1, 𝑥2) = 𝑥2
1 + 𝑥2

2⏟
convex and differentiable

+ ∣ 𝑥1 ∣ + ∣ 𝑥2 ∣⏟⏟⏟⏟⏟
convex and non-differentiable

Let us visualise a graphical representation of this function:

n <- 25
x_1 <- x_2 <- seq(-3, 3, length.out=n)
z_f <- function(x_1, x_2) x_1^2+x_2^2 + abs(x_1) + abs(x_2)
z_f_to_optim <- function(theta)

theta[1]^2+theta[2]^2 + abs(theta[1])+abs(theta[2])
z <- outer(x_1, x_2, z_f)

Ewen Gallic Machine Learning and Statistical Learning 173/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

x_1
−3

−2
−1

0123 x_
2

−3
−2
−1
0

1

2

3

f(x_1, x_2)

0
5

10
15

20

Figure 36: Surface of a function that is not differentiable in all points.
Ewen Gallic Machine Learning and Statistical Learning 174/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

To compute the numerical partial first-order derivative with respect to the ith variable, we can create a
function that will numerically estimate the value.

Recall that the partial first-order derivative of function 𝑓 is defined as:

𝜕𝑓
𝜕𝑥𝑖

(x) = lim
ℎ→0

𝑓(x + ℎe𝑖) − 𝑓(x)
ℎ

,

where x = (𝑥1, … , 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1, … , 𝑥𝑛) ∈ ℝ𝑛 and e𝑖 = (0, … , 0, 1, 0, … , 0) ∈ ℝ𝑛.

Ewen Gallic Machine Learning and Statistical Learning 175/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

In R, we can define the following function to numerically estimate the first-order partial derivative:

#' Numerical partial first-order derivative of a function
#' @param par Initial values for the parameters
#' @param fn A function to be derived. It should return a scalar result.
#' @param dim Direction for the derivative (1 to compute the first derivative
#' with respect to the first parameter, 2 to compute the first derivative
#' with respect to the second parameter, etc.)
#' @param nb_dim number of dimensions
num_first_deriv <- function(par, fn, dim, nb_dim){

h <- par[dim]*sqrt(10^-12)
e <- rep(0, nb_dim) ; e[dim_i] <- 1
(fn(par+h*e) - fn(par))/h

}

Ewen Gallic Machine Learning and Statistical Learning 176/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

Then, we can run the coordinate descent algorithm:

Starting values
theta <- c(2, 2.2)
learning_rate <- 10^-1
abstol <- 10^-6
nb_max_iter <- 500
z_current <- z_f_to_optim(theta)
To keep track of what happens at each iteration
theta_values <- list(theta)
dims <- NULL

Ewen Gallic Machine Learning and Statistical Learning 177/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

for(i in 1:nb_max_iter){
nb_dim <- length(theta)
Cyclic rule to pick the dimension
dim_i <- (i-1) %% nb_dim + 1

Partial derivative wrt to the dim_i axis
grad_i <-
num_first_deriv(par = theta, fn = z_f_to_optim,

dim = dim_i, nb_dim = nb_dim)

Updating the parameters
theta_update <- theta
theta_update[dim_i] <- theta_update[dim_i] - learning_rate * grad_i
theta <- theta_update

Ewen Gallic Machine Learning and Statistical Learning 178/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

To keep track of the changes
theta_values <- c(theta_values, list(theta))
dims <- c(dims, dim_i)

Checking for improvement
z_updated <- z_f_to_optim(theta_update)
if(abs(z_updated - z_current) < abstol) break
z_current <- z_updated

}

Ewen Gallic Machine Learning and Statistical Learning 179/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

The estimated values:

theta

[1] 0.05555447 0.05555593

theta_values <- do.call("rbind", theta_values)
theta_values

[,1] [,2]
[1,] 2.00000000 2.20000000
[2,] 1.49999980 2.20000000
[3,] 1.49999980 1.65999978
[4,] 1.09999969 1.65999978
[5,] 1.09999969 1.22799966
[6,] 0.77999964 1.22799966
[7,] 0.77999964 0.88239960
[8,] 0.52399964 0.88239960
[9,] 0.52399964 0.60591959
[10,] 0.31919966 0.60591959
[11,] 0.31919966 0.38473562
[12,] 0.15535969 0.38473562
[13,] 0.15535969 0.20778845
[14,] 0.02428774 0.20778845
[15,] 0.02428774 0.06623074
[16,] -0.08056981 0.06623074
[17,] -0.08056981 -0.04701541
[18,] 0.03554416 -0.04701541
[19,] 0.03554416 0.06238767
[20,] -0.07156468 0.06238767
[21,] -0.07156468 -0.05008987
[22,] 0.04274827 -0.05008987
[23,] 0.04274827 0.05992811
[24,] -0.06580139 0.05992811
[25,] -0.06580139 -0.05205752
[26,] 0.04735889 -0.05205752
[27,] 0.04735889 0.05835399
[28,] -0.06211289 0.05835399
[29,] -0.06211289 -0.05331681
[30,] 0.05030969 -0.05331681
[31,] 0.05030969 0.05734656
[32,] -0.05975225 0.05734656
[33,] -0.05975225 -0.05412276
[34,] 0.05219821 -0.05412276
[35,] 0.05219821 0.05670180
[36,] -0.05824144 0.05670180
[37,] -0.05824144 -0.05463857
[38,] 0.05340685 -0.05463857
[39,] 0.05340685 0.05628915
[40,] -0.05727452 0.05628915
[41,] -0.05727452 -0.05496869
[42,] 0.05418039 -0.05496869
[43,] 0.05418039 0.05602506
[44,] -0.05665570 0.05602506
[45,] -0.05665570 -0.05517996
[46,] 0.05467545 -0.05517996
[47,] 0.05467545 0.05585604
[48,] -0.05625965 0.05585604
[49,] -0.05625965 -0.05531518
[50,] 0.05499229 -0.05531518
[51,] 0.05499229 0.05574787
[52,] -0.05600617 0.05574787
[53,] -0.05600617 -0.05540171
[54,] 0.05519507 -0.05540171
[55,] 0.05519507 0.05567863
[56,] -0.05584395 0.05567863
[57,] -0.05584395 -0.05545710
[58,] 0.05532484 -0.05545710
[59,] 0.05532484 0.05563433
[60,] -0.05574013 0.05563433
[61,] -0.05574013 -0.05549254
[62,] 0.05540790 -0.05549254
[63,] 0.05540790 0.05560597
[64,] -0.05567368 0.05560597
[65,] -0.05567368 -0.05551523
[66,] 0.05546106 -0.05551523
[67,] 0.05546106 0.05558782
[68,] -0.05563116 0.05558782
[69,] -0.05563116 -0.05552975
[70,] 0.05549508 -0.05552975
[71,] 0.05549508 0.05557621
[72,] -0.05560394 0.05557621
[73,] -0.05560394 -0.05553904
[74,] 0.05551685 -0.05553904
[75,] 0.05551685 0.05556877
[76,] -0.05558652 0.05556877
[77,] -0.05558652 -0.05554499
[78,] 0.05553079 -0.05554499
[79,] 0.05553079 0.05556402
[80,] -0.05557538 0.05556402
[81,] -0.05557538 -0.05554879
[82,] 0.05553970 -0.05554879
[83,] 0.05553970 0.05556097
[84,] -0.05556824 0.05556097
[85,] -0.05556824 -0.05555123
[86,] 0.05554541 -0.05555123
[87,] 0.05554541 0.05555902
[88,] -0.05556368 0.05555902
[89,] -0.05556368 -0.05555279
[90,] 0.05554906 -0.05555279
[91,] 0.05554906 0.05555778
[92,] -0.05556075 0.05555778
[93,] -0.05556075 -0.05555378
[94,] 0.05555140 -0.05555378
[95,] 0.05555140 0.05555698
[96,] -0.05555888 0.05555698
[97,] -0.05555888 -0.05555442
[98,] 0.05555290 -0.05555442
[99,] 0.05555290 0.05555647

[100,] -0.05555769 0.05555647
[101,] -0.05555769 -0.05555483
[102,] 0.05555386 -0.05555483
[103,] 0.05555386 0.05555614
[104,] -0.05555692 0.05555614
[105,] -0.05555692 -0.05555509
[106,] 0.05555447 -0.05555509
[107,] 0.05555447 0.05555593

Ewen Gallic Machine Learning and Statistical Learning 180/183

3. Other Algorithms
3.2. Coordinate Descent Algorithm

Looking at the path followed by the updated parameters during the iterations:

x_1

x_
2 1

 2

 3

 4
 5 6 7 8

 9
 10

 11

 12

 13

 13

 13

 13

 14

 14

 14

 14

 15

 15

 15

 15

 16

 16

 16

 16

 17

 17

 17

 17

 18 18

 19
 22

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

Figure 37: Coordinate descent: iterative process if the function is not differentiable in all points.

Ewen Gallic Machine Learning and Statistical Learning 181/183

4. References

4. References

Ewen Gallic Machine Learning and Statistical Learning 182/183

4. References

Charpentier, Arthur. 2020. “ACT6100 Analyse Des Données En Actuariat.”
https://github.com/freakonometrics/ACT6100.

Nutini, Julie. 2015. “Coordinate Descent and Ascent Methods.”
https://www.cs.ubc.ca/labs/lci/mlrg/slides/mlrg_CD.pdf.

Tibshirani, Ryan. 2019. “Convex Optimization Course.”
https://www.stat.cmu.edu/~ryantibs/convexopt/.

Ewen Gallic Machine Learning and Statistical Learning 183/183

https://github.com/freakonometrics/ACT6100
https://www.cs.ubc.ca/labs/lci/mlrg/slides/mlrg_CD.pdf
https://www.stat.cmu.edu/~ryantibs/convexopt/

	Vanilla Gradient Descent
	Concept
	A First Example in Dimension 1
	Moving to Higher Dimensions Optimisation Problems
	Case Study: Linear Regression

	Variants of the Gradient Descent Algorithm
	Frequency of Updates & Samples Used
	Varying the Learning Rate

	Other Algorithms
	Newton's Method
	Coordinate Descent Algorithm

	References

